JPS63243411A - Control device for generating plant - Google Patents

Control device for generating plant

Info

Publication number
JPS63243411A
JPS63243411A JP62074422A JP7442287A JPS63243411A JP S63243411 A JPS63243411 A JP S63243411A JP 62074422 A JP62074422 A JP 62074422A JP 7442287 A JP7442287 A JP 7442287A JP S63243411 A JPS63243411 A JP S63243411A
Authority
JP
Japan
Prior art keywords
output
plant
flow rate
control device
command signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62074422A
Other languages
Japanese (ja)
Inventor
Toshio Aoki
俊夫 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62074422A priority Critical patent/JPS63243411A/en
Publication of JPS63243411A publication Critical patent/JPS63243411A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Abstract

PURPOSE:To enhance the safety and reliability of a generating plant by setting back a plant output instruction signal automatically when it is detected that a demand instruction signal for a steam flow rate is below the plant output instruction signal. CONSTITUTION:The titled device comprises an output instruction device 17, a nuclear reactor output control device 18, primary and secondary cooling system flow rate control devices 19 and 20, a feed water flow rate control device 21 and a main steam pressure control device 22. And the titled device is so controlled as to make a plant output signal from an output instruction device 17 approximately proportional to a main cooling system flow rate within the range of the rated plant output, for example, within 40% to 100% of the output, and the output of a nuclear reactor is concurrently adjusted, thereby making turbine generator output follow up the nuclear reactor output. In this case, it is detected whether a flow demand instruction signal to a governing valve 11 drops below a plant output instruction signal, and the titled device is so constituted that the plant output instruction signal is automatically set back, when there is any drop detected.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明はプラント出力を決定する発電プラント制御装置
に係り、特にタービン発m機出力降下時のプラント出力
指令のセットバックを改良した発電プラント制御装置に
関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a power generation plant control device that determines plant output, and particularly to a setback of a plant output command when a turbine generator output decreases. This invention relates to an improved power plant control device.

(従来の技術) 従来の発電プラント及びその制御装置の一例を第2図の
FBR発電プラントの系統図を参照して説明する。
(Prior Art) An example of a conventional power generation plant and its control device will be described with reference to a system diagram of an FBR power generation plant shown in FIG.

同図において、原子炉容器1内で発生した熱量は、液体
ナトリウムを冷却材とし1次主冷却系循環ポンプ3によ
り1次主冷却系を循環し、1次主冷却系の中間熱交換器
2によって2次主冷却系に熱交換される。2次主冷却系
も1次主冷却系と同様に液体ナトリウムを冷却材として
用い、2次主冷却系循環ポンプ6により2次主冷却系を
循環し、過熱器4及び蒸発器5によって蒸気発生器回り
の水蒸気系に熱交換される。蒸気発生器回りの水蒸気系
では、2次主冷却系からの熱量を過熱器4及び蒸発器5
によって熱交換した結果生じた過熱蒸気を蒸気加減弁1
1を介し高圧タービン13へ、ざらには低圧タービン1
4へ送り、高圧タービン13及び低圧タービン14を回
転させて発電機15を駆動し発電させる。高圧タービン
13及び低圧タービン14で仕事をした蒸気は復水器1
6において復水せしめられ、復水ポンプ7、給水加熱器
8.給水ポンプ9を介し蒸発器5へ還流させられる。蒸
気加減弁11の上流からの蒸気の一部はタービンバイパ
ス弁12を介して直接復水器16において復水ぜしめら
れる。
In the figure, the amount of heat generated in the reactor vessel 1 is circulated through the primary main cooling system by the primary main cooling system circulation pump 3 using liquid sodium as a coolant, and is circulated through the intermediate heat exchanger 2 of the primary main cooling system. heat is exchanged to the secondary main cooling system. Similarly to the primary main cooling system, the secondary main cooling system also uses liquid sodium as a coolant, which is circulated through the secondary main cooling system by a secondary main cooling system circulation pump 6, and steam is generated by a superheater 4 and an evaporator 5. Heat is exchanged with the steam system surrounding the device. In the steam system around the steam generator, heat from the secondary main cooling system is transferred to the superheater 4 and evaporator 5.
The superheated steam generated as a result of heat exchange is transferred to the steam control valve 1.
1 to the high pressure turbine 13, roughly to the low pressure turbine 1
4, the high-pressure turbine 13 and the low-pressure turbine 14 are rotated, and the generator 15 is driven to generate electricity. The steam that has done work in the high pressure turbine 13 and low pressure turbine 14 is transferred to the condenser 1
6, the water is condensed, a condensate pump 7, a feed water heater 8. The water is refluxed to the evaporator 5 via the water supply pump 9. A portion of the steam from upstream of the steam control valve 11 is directly condensed in the condenser 16 via the turbine bypass valve 12 .

また、蒸発器5の入口側の給水ラインには給水調節弁1
0が設けられており、給水流量はこれにより調節される
In addition, a water supply control valve 1 is connected to the water supply line on the inlet side of the evaporator 5.
0 is provided, and the water supply flow rate is adjusted thereby.

しかして、上記構成の発電プラント制御装置は出力指令
装置17.原子炉出力制御装置18,1次主冷却系流量
制御装置19,2次主冷却系流毎制御装置20.給水流
量制御装置21.主蒸気圧力制611装置22から構成
され、る。この発電プラントの制御装置は、プラントの
通常運転時における自動制御を行うものであり、定格プ
ラント出ノJの例えば40%がら100%の範囲内で、
出力指令装置17からのプラント出力指令と主冷却系流
量をほぼ比例するにうに制御し、同時に原子炉出力を調
整しタービン発電搬出力を原子炉出力に追従させる機能
を有している。
Thus, the power generation plant control device having the above configuration has an output command device 17. Reactor power control device 18, primary main cooling system flow rate control device 19, secondary main cooling system flow control device 20. Water supply flow rate control device 21. It consists of a main steam pressure control 611 device 22. This power plant control device performs automatic control during normal plant operation, and within the range of, for example, 40% to 100% of the rated plant output,
It has a function of controlling the plant output command from the output command device 17 and the main cooling system flow rate so that they are almost proportional to each other, and at the same time adjusting the reactor output and making the turbine power output output follow the reactor output.

次に、前記発電プラント制御装置を構成する個々の制W
J装置について説明する。
Next, each control W constituting the power plant control device
The J device will be explained.

出力指令装置17は、計算機からのプラント出力増減指
令または手動操作によりプラント出力指令信号を所定の
変化率で下段の各制御装置18〜22へ伝送し、プラン
ト出力を決定する。また、後)ホするセラ]・バック信
号発生によってプラント出力指令信号は、予め設定した
降下率で降下し、例えば40%プラント出力指令値に到
達するまで継続する。
The output command device 17 transmits a plant output command signal at a predetermined rate of change to each of the lower stage control devices 18 to 22 by a plant output increase/decrease command from a computer or by manual operation, and determines the plant output. Also, by the generation of the back signal, the plant output command signal falls at a preset rate of decline, and continues until it reaches, for example, 40% of the plant output command value.

ただしセットパック信号が解除された場合には、プラン
ト出力指令はその時点の値を維持するJζうに構成され
ている。
However, when the set pack signal is released, the plant output command is configured to maintain the value at that time.

原子炉出力制御装置18は、原子炉容器の出口ナトリウ
ム温度が出力指令装置17からのプラント出力指令信号
に対応した値となるように制御棒の駆動速度を制御して
原子炉出力を調整する。また、原子炉出力の即応性と安
定性を改善するため、原子炉出力に相当する中性子信号
により熱的な遅れなしのフィードバックを行なっている
The reactor power control device 18 controls the driving speed of the control rods and adjusts the reactor power so that the outlet sodium temperature of the reactor vessel becomes a value corresponding to the plant output command signal from the power command device 17. Additionally, in order to improve the responsiveness and stability of the reactor output, feedback without thermal delay is provided using neutron signals corresponding to the reactor output.

1次主冷却系流量制御装置19は、1次主冷却系の循環
流量が出力指令装置17からのプラント出力指令に対応
した値となるように流ff1il測信号、1次主冷却系
循環ポンプ3の回転数信号をフィードバックし、1次主
冷却系循環ポンプ3の回転数を調整する。
The primary main cooling system flow control device 19 controls the flow ff1il measurement signal and the primary main cooling system circulation pump 3 so that the circulation flow rate of the primary main cooling system becomes a value corresponding to the plant output command from the output command device 17. The rotation speed signal of the primary main cooling system circulation pump 3 is fed back to adjust the rotation speed of the primary main cooling system circulation pump 3.

2次主冷却系流母制御装置20は基本的に1次主冷却系
流m制御装置19と同一の構成であり、2次主冷却系の
循環流量が出力指令装置17からのプラント出力指令信
号に対応した値となるように、流量計測信号をフィード
バックし2次主冷却系循環ポンプ6の回転数を調整する
The secondary main cooling system flow mother control device 20 basically has the same configuration as the primary main cooling system flow m control device 19, and the circulation flow rate of the secondary main cooling system is controlled by the plant output command signal from the output command device 17. The flow rate measurement signal is fed back and the rotation speed of the secondary main cooling system circulation pump 6 is adjusted so as to have a value corresponding to .

給水流量制御装置21は、通常運転時に給水流量を自動
制御している場合には、蒸発器出口蒸気温度が一定の値
になるように給水調節弁10の開度を操作し、かつ給水
調節弁10のEf1度変化の結果変わり得る給水間り弁
10の出入口差圧が一定値になるように給水ポンプ9の
回転数を操作して、給水流mを調整する。また、出力指
令装置17からのプラント出力指令の変更時に即応性、
安定性を改善するためプラント出力指令信号を入力しか
つ熱的遅れなしの流量計測信号をフィードバックし補償
している。
When the feed water flow rate is automatically controlled during normal operation, the feed water flow control device 21 operates the opening degree of the feed water control valve 10 so that the evaporator outlet steam temperature becomes a constant value, and The water supply flow m is adjusted by operating the rotational speed of the water supply pump 9 so that the differential pressure at the inlet and outlet of the water supply valve 10, which can change as a result of a 1 degree change in Ef of 10, becomes a constant value. In addition, when the plant output command from the output command device 17 is changed, immediate response,
To improve stability, a plant output command signal is input and a flow rate measurement signal without thermal delay is fed back for compensation.

主蒸気圧力制御装置22は、通常運転時において、プラ
ント出力指令によって原子炉側の出力を変更した結果生
じる主蒸気圧力の変動を検出して、主蒸気圧力が一定と
なるよう蒸気加減弁11を操作し、プラント出力指令に
追従して所定の負荷によるよう制御する。一方、蒸気加
減弁11が絞られ主蒸気圧力が上昇した場合、主蒸気圧
力を所定の値に維持するために主蒸気圧力の上昇を検出
してタービンバイパス弁12を開き、主蒸気圧力を低下
させるように構成されている。
During normal operation, the main steam pressure control device 22 detects fluctuations in the main steam pressure that occur as a result of changing the output on the reactor side based on the plant output command, and controls the steam control valve 11 to keep the main steam pressure constant. It is operated and controlled to follow the plant output command to achieve a predetermined load. On the other hand, when the steam control valve 11 is throttled and the main steam pressure increases, in order to maintain the main steam pressure at a predetermined value, the rise in the main steam pressure is detected and the turbine bypass valve 12 is opened to reduce the main steam pressure. It is configured to allow

次に、前記主蒸気圧力制御装置22の制御回路を第3図
の論理回路図により詳細に説明する。
Next, the control circuit of the main steam pressure control device 22 will be explained in detail with reference to the logic circuit diagram of FIG.

まず、蒸気加減弁流量要求指令信号は、圧力制御信号と
速度・負荷制御信号を低値選択回路25を通し出力した
信号となる。ここで速度・負荷制御信号は負荷設定器設
定値と、タービン速度設定値と実速度の偏差の速度偏差
信号を1/CV、。。乗算器24によりCv調定率の逆
数を乗じた信号も加えたものである。また、圧力制御信
号は主蒸気圧力設定値と実主蒸気圧力の偏差を1/P、
。。乗算器23により圧力調定率の逆数を乗じたもので
おる。
First, the steam control valve flow rate request command signal is a signal obtained by outputting a pressure control signal and a speed/load control signal through the low value selection circuit 25. Here, the speed/load control signal is a speed deviation signal of the deviation between the load setting device setting value, the turbine speed setting value, and the actual speed, which is 1/CV. . A signal multiplied by the reciprocal of the Cv adjustment rate by the multiplier 24 is also added. In addition, the pressure control signal is the deviation between the main steam pressure setting value and the actual main steam pressure by 1/P,
. . It is multiplied by the reciprocal of the pressure adjustment rate by the multiplier 23.

次に、タービンバイパス弁流量要求指令信号は前述した
圧力制御信号と蒸気加減弁流量要求指令信号の偏差とし
ている。蒸気加減弁11及びタービンバイパス弁12は
、それぞれ蒸気加減弁流量指令信号及びタービンバイパ
ス弁流量要求指令信号を弁位置制御回路を介して駆動さ
れる。通常は前記負荷設定器設定値にはバイアスがかけ
られ、低値選択回路25からは圧力制御信号が優先され
出力されるように構成されているが、電力系統側の負荷
が減少したりしてタービン回転数が上昇した場合、速度
・負荷制御信号が優先され蒸気加減弁流量要求指令信号
が減少することから蒸気加減弁11は絞り込まれ、それ
と同時にタービンバイパス弁流量要求指令信号が増大す
ることによってタービンバイパス弁12が開く。これに
よって主蒸気圧力は一定に制御される。
Next, the turbine bypass valve flow rate request command signal is the deviation between the aforementioned pressure control signal and the steam control valve flow rate request command signal. The steam regulator valve 11 and the turbine bypass valve 12 are driven by a steam regulator flow rate command signal and a turbine bypass valve flow rate request command signal, respectively, via a valve position control circuit. Normally, the load setter set value is biased and the low value selection circuit 25 is configured to give priority to the pressure control signal and output it, but if the load on the power system side decreases, When the turbine rotation speed increases, priority is given to the speed/load control signal and the steam control valve flow rate request command signal decreases, so the steam control valve 11 is throttled down, and at the same time, the turbine bypass valve flow rate request command signal increases. Turbine bypass valve 12 opens. This controls the main steam pressure to be constant.

ここで、前述した出力指令装置17より発せられる従来
の出力指令信号のセットバックは、第4図の論理回路に
示すように、原子炉出力が40%以上の時、発電機出力
が減少し蒸気加減弁11が絞られ、タービンバイパス弁
12が開いたことをセットバック信号とし、出力指令信
号を所定の降下率で降下させていた。
Here, the conventional setback of the output command signal issued from the aforementioned output command device 17 is as shown in the logic circuit of FIG. 4, when the reactor output is 40% or more, the generator output decreases and the The throttle valve 11 and the opening of the turbine bypass valve 12 are used as a setback signal, and the output command signal is lowered at a predetermined lowering rate.

(発明が解決しようとする問題点) 前述した発電プラント制御装置の場合、電力系統側の負
荷が減少した場合、自動的に蒸気加減弁11が絞り込ま
れ、タービンバイパス弁12が間き、それに伴ない出力
指令信号はセットバックするので問題はない。
(Problems to be Solved by the Invention) In the case of the above-mentioned power plant control device, when the load on the power system side decreases, the steam control valve 11 is automatically throttled down, the turbine bypass valve 12 is closed, and accordingly. There is no problem because the output command signal that is not present will be set back.

しかしながら、給水ポンプが2台必り、1台トリップし
たような事故が起きた場合、蒸気流量の減少に伴ない主
蒸気圧力が低下し、蒸気加減弁11が絞り込まれ、結果
としてタービン・発電機出力も降下するが、タービンバ
イパス弁12は開かないため、出力指令装置17からの
出力指令信号はセットバックしない。したがって、運転
員が手動にて出力指令信号を降下させていく必要がある
が、これを放置しておくと、給水流母制御装@21によ
り蒸発器出口蒸気温度を所定の値に保持しようと給水調
節弁10が開き、給水流量を確保しようとするが、給水
ポンプ9が1台トリップしているため所定の給水流量は
得られず、蒸発器出口蒸気温度が上昇し、プラントにと
って危険な状態に陥る可能性がある。
However, if an accident occurs where one of the two feed water pumps trips, the main steam pressure will drop as the steam flow rate decreases, the steam control valve 11 will be throttled, and as a result, the turbine/generator will Although the output also decreases, since the turbine bypass valve 12 does not open, the output command signal from the output command device 17 is not set back. Therefore, it is necessary for the operator to manually lower the output command signal, but if this is left unattended, the feedwater flow mother control device @21 will attempt to maintain the evaporator outlet steam temperature at a predetermined value. The water supply control valve 10 opens and tries to secure the water supply flow rate, but because one of the water supply pumps 9 has tripped, the predetermined water supply flow rate cannot be obtained, and the steam temperature at the evaporator outlet rises, creating a dangerous situation for the plant. There is a possibility of falling into.

本発明は上記事情に鑑みてなされたもので、その目的は
、電力系統側の負荷が減少した時の他に給水ポンプ1台
トリップ事故等に起因して主蒸気流量が減少しタービン
発電機出力が減少した場合も、自動的に出力指令信号が
セットバックするようにした発電プラント制御装置を提
供することにある。
The present invention was made in view of the above circumstances, and its purpose is to reduce the main steam flow rate due to a decrease in the load on the power system side, as well as due to a trip accident of one water pump, etc., and to reduce the output of the turbine generator. An object of the present invention is to provide a power generation plant control device that automatically sets back an output command signal even when the output command signal decreases.

[発明の構成] (問題点を解決するための手段) 上記目的を達成するために、本発明はプラント出力指令
信号により原子炉出力、冷却材流量、主蒸気圧力等を自
動制御することによってプラント出力を決定する発電プ
ラント制御装置において、前記主蒸気圧力を一定制御す
るためにタービン通過蒸気流量を調節する蒸気加減弁へ
の流量要求指令信号が前記プラント出力指令信号より降
下したことを検出し、自動的に前記プラン!・出力指令
信号をセットバックさせるセットバック信号を出力する
ように構成したことを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention automatically controls the reactor output, coolant flow rate, main steam pressure, etc. using a plant output command signal. In a power generation plant control device that determines the output, detecting that a flow rate request command signal to a steam control valve that adjusts the flow rate of steam passing through the turbine in order to control the main steam pressure at a constant level has dropped from the plant output command signal, Said plan automatically! - It is characterized in that it is configured to output a setback signal that sets back the output command signal.

そして、上記セットバック信号は「プラント出力指令信
号と蒸気加減弁流量要求指令信号との偏差が所定値%以
上」と「原子炉出力40%以上」のAND条件を満たし
たときに出力する。
The setback signal is output when the AND condition of "the deviation between the plant output command signal and the steam regulating valve flow rate request command signal is a predetermined value % or more" and "the reactor output is 40% or more" is satisfied.

(作 用) 本発明の発電プラント制御装置では、通常運転時(原子
炉出力40%以上)電力系統側の負荷が減少しターどン
回転数が上昇しても蒸気加減弁流量要求指令信号が減少
するため[(プラント出力指令信号)−(蒸気加減弁流
量要求指令信号)の偏差が所定値%以上」の条件が成立
し、出力指令信号はセットバックする。また、給水ポン
プ1台トリップ事故等の起因により主蒸気圧力が低下し
、タービン発電機出力が減少した場合も、蒸気加減弁流
量要求指令信号は減少するため上記条件が成立し、出力
指令信号はセットバックする。
(Function) In the power plant control device of the present invention, during normal operation (reactor output 40% or more), even if the load on the power system side decreases and the turbine rotational speed increases, the steam control valve flow rate request command signal remains unchanged. Since the output command signal decreases, the condition that the deviation of (plant output command signal) - (steam control valve flow rate request command signal) is greater than or equal to a predetermined value % is established, and the output command signal is set back. In addition, even if the main steam pressure decreases due to a trip accident of one feedwater pump, and the turbine generator output decreases, the steam control valve flow rate request command signal decreases, so the above condition is satisfied, and the output command signal Set back.

(実施例) 本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の論理回路図を示すもので、
同図は出力指令信号のセットバック回路を表わしている
。同図に示すように、通常運転時(原子炉出力40%以
上)に電力系統側の負荷減少によるタービン回転数の上
昇や主蒸気流最減少等による主蒸気圧力の降下が生じた
場合、蒸気加減弁流串要求指令が減少することにより、
プラント出力指令との偏差が増大し、ある値以上になっ
た場合出力指令信号は予め定められた降下率で降下し、
40%プラント出力指令に達するまで継続する。
FIG. 1 shows a logic circuit diagram of an embodiment of the present invention.
The figure shows a setback circuit for output command signals. As shown in the figure, during normal operation (reactor output 40% or more), if the main steam pressure decreases due to an increase in the turbine speed due to a load reduction on the power system side or a minimum decrease in the main steam flow, the steam By reducing the control valve flow request command,
When the deviation from the plant output command increases and exceeds a certain value, the output command signal drops at a predetermined rate of decline,
Continue until the 40% plant output command is reached.

そして、主冷却系流量や原子炉出力もプラント出力指令
に対応した値に制御される。また、プラント出力指令の
降下は勿論セットバックの条件が不成立になった場合は
、降下を停止しその時点の値を維持する。
The main cooling system flow rate and reactor output are also controlled to values corresponding to the plant output command. Furthermore, if the plant output command is not lowered, but the setback conditions are no longer met, the lowering is stopped and the value at that point is maintained.

上述したように、本発明に係る発電プラント制御装置に
よれば、従来のように「原子炉出力40%以上」と「タ
ービンバイパス弁開」信号のAND条件とする代りに、
プラント出力指令信号と蒸気加減弁流量要求指令信号と
を比較し、「プラント出力指令信号と蒸気加減弁流量要
求指令信号との偏差が所定値%以上」と「原子炉出力4
0%以上」のAND条件を満たしたときにセットバック
信号を出力するので、電力系統側の負荷が減少した場合
は勿論給水ポンプ1台のトリップ事故等に起因して主蒸
気流量が減少し、タービン発電機出力が降下した場合も
運転員の介在なしに自動的に出力指令信号をセットバッ
クすることができる。
As described above, according to the power plant control device according to the present invention, instead of using the AND condition of "reactor output 40% or more" and "turbine bypass valve open" signal as in the conventional case,
The plant output command signal and the steam regulating valve flow rate request command signal are compared, and it is determined that "the deviation between the plant output command signal and the steam regulating valve flow rate demand command signal is a predetermined value % or more" and "the reactor output 4
A setback signal is output when the AND condition of "0% or more" is met, so if the load on the power system decreases, or if one water pump trips, etc., the main steam flow rate decreases. Even when the turbine generator output drops, the output command signal can be automatically set back without operator intervention.

[発明の効果] 以上説明したように、本発明の発電プラント制m装置に
よれば、電力系統側の負荷が減少した場合は勿論給水ポ
ンプ1台のトリップ事故等に起因して主蒸気流量が減少
し、タービン発電機出力が降下した場合も運転員の介在
なしに自動的に出力指令信号をセットバックすることが
可能となり、発電プラントの安全性、信頼性等を大ぎく
向上させることができるというすぐれた効果を奏する。
[Effects of the Invention] As explained above, according to the power generation plant control device of the present invention, the main steam flow rate is reduced not only when the load on the power system side decreases but also due to a trip accident of one feed water pump, etc. Even if the output of the turbine generator decreases, the output command signal can be automatically set back without operator intervention, greatly improving the safety and reliability of the power plant. It has an excellent effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の論理回路図、第2図は本発
明が適用される発電プラントの系統図とその制御構成図
、第3図は従来の主蒸気圧力制御の論理回路図、第4図
は従来の出力指令信号セラ1〜バツク論理回路図である
。 17・・・出力指令装置 18・・・原子炉出力制御装置 19・・・1次主冷却系流量制御装置 20・・・2次主冷却系流量制御2Il装置21・・・
給水流量制御装置 22・・・主蒸気圧力制御装置 代理人 弁理士 則 近 憲 佑 同  三俣弘文 茅 jI!I 第 3rgI 茅 4rl!l
Fig. 1 is a logic circuit diagram of an embodiment of the present invention, Fig. 2 is a system diagram of a power generation plant to which the present invention is applied and its control configuration diagram, and Fig. 3 is a logic circuit diagram of conventional main steam pressure control. , FIG. 4 is a conventional output command signal cellar 1-back logic circuit diagram. 17... Output command device 18... Reactor power control device 19... Primary main cooling system flow rate control device 20... Secondary main cooling system flow rate control 2Il device 21...
Feed water flow rate control device 22...Main steam pressure control device Agent Patent attorney Nori Chika Ken Yudo Hirofumi Mitsumata jI! I 3rd rgI Kaya 4rl! l

Claims (2)

【特許請求の範囲】[Claims] (1)プラント出力指令信号により原子炉出力、冷却材
流量、主蒸気圧力等を自動制御することによつてプラン
ト出力を決定する発電プラント制御装置において、前記
主蒸気圧力を一定制御するためにタービン通過蒸気流量
を調節する蒸気加減弁への流量要求指令信号が前記プラ
ント出力指令信号より降下したことを検出し、自動的に
前記プラント出力指令信号をセットバックさせるセット
バック信号を出力するように構成したことを特徴とする
発電プラント制御装置。
(1) In a power generation plant control device that determines plant output by automatically controlling reactor output, coolant flow rate, main steam pressure, etc. based on a plant output command signal, a turbine is used to control the main steam pressure at a constant level. It is configured to detect that a flow rate request command signal to a steam control valve that adjusts the flow rate of passing steam has fallen below the plant output command signal, and output a setback signal that automatically sets back the plant output command signal. A power generation plant control device characterized by:
(2)セットバック信号は「プラント出力指令信号と蒸
気加減弁流量要求指令信号との偏差が所定値%以上」と
「原子炉出力40%以上」のAND条件である特許請求
の範囲第1項記載の発電プラント制御装置。
(2) The setback signal is an AND condition of "the deviation between the plant output command signal and the steam regulator flow rate request command signal is a predetermined value % or more" and "the reactor output is 40% or more" Claim 1 The power plant control device described.
JP62074422A 1987-03-30 1987-03-30 Control device for generating plant Pending JPS63243411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62074422A JPS63243411A (en) 1987-03-30 1987-03-30 Control device for generating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62074422A JPS63243411A (en) 1987-03-30 1987-03-30 Control device for generating plant

Publications (1)

Publication Number Publication Date
JPS63243411A true JPS63243411A (en) 1988-10-11

Family

ID=13546747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62074422A Pending JPS63243411A (en) 1987-03-30 1987-03-30 Control device for generating plant

Country Status (1)

Country Link
JP (1) JPS63243411A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105332744A (en) * 2015-11-23 2016-02-17 国家电网公司 Checking method for preventing failure of thermal process protection system of thermal generator set

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105332744A (en) * 2015-11-23 2016-02-17 国家电网公司 Checking method for preventing failure of thermal process protection system of thermal generator set

Similar Documents

Publication Publication Date Title
EP0093118B1 (en) Hrsg damper control
US5268939A (en) Control system and method for a nuclear reactor
JPH11352284A (en) Reactor system pressure control method through core power control
JPS63243411A (en) Control device for generating plant
JP2653798B2 (en) Boiler and turbine plant control equipment
JPH0241720B2 (en)
JPS63217299A (en) Method of detecting falling of anti-reaction element in nuclear reactor for nuclear power plant and nuclear power plant having protective means to said falling
JPH0539901A (en) Method and device for automatically controlling boiler
JPS61187503A (en) Temperature decreasing controller of turbine gland sealing steam
JPS6140591A (en) Controller for recirculation flow rate of nuclear reactor
JPH0221296A (en) Controlling of fast breeder reactor system
JPS6032082B2 (en) Feed water temperature control device
JP2531755B2 (en) Water supply control device
JPS63192905A (en) Main steam pressure control method for power generating plant
JPH0135244B2 (en)
JP2001004790A (en) Water level controller of steam generating plant
JPS60175711A (en) Device for operatively limiting generator load
JPS6211283Y2 (en)
CN117685561A (en) Method for automatically controlling outlet sodium temperature of sodium-cooled fast reactor direct-current evaporator in whole process
JPS59110810A (en) Water level control device for steam turbine degasifier
JPS6158903A (en) Turbine controller for nuclear reactor
JPS63192903A (en) Main steam pressure control method for power generating plant
JPH0245601A (en) Turbine control device
JPS58165096A (en) Fbr power plant control device
JPH01193507A (en) Pressure and wafer level controller of aerator at the time of sudden decrease of load