JPS62236397A - Controlling method for preparation of paralleling generator off - Google Patents

Controlling method for preparation of paralleling generator off

Info

Publication number
JPS62236397A
JPS62236397A JP61080459A JP8045986A JPS62236397A JP S62236397 A JPS62236397 A JP S62236397A JP 61080459 A JP61080459 A JP 61080459A JP 8045986 A JP8045986 A JP 8045986A JP S62236397 A JPS62236397 A JP S62236397A
Authority
JP
Japan
Prior art keywords
signal
load
generator
control
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61080459A
Other languages
Japanese (ja)
Other versions
JPH0638719B2 (en
Inventor
Nobuyuki Mori
信之 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61080459A priority Critical patent/JPH0638719B2/en
Publication of JPS62236397A publication Critical patent/JPS62236397A/en
Publication of JPH0638719B2 publication Critical patent/JPH0638719B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Eletrric Generators (AREA)
  • Protection Of Generators And Motors (AREA)

Abstract

PURPOSE:To stably reduce a generator load by decreasing the output signal of a load limiter of a turbine controller to a minimum level in a preparation of paralleling the generator off. CONSTITUTION:When a load is reduced as a preparation of paralleling a generator off, a computer 1 outputs a load limiter (LL) drop command 3 to a LL 2 when a load is reduced to approx. 10% of a rated value. When an LL signal 5 decreases to become smaller than a pressure error signal 11, a steam control valve (CV) flow rate signal 10 from a low value priority circuit 4 is switched from the signal 11 to the LL signal 5, and the load starts reducing when the signal 5 reduces. A CV opening request signal 9 does not reduce the signal 5 by the small variation in a turbine speed due to the variation in a system frequency since a load set signal 8 is tracked at a level higher by 10% than the signal 10 in an automatic tracking mode.

Description

【発明の詳細な説明】 〔ブを明の目的〕 (産業上の利用分野) 本発明は、発電プラントの停止操作過程の1つとして、
発電機負荷を減少させ、前列負荷まで下降したところで
発電機遮断器を間放し、系統どの切り離しを行なう発電
機解列操作において、その準備操作としての発電機負荷
下降操作を安定に行なえるようにした発電機解列準備制
御方法に1」する。
[Detailed Description of the Invention] [Purpose of the invention] (Industrial Application Field) The present invention provides, as one of the shutdown operation processes of a power plant,
When the generator load is reduced and the generator load drops to the front row load, the generator circuit breaker is released and the grid is disconnected.In the generator disconnection operation, the generator load lowering operation can be performed stably as a preparation operation. 1 to the generator disconnection preparation control method.

(従来の技術) 火力や原子力等の発電プラントにおける発電機駆動用タ
ービンの制御は、通常、電子油圧式タービン制御装置(
以下EHCという)により行なっている。つまり、EH
Cはタービン人口にある蒸気加減弁(以下CVという)
及び中間加減弁(IV)さらにタービンバイパス弁(B
PV)の開度を制御することにより、ボイラ或いは原子
炉からの蒸気圧力を一定に制御ll(圧力制御)しつつ
、Cvの開度を変えてタービンへの流入蒸気量を加減し
てタービン速度を制御(速度制御)して、発電機の負荷
電流の制御(負荷電1ll)を行なう。以下、第3図の
制御ブロック図により従来のE tl Cによるタービ
ン制御の概要を説明する。
(Prior art) Control of generator drive turbines in thermal power plants, nuclear power plants, etc. is usually performed using an electro-hydraulic turbine control device (
(hereinafter referred to as EHC). In other words, EH
C is the steam control valve (hereinafter referred to as CV) located in the turbine
and an intermediate control valve (IV) and a turbine bypass valve (B
By controlling the opening of the PV), the steam pressure from the boiler or reactor is kept constant (pressure control), and the turbine speed is adjusted by changing the opening of the Cv to adjust the amount of steam flowing into the turbine. (speed control) to control the load current of the generator (load current 1ll). Hereinafter, an overview of conventional E tl C turbine control will be explained with reference to the control block diagram shown in FIG.

圧力制御系■は、主蒸気圧力センサ24にて検出した主
蒸気圧力信号と、E HCai’l all盤の主然気
圧力設定器26からの圧力設定信号との偏差信号25に
、ゲイン(圧力調定率と呼ばれる定数の逆数)27を掛
【プた圧力誤差信号11を、CV聞開度求信号として出
力する。
The pressure control system (2) uses a gain (pressure The pressure error signal 11 multiplied by 27 (reciprocal of a constant called adjustment rate) is output as a CV opening degree request signal.

速度制御系■は、タービン速度センサ28にて検出した
タービン速度信号29と速度設定器30からの速度設定
信号との偏差を求めた速1立偏差信号36と、タービン
速度信号29を微分器31に通して求めた加速度信号3
3と加速度設定器32からの加速度設定(H号との偏差
を積分器34で積分した加速度偏差値@35とを、低f
lfi優先回路′□“′   (以下LVGという)3
7に人力して両信号35゜36の内低いレベルをもつ方
を選択してL V G jlj力信Y)38どじ、この
LVG出力信号38にゲイン〈速度調定率と呼ばれる定
数の逆数)39を掛けて速度誤差信号7として出力する
The speed control system (2) uses a speed 1 vertical deviation signal 36, which is the deviation between the turbine speed signal 29 detected by the turbine speed sensor 28 and the speed setting signal from the speed setting device 30, and the turbine speed signal 29, to a differentiator 31. Acceleration signal 3 obtained through
3 and the acceleration setting from the acceleration setting device 32 (acceleration deviation value @ 35, which is obtained by integrating the deviation from No. H with the integrator 34),
lfi priority circuit ′□“′ (hereinafter referred to as LVG) 3
7 manually selects the one with the lower level of the two signals 35°36 and applies a gain (reciprocal of a constant called speed regulation rate) 39 to this LVG output signal 38. is multiplied by , and output as the speed error signal 7.

また、負荷制御系■は、上記の速度誤差信号7に、負荷
設定!(以下、L Rという)6で設定した負部設定信
号(以下、LR信丁)という)8を加えて、この信号を
Cv間度要求信@9として出力ず。
In addition, the load control system (■) sets the load to the speed error signal 7 above! (hereinafter referred to as LR) 6 is added to the negative part setting signal (hereinafter referred to as LR signal) 8, and this signal is output as a Cv interval request signal @9.

そして、圧力制御系■からのCV開度要求信号としての
圧力誤差信号11と、速度制御系■及び負荷制御系mか
らのCV開度要求信号9とは、低値I先回路(以下LV
Gという)4に入力される。
The pressure error signal 11 as the CV opening request signal from the pressure control system (2) and the CV opening request signal 9 from the speed control system (2) and the load control system m are the low value I destination circuit (hereinafter referred to as LV
G) 4.

さらに、LVG4には、負荷制限器2からの負荷制限信
号5及び最大流量制限器40からの最大流量制限信号4
1が入力される。これらLVG4の入力信号は、その両
足す低いレベルの信号が選択されて、CV流1fl信号
10としてCV14の開度制御に用いられる。
Furthermore, the LVG4 includes a load limit signal 5 from the load limiter 2 and a maximum flow limit signal 4 from the maximum flow limiter 40.
1 is input. The sum of these input signals to the LVG 4 and the lower level signal are selected and used as the CV flow 1fl signal 10 to control the opening degree of the CV 14.

発電機が並列つまり系統に接続されて電力を供給する状
態になる前は、タービンバイパス弁が聞かれており、こ
の状態においては、圧力誤差信号11とCV開度要求信
号9とのレベルを比較すると、Cv開度要求信号9の方
が低いため、タービン速度の変動とLR信号8とによっ
てCV14の開度が制御される。発電機が並列すると、
タービン速度は系統周波数で決定されるので、専らLR
信号8の上昇によりCV14が開かれ発電機負荷が上昇
する負荷制御状態となる。さらにLR信号8を上界ざU
て行くと、Cv開度要求信号9が圧力誤差信号11より
大きくなり、タービンバイパス弁は全開となって、圧力
制御系■のみが作用する圧力制御状態へ移行する。通常
運転中はこの圧力制御状態であり、タービン速度に少々
の変動があってもC■聞開度影響されない。
Before the generator is connected in parallel, that is, connected to the grid to supply power, the turbine bypass valve is being heard, and in this state, the levels of the pressure error signal 11 and the CV opening request signal 9 are compared. Then, since the Cv opening request signal 9 is lower, the opening of the CV 14 is controlled by fluctuations in the turbine speed and the LR signal 8. When generators are connected in parallel,
Since the turbine speed is determined by the system frequency, only LR
When the signal 8 rises, the CV 14 is opened and a load control state is entered in which the generator load increases. Furthermore, the LR signal 8 is
Then, the Cv opening request signal 9 becomes larger than the pressure error signal 11, the turbine bypass valve becomes fully open, and the state shifts to the pressure control state in which only the pressure control system (2) acts. During normal operation, this pressure control state is maintained, and even if there is a slight fluctuation in the turbine speed, the opening degree will not be affected.

次に、ブラン]・停止操作に入ると、ボイラ又は原子炉
の出力が減じられるため、これに伴い発電機負荷ら減少
して行く。この間、LR信号8は、実負荷に対し少し高
い位置例えばト10%の位置で自動追従(:・ラッキン
グ)し、負荷制限信号5は定格負荷の例えば110%の
位置、la人流量制限信号41は定格流出の例えば11
5%の位置に保持される。
Next, when a blank/shutdown operation is started, the output of the boiler or reactor is reduced, and the generator load is accordingly reduced. During this time, the LR signal 8 is automatically tracked (: racking) at a position slightly higher than the actual load, for example at 10%, and the load limit signal 5 is at a position at, for example, 110% of the rated load. is the rated outflow, for example 11
It is held at the 5% position.

その後、負荷が定格の約10%まで降下すると、LR6
を手動(又はat n 11)モードに切り替え、発電
機解列準協として、負荷の下降操作に入る。
After that, when the load drops to about 10% of the rating, LR6
Switch to manual (or atn 11) mode and begin load lowering operation as generator disconnection quasi-association.

その様子を第4図に示す。The situation is shown in Figure 4.

まず、負荷15が10%(図中17で示す負荷)となっ
たら、LR6を1−ラッキングモードから手動モードに
移し、手動操作にてLR信号8の値を陪下さUる(時点
19)。LR信号8は実負荷15に対し+10%の位置
にあるため、これを下げても1ぐにはC■開度に影響が
出ない。L l<信号8が徐々に下がって来て、これに
よりCV開度要求信号9のレベルが降下して、圧力誤差
信号11より低くなると、CV流流量号10は圧力誤差
信号11からCV開度要求信号9に替わり、同+15に
タービンバイパス弁が聞いて(バイパス弁開度16とし
て図示する)、負荷15が減少し始める(時点20)。
First, when the load 15 reaches 10% (the load indicated by 17 in the figure), the LR 6 is moved from the 1-racking mode to the manual mode, and the value of the LR signal 8 is changed manually (time 19). Since the LR signal 8 is at a position of +10% with respect to the actual load 15, even if it is lowered, the C■ opening degree will not be affected immediately. When the signal 8 gradually decreases, the level of the CV opening request signal 9 decreases and becomes lower than the pressure error signal 11, the CV flow rate 10 changes from the pressure error signal 11 to the CV opening. Instead of the request signal 9, the turbine bypass valve hears the request signal +15 (illustrated as bypass valve opening 16), and the load 15 begins to decrease (time 20).

以後、しR信号8を下げるに伴い、負荷15も陵下し、
同時にバイパス弁が聞いてくる。この操作は、負荷15
が定格の約2〜3%(解列負荷18という)になるまで
継続して行なわれる。負荷15が解列負荷18となった
ところで、LR信号8の降下を停止しく時点21)、そ
の後発電ぼ遮断器を開放して発電機と系統とを切り離1
(時点22)。尚、この間、負荷lIl[限信号5は定
格110%の高い位置にあるため、Cv流流値信号10
は全く関係しない。
After that, as the R signal 8 is lowered, the load 15 is also lowered,
At the same time, the bypass valve asks. This operation requires a load of 15
This is continued until the load reaches approximately 2 to 3% of the rated value (referred to as the parallel disconnection load 18). When the load 15 becomes the disconnected load 18, the drop of the LR signal 8 is stopped (at time 21), and the generator circuit breaker is then opened to disconnect the generator from the grid.
(Time point 22). During this time, the load lIl [limit signal 5 is at a high position of 110% of the rated value, so the Cv flow value signal 10
is not related at all.

(発明が解決しようとする問題点) 上記説明のように、通常運転中の圧力制御状態において
は、系統周波数の変動等によりタービン速度が少々変動
しても、CV 1m度には影響を及ぼさない。しかし、
プラント停止のための発電機解列準備操作に入ると、第
4図の時点20において負荷設定信号20の低下のため
にCV間間装要求信号9圧力偏差信号11よりも低くな
った後は、圧力制御に代って速度制御及び負荷制御がC
V tin/1     度を支配するため、系統周波
数の変動等が直接CV l!if瓜に影響を与えること
になる。この場合、負荷15が比較的大きい間はあまり
問題は無いが、解列負荷18付近どなると危険度が増し
て来る。
(Problem to be solved by the invention) As explained above, in the pressure control state during normal operation, even if the turbine speed fluctuates slightly due to fluctuations in the system frequency, etc., it does not affect the CV 1m degree. . but,
Upon entering the generator disconnection preparation operation for plant shutdown, after the CV inter-connection request signal 9 becomes lower than the pressure deviation signal 11 due to the drop in the load setting signal 20 at time 20 in FIG. Speed control and load control instead of pressure control
Since it governs V tin/1 degree, fluctuations in system frequency etc. directly affect CV l! If it will affect the melon. In this case, there is not much of a problem while the load 15 is relatively large, but the risk increases as it approaches the disconnection load 18.

例えば、解列負荷18付近で系統周波数が何らかの原因
で1饗した場合を想定すると、これに伴いタービン速度
が1胃するので、速度偏差信号36がマイナス側に発生
しく通常はO)、故にCV聞開度求信号9が減少して0
7間度が狭められ負荷が低下する。最悪の場合には、C
V14は全111となって、発電機モータリング状態(
系統側により発?Imが電vJ機駆動される状態)とな
り、発電機トリップに到る虞れがある。発電機は通常に
解列させることが望ましく、トリップ回路動作による解
列は極力避けなくてはならない。
For example, if we assume that the system frequency drops due to some reason near the disconnection load 18, the turbine speed will drop accordingly, so the speed deviation signal 36 will be on the negative side (normally O), so the CV Opening degree request signal 9 decreases to 0
The distance is narrowed and the load is reduced. In the worst case, C
V14 has a total of 111, and is in the generator motoring state (
Is it generated by the system? Im is driven by an electric VJ machine), and there is a risk that the generator will trip. It is desirable to disconnect the generator normally, and disconnection due to trip circuit operation must be avoided as much as possible.

かかる問題点に鑑み本発明はなされたもので、発電ブラ
ントの発電機解列準118111作において、タービン
制御装置を介して行なう発電機負荷の下降操作を、系統
周波数の変動等の影響を受けることなく安定して行なう
ことを可能とするfe電機解列準備制御方法を提供する
ことを目的と1°る。
The present invention has been developed in view of such problems, and it is possible to avoid the influence of system frequency fluctuations, etc. by reducing the generator load, which is performed via the turbine control device, in the generator disassembly process of the power generation blunt. The purpose of the present invention is to provide a method for controlling the preparation of FE electrolysis in a stable manner.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) そこで本発明は、発電ブラントにJ3ける発電機の解列
準備操作において、タービンIIJ III装置の負荷
制限器の出力信号をこれが最も低いレベルの信号になる
ように下降さゼることによって、負荷制限器により発電
機負荷の下降操作を行なうようにしたものである。
(Means for Solving the Problems) Therefore, the present invention aims to reduce the output signal of the load limiter of the turbine IIJ III device so that it becomes the lowest level signal in the preparation operation for disconnection of the generator in the J3 power generation blunt. By lowering the generator load, the load limiter lowers the generator load.

(作 用) 負荷制限器の出力信号レベルをこれが最低レベルの信号
になるように下降させることによって、クービン制御装
置は負荷制限器のみに従ってタービンの流入蒸気plを
減少させて負荷を下降させて行くことになる。従って、
タービンfIIJ III装置の速度制御系は負荷下降
操作に何ら作用せず、よって系統周波数変動等によるタ
ービン速度の少々の変6hは負荷下降に全く影響を及ぼ
さない。
(Operation) By lowering the output signal level of the load limiter so that it becomes the lowest level signal, the Kubin control device decreases the inflow steam PL of the turbine according to the load limiter only and lowers the load. It turns out. Therefore,
The speed control system of the turbine fIIJ III device does not have any effect on the load lowering operation, so a slight change in the turbine speed 6h due to system frequency fluctuation etc. has no effect on the load lowering.

(実施例) 以下、実施例により本発明を説明する。(Example) The present invention will be explained below with reference to Examples.

第1図iよ本発明の一実施例の要部を示すall+御ブ
ロック図で、計算機自動制御により負荷下降を行なう場
合の一実施例を示す。
FIG. 1I is an all+ control block diagram showing essential parts of an embodiment of the present invention, and shows an embodiment in which load reduction is performed by automatic computer control.

同図において、圧力誤差信号11及び速度誤差信号7は
第3図のそれと同一の信号である。プロセス計r3機1
は、負荷制限7S(以下、LLという)2に対し、負荷
1t111限下げ指令(以下、LL下げ指令という)3
を出力する。因みに、前記した従来方法では、下げ指令
はLR6に対して出力されていた。同時に計鐸機1は、
LL2から負荷制限フィードバック信号13を入力して
L L 2の追従状態を監視し、また発電機負荷フィー
ドバック信号12を入力して負荷の制御状態のチェック
を行なう。LL2は、LL下げ指令3に応じたレベルの
負荷制限器@(以下LL信号という)5をLVG4に出
力する。
In this figure, the pressure error signal 11 and the speed error signal 7 are the same signals as those in FIG. Process meter r3 machine 1
is a load 1t111 limit lowering command (hereinafter referred to as LL lowering command) 3 for load limit 7S (hereinafter referred to as LL) 2
Output. Incidentally, in the conventional method described above, the lowering command was output to LR6. At the same time, the meter 1
A load limit feedback signal 13 is input from LL2 to monitor the tracking state of LL2, and a generator load feedback signal 12 is input to check the control state of the load. The LL2 outputs a load limiter @ (hereinafter referred to as LL signal) 5 at a level corresponding to the LL lowering command 3 to the LVG4.

LR6から出力されたLR信号8は、LVG4からのC
V流流量号10にあるレベル例えば定格の10%を加の
した信号と比較され、その偏差信号がLR6にフィード
バック入力される。LR6は、上記偏差信号が零になる
ように、LR信号8をCv流昂信号10に対して→−1
0%のレベルに追従制御する。このにうにしてCVV量
信号10より常に高いレベルに制御されたL R信号8
は、速度J)差信号7と加え合わされ、この加算信号が
CVV度要求信号9としてLVG4に入力される。
The LR signal 8 output from LR6 is the C from LVG4.
The V flow rate number 10 is compared with a signal obtained by adding a certain level, for example, 10% of the rated value, and the deviation signal is fed back into the LR6. LR6 changes the LR signal 8 to the Cv flow signal 10 by -1 so that the deviation signal becomes zero.
Control is performed to follow the 0% level. In this way, the L/R signal 8 is always controlled to a higher level than the CVV amount signal 10.
is added to the speed J) difference signal 7, and this added signal is input to the LVG 4 as the CVV degree request signal 9.

LVG4は、入ノjされた圧力誤差信号11、L L信
号5及びCVV度要求信号9のうら最もレベルの低い信
号を選択して、これをCv流i11信号10としてCV
14の開度制御に用いる。その際、Cv開度要求信号9
は、その一部を構成するL r<信号8が上記のように
C■流吊信号10より10%だけ高いレベルにあるため
、系統周波数の変動等により速度に;差信号7が定格1
0%以内の微小変動をしても、CV流吊信号10より高
いレベルに保たれ、従ってLVG/lによって常に阻止
され、少々の速度変動はCV間度に影響を与えないこと
になる。
LVG4 selects the signal with the lowest level from among the input pressure error signal 11, LL signal 5, and CVV degree request signal 9, and uses this as the CV flow i11 signal 10 to output CV.
Used for opening control of 14. At that time, Cv opening request signal 9
Since L r< signal 8, which constitutes a part of it, is at a level 10% higher than C
Even if there is a slight variation within 0%, it will be kept at a level higher than the CV flow rate signal 10, and therefore will always be blocked by LVG/l, so that small speed variations will not affect the CV interval.

′1゛    次に、上記構成による解列9備としての
負荷下降操作を第2図により説明する。
'1' Next, a load lowering operation as a train disconnection device with the above configuration will be explained with reference to FIG.

この操作の開始時点における負荷や各種設定値等のプロ
セス量は、従来同様であり第4図の状態と等しい。
The process quantities such as the load and various set values at the start of this operation are the same as before and are the same as the state shown in FIG.

従来と同様に負荷15が定格の約10%(図中17で示
ず負荷)にまで低下したところで、計nIfilによる
負荷下降操作を開始する(時点19)。
As in the conventional case, when the load 15 has decreased to about 10% of the rating (load not indicated by 17 in the figure), the load lowering operation by a total of nIfil is started (time 19).

まず、51 G>機1はLL2にLL下げ指令3を出力
して、定格110%位置転位置たLL信号5を下降させ
る。この開始時点では、まだLL信号5は圧力誤差信号
11に比較して十分に大きな位置にあるため、CV開度
には全く影響しない。従って、kI算機1はかなり大き
な変化率でLL信号5を降下さゼで行く。
First, the 51 G> machine 1 outputs the LL lowering command 3 to the LL2 to lower the LL signal 5 which has been shifted to the rated 110% position. At this starting point, the LL signal 5 is still at a sufficiently large position compared to the pressure error signal 11, so it does not affect the CV opening degree at all. Therefore, the kI calculator 1 lowers the LL signal 5 at a fairly large rate of change.

LL信号5が0荷15の付近までくると、510機1は
少し緩やかな変化率に切り替える(B、1点42)。L
L信号5が更に下降し、圧力誤差信号11よりら小さく
なると、CV流船団信号10圧力誤差信号11からLL
信号5に切り替わり、LL信号5のF降と共に負荷15
の下降が開始する(時点20)。これと同時に、タービ
ンバイパス弁が聞く(バイパス弁開度16として図示す
る)。一方、Cv開度要求信号9は、LR信号8が自動
1−ラッキングモードでCV流流量号10つまりLL信
号5より10%高いレベルにトラッキングしているため
、系統周波数の変動等によるタービン速度の少々の変動
ではLL信号5を下回ることは殆んど無い。従って、C
v開度はLL信号5のみによって制御され、発電機負荷
15はタービン速度変動に影響されずにLL信号5のみ
に従って安定に下降ツる。
When the LL signal 5 approaches 0 load 15, the 510 aircraft 1 switches to a slightly slower rate of change (B, 1 point 42). L
When the L signal 5 further decreases and becomes smaller than the pressure error signal 11, the CV convoy signal 10 pressure error signal 11 to LL
Switches to signal 5, and as LL signal 5 falls to F, load 15
begins to fall (time point 20). At the same time, the turbine bypass valve is turned on (illustrated as bypass valve opening 16). On the other hand, since the LR signal 8 is tracking at a level 10% higher than the CV flow rate signal 10, that is, the LL signal 5, in the automatic 1-racking mode, the Cv opening request signal 9 is caused by changes in turbine speed due to fluctuations in system frequency, etc. Even with slight fluctuations, the LL signal will hardly fall below 5. Therefore, C
The v opening degree is controlled only by the LL signal 5, and the generator load 15 is stably lowered only according to the LL signal 5 without being affected by turbine speed fluctuations.

ざらにfA 萄15が下降し、解列負荷18(定格負荷
の2〜3%)に達すると、解列率ll?a操作が完了し
LL信号5の下降は停止される(時点21)。
When fA 15 descends roughly and reaches uncoupling load 18 (2 to 3% of rated load), uncoupling rate ll? Operation a is completed and the falling of the LL signal 5 is stopped (time point 21).

この状態においても、Cv聞開度LL信号5のみで制御
されるため、全く安定した状態で負荷が保持される。こ
の状態において、手動にて発電n遮断器を間放し、解列
操作が完了するく時点22)。
Even in this state, since the load is controlled only by the Cv/opening LL signal 5, the load is maintained in a completely stable state. In this state, the generation circuit breaker is manually released, and the line-breaking operation is completed at time 22).

〔発明の効果〕〔Effect of the invention〕

以上説明したにうに、本発明によれば、発電機解列準備
操作にJ3いて、タービン制tIll装置の負荷制限器
の出力レベルを下降させることによって負荷制限器のみ
で発電機負荷の不時操作を行なうようにしているので、
系統周波数変動等に起因するタービン速度変動の影響を
受けることなく安定に負荷下降が行なえ、解列負荷到達
後も安定に負荷を保持することができ、従って本操作に
伴う発電機モータリングによる発電機トリップ事故が防
止でき、タービン制御の信頼性を向上させることができ
る。
As explained above, according to the present invention, the output level of the load limiter of the turbine control device is lowered in J3 during the generator disconnection preparation operation, so that the generator load can be unintentionally operated only by the load limiter. I am trying to do this, so
The load can be lowered stably without being affected by turbine speed fluctuations caused by grid frequency fluctuations, etc., and the load can be stably maintained even after the disconnection load is reached. Machine trip accidents can be prevented and reliability of turbine control can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の要部を示す制御ブロック図
、第2図は同実施例による各プロセス量の変化を示すタ
イムチャート、第3図は従来の解列準備制御方法の概要
を示す制御ブロック図、第4図は同従来方法による各プ
ロセス量の変化を示すタイムチャートである。 ■・・・圧力制御系、■・・・速度制御系、■・・・f
1荷制御系、1・・・プロセス計算機、2・・・負荷制
限器(LL)、3・・・負荷制限(LL)下げ指令、4
・・・低値優先回路(LVG)、5・・・負荷制限(L
L)信号、6・・・負荷設定器(LR)、7・・・速度
誤差信号、8・・・負荷設定(LR)信号、9・・・C
V聞開度求信号、10・・・Cv流量信号、11・・・
圧力誤差信号、12・・・発電機負荷フィードバック信
号、13・・・負荷制限フィードバック信号、14・・
・蒸気加減弁(CV)、15・・・発電機口筒。 出願人代理人  佐  藤  −雄 f□′ 第1図 第2図 第S図
Fig. 1 is a control block diagram showing the main parts of an embodiment of the present invention, Fig. 2 is a time chart showing changes in each process amount according to the embodiment, and Fig. 3 is an outline of a conventional line-disassembly preparation control method. FIG. 4 is a time chart showing changes in each process amount according to the conventional method. ■...Pressure control system, ■...Speed control system, ■...f
1 Load control system, 1... Process computer, 2... Load limiter (LL), 3... Load limit (LL) lowering command, 4
...Low value priority circuit (LVG), 5...Load limit (L
L) Signal, 6...Load setting device (LR), 7...Speed error signal, 8...Load setting (LR) signal, 9...C
V opening degree request signal, 10...Cv flow rate signal, 11...
Pressure error signal, 12... Generator load feedback signal, 13... Load limit feedback signal, 14...
・Steam control valve (CV), 15... Generator mouthpiece. Applicant's agent Sato -o f□' Figure 1 Figure 2 Figure S

Claims (1)

【特許請求の範囲】[Claims] 発電プラントのタービン速度を制御するための速度制御
系、発電機負荷を制御するための負荷制御系及び発電機
負荷を制限するための負荷制限器とを備え、これらのう
ちタービンの流入蒸気量を最も少なく制御せんとするも
のに従って上記流入蒸気量を制御するように構成された
タービン制御装置を用いて、発電機の解列準備操作とし
ての発電機負荷の下降操作を行なう方法において、前記
負荷制限器が制御せんとする前記流入蒸気量が最少とな
るように、前記負荷制限器の出力信号レベルを下降させ
ることにより、前記負荷下降を前記負荷制限器で行なう
ようにしたことを特徴とする発電機解列準備制御方法。
The power plant is equipped with a speed control system for controlling the turbine speed, a load control system for controlling the generator load, and a load limiter for limiting the generator load. In a method for lowering the generator load as a generator disconnection preparation operation using a turbine control device configured to control the inflow steam amount according to the amount to be controlled the least, the load limiting The power generation device is characterized in that the load limiter lowers the load by lowering the output signal level of the load limiter so that the amount of inflow steam that the device is to control is minimized. Machine train preparation control method.
JP61080459A 1986-04-08 1986-04-08 Generator disconnection preparation control method Expired - Lifetime JPH0638719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61080459A JPH0638719B2 (en) 1986-04-08 1986-04-08 Generator disconnection preparation control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61080459A JPH0638719B2 (en) 1986-04-08 1986-04-08 Generator disconnection preparation control method

Publications (2)

Publication Number Publication Date
JPS62236397A true JPS62236397A (en) 1987-10-16
JPH0638719B2 JPH0638719B2 (en) 1994-05-18

Family

ID=13718841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61080459A Expired - Lifetime JPH0638719B2 (en) 1986-04-08 1986-04-08 Generator disconnection preparation control method

Country Status (1)

Country Link
JP (1) JPH0638719B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740399A (en) * 1980-08-21 1982-03-05 Toshiba Corp Controller for load
JPS5851799A (en) * 1981-09-24 1983-03-26 Hitachi Ltd Output reducing device for turbine generator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740399A (en) * 1980-08-21 1982-03-05 Toshiba Corp Controller for load
JPS5851799A (en) * 1981-09-24 1983-03-26 Hitachi Ltd Output reducing device for turbine generator

Also Published As

Publication number Publication date
JPH0638719B2 (en) 1994-05-18

Similar Documents

Publication Publication Date Title
EP0093118B1 (en) Hrsg damper control
US3849637A (en) Reactor megawatt demand setter
AU2011320054B2 (en) Method for integrating controls for captive power generation facilities with controls for metallurgical facilities
CN101338892B (en) Thermal power unit reheated steam temperature control method
CN103791485B (en) Optimal control method of water supply system of thermal power generating unit
EP0067497A2 (en) Feedwater control system
EP4257878A1 (en) Steam generator system, steam generator pressure control system, and control method therefor
CN115498706B (en) Capacitive energy storage auxiliary grid-related adjusting system and control method
CN102508501B (en) Automatic regulation control system and method for deaerator liquid level of thermal generator set
CN109631007A (en) A kind of generating set boiler master system fuel feedback signal optimized treatment method
JPS62236397A (en) Controlling method for preparation of paralleling generator off
JPS6239919B2 (en)
CN116382200A (en) Full-load self-stabilization system of unit and operation method thereof
JPH0221558B2 (en)
CN114415496A (en) Condensed water throttling system and method for thermal power generating unit
CN113031663A (en) Deaerator liquid level control method, deaerator liquid level control device and deaerator liquid level control equipment of nuclear power unit
JPH02192501A (en) Water feed control device during fcb of drum boiler
CN114995107A (en) Air supply control system and method based on large-flow heat supply unit
JPS5831519B2 (en) Parallel operation method for multiple gas holders
JPH01269093A (en) Feed water controller for nuclear reactor
JPS6310327B2 (en)
JPH0765482B2 (en) Steam turbine valve test equipment
JPS62150011A (en) Control device for nuclear turbine power plant
JPS63243411A (en) Control device for generating plant
JPH0241720B2 (en)