JPS62234668A - Shielded arc welding method - Google Patents

Shielded arc welding method

Info

Publication number
JPS62234668A
JPS62234668A JP7596486A JP7596486A JPS62234668A JP S62234668 A JPS62234668 A JP S62234668A JP 7596486 A JP7596486 A JP 7596486A JP 7596486 A JP7596486 A JP 7596486A JP S62234668 A JPS62234668 A JP S62234668A
Authority
JP
Japan
Prior art keywords
welding
hydrogen
arc
amount
low temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7596486A
Other languages
Japanese (ja)
Inventor
Yoshiaki Takayori
高寄 嘉明
Atsushi Numata
淳 沼田
Yasuo Murai
康生 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP7596486A priority Critical patent/JPS62234668A/en
Publication of JPS62234668A publication Critical patent/JPS62234668A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To restrain the immersion of a hydrogen component into a welding metal from the atmosphere by performing a shielded arc welding with shielding the arc periphery by a low temp. gas, in welding the material easy to generate a low temp. crack with its preheating. CONSTITUTION:The welding is performed by using a coated arc electrode 2 by executing a preheating on the welding base material 7 easy to generate a low temp. crack. In this case, the gas shielding zone 6 of a low temp. gas is formed so as to surround an arc 5 on this periphery by feeding a low temp. gas from a nozzle 3. In this way no hydrogen component in the atmosphere is made to immerse into a molten pool 8 or welding metal 1. The hydrogen immersion into the welding metal can thus be restrained and the prevention effect of a low temp. crack is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高張力鋼や低合金鋼、更にはマルテンサイト系
ステンレス鋼のように低温割れか発生しやすい材料の被
覆アーク溶接方法に関し、詳細には低温割れを抑制する
ために実施する予熱又は後熱の加熱温度を低くして作業
性を向上させることのできる被覆アーク溶接方法に関す
るものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a covered arc welding method for materials that are prone to cold cracking, such as high-strength steel, low-alloy steel, and even martensitic stainless steel. The present invention relates to a covered arc welding method that can improve workability by lowering the heating temperature for preheating or postheating to suppress low-temperature cracking.

[従来の技術] 各種構造物の大型化や使用領域の拡大につれて高級鋼(
高張力鋼、低合金鋼、マルテンサイト系ステンレス鋼等
)を使う機会が増えている。これらは高張力、高耐食性
等の優れた効果を発揮する反面で低温割れを起こし易い
という共通の欠陥を有している。低温割れの発生は、溶
接金属中に含まれる拡散性水素に起因することが知られ
ており、且つ当該水素は被覆アーク溶接棒におりる被覆
剤中の有機物や水分又は大気中の湿気から供給されるも
のであることも知られている。その為被覆アーク溶接棒
の製造工程におけるフラックス成分の選択や乾燥管理を
厳格に行ない、更には溶接作業実施直前の被覆アーク溶
接棒再乾燥等について注意を払う様に心がけられている
。しかしこれらを行なってもなお溶接金属中に残留する
水素があるので、溶接前の母材を予熱したり、或は後熱
を行2ぼって溶接金属中の残留水素を積極的に放出する
ということも行なわれている。ところが溶接構造物が大
きかったり又は複雑な形状である場合には、必要予熱温
度(一般に100〜250℃)まで昇ン晶させて保ン晶
するに当たってはかなり困難な作業と膨大な費用が必要
となり、更に作業環境も悪化するという欠点か存在して
いた。又後熱処理の場合も同様の問題かあった。即ち従
来の手段では溶接金属中の残留水素量が多くなるので予
熱温度や後熱温度を高めざるを得ないという事情かあっ
たのである。そこで予熱温度及び後熱温度を低くするこ
とを究極の目的とし、溶接金属中への侵入水素量を可及
的に減少させ得る手段として次の様な方策か提案される
に至った。
[Conventional technology] As various structures become larger and the range of use expands, high-grade steel (
Opportunities to use high-strength steel, low-alloy steel, martensitic stainless steel, etc.) are increasing. Although these materials exhibit excellent effects such as high tensile strength and high corrosion resistance, they have a common defect of being susceptible to cold cracking. It is known that the occurrence of cold cracking is caused by diffusible hydrogen contained in the weld metal, and the hydrogen is supplied from organic matter and moisture in the coating material that drips into the coated arc welding rod or from atmospheric moisture. It is also known that For this reason, care is taken to strictly select flux components and drying control in the manufacturing process of coated arc welding rods, and to pay attention to re-drying the coated arc welding rods immediately before welding work. However, even after these steps are taken, there is still some residual hydrogen in the weld metal, so the residual hydrogen in the weld metal must be actively released by preheating the base metal before welding or by post-heating. This is also being done. However, if the welded structure is large or has a complicated shape, raising the temperature to the required preheating temperature (generally 100 to 250°C) and maintaining the crystallization requires quite difficult work and a huge amount of cost. However, there was also the drawback that the working environment deteriorated. A similar problem occurred in the case of post-heat treatment. That is, with conventional means, the amount of residual hydrogen in the weld metal increases, so the preheating temperature and postheating temperature have to be increased. Therefore, the following measures have been proposed as a means to reduce the amount of hydrogen penetrating into the weld metal as much as possible, with the ultimate goal of lowering the preheating temperature and postheating temperature.

(イ)低水素系被覆棒を用いてアーク周辺の水素分圧を
低くする方法。
(a) A method of lowering the hydrogen partial pressure around the arc using a low-hydrogen coated rod.

(ロ)ソリッドワイヤを使用する炭酸カス溶接法。(b) Carbon dioxide welding method using solid wire.

(ハ)フラックス入りワイヤを使用する炭酸カス溶接法
(c) Carbon sludge welding method using flux-cored wire.

[発明が解決しようとする問題点コ 上述した(イ)の低水素系被覆アーク溶接棒を使用する
方法は、被覆剤中に多めの炭酸塩を含ませて水素分圧を
低くする方法であるが、炭酸塩が余り多くなるとアーク
不安定になって溶接作業・14か低下するため、炭酸塩
の含有量にも限界があり、従って水素量の低下効果にも
限度かあった。
[Problems to be Solved by the Invention] The above-mentioned method (a) of using a low-hydrogen coated arc welding rod is a method of lowering the hydrogen partial pressure by including a large amount of carbonate in the coating material. However, if the carbonate content is too large, the arc becomes unstable and the welding performance decreases, so there is a limit to the carbonate content, and therefore there is a limit to the effect of reducing the amount of hydrogen.

また溶接現場では溶接能率を高めるために高い電流を使
用する傾向があるが、第2図(グラフ)に示す様に溶接
電流か高くなるにつれて水素量か増加する傾向にある。
Furthermore, there is a tendency to use high current at welding sites to increase welding efficiency, but as shown in FIG. 2 (graph), the amount of hydrogen tends to increase as the welding current increases.

これは溶接電流の高まりにつれてアーク周辺のシールド
性が悪くなる為であると考えられている。
This is thought to be because the shielding properties around the arc deteriorate as the welding current increases.

次に(ロ)のソリッドワイヤを用いる炭酸ガス溶接法で
は、被覆剤からの水素供給かなく低水素化を達成する上
で好都合であるか、溶接1の合金組成に合わゼてワイヤ
中の合金元素量を増加させていくと(合金元素をフラッ
クスから添加することができなくなるので必要な合金元
素はワイヤに添加しておきワイヤから補給せざるを得な
い)、ワイヤの硬度か高くなったり或は加工硬化の影響
を受(づ易くなり、ワイヤの線引きか困難となる。著し
いとぎには線引き不可能になりワイヤの製造費用が極め
て高価なものになってしまう。
Next, in the carbon dioxide welding method using a solid wire (b), it is convenient to achieve low hydrogenation without hydrogen supply from the coating material, or the alloy in the wire matches the alloy composition of welding 1. As the amount of elements increases (alloying elements cannot be added from flux, the necessary alloying elements must be added to the wire and then supplied from the wire), the hardness of the wire increases or The wire becomes susceptible to work hardening, making it difficult to draw the wire. If the wire is severely hardened, it becomes impossible to draw the wire, and the manufacturing cost of the wire becomes extremely high.

また上記(ハ)のフラックス入りワイヤを用いる炭酸ガ
ス溶接法においては、溶接金属に必要な合金元素をフラ
ックスから供給することかでき、ワイヤの線引き性は確
保することができる。しかしフラックスを包被する外皮
金属にはフープの合せ目が存在し、この合せ目から侵入
する外気によってフラックスが吸湿する危険が高く、溶
接金属中の水素量は期待されるほど低くはならない。し
かも高溶着効率を維持することの必要性からフラックス
量はむやみに増加させることができず、従って水素分圧
を低下する為の炭酸塩の添加量にも限界がある。
In addition, in the carbon dioxide welding method using a flux-cored wire (c) above, the alloying elements necessary for the weld metal can be supplied from the flux, and the drawability of the wire can be ensured. However, there is a hoop joint in the outer metal covering the flux, and there is a high risk that the flux will absorb moisture due to the outside air entering through this joint, and the amount of hydrogen in the weld metal will not be as low as expected. Furthermore, because of the need to maintain high welding efficiency, the amount of flux cannot be increased unnecessarily, and therefore there is a limit to the amount of carbonate added to lower the hydrogen partial pressure.

そこで本発明者らは溶接金属中への水素侵入量を抑制す
ることを目的に種々研究を行なった結果、本発明を完成
させるに至った。
Therefore, the present inventors conducted various studies aimed at suppressing the amount of hydrogen penetrating into weld metal, and as a result, they completed the present invention.

[問題点を解決するための手段] 上記目的を達成し得た本発明は、アーク周囲を低湿気体
によってシールドしつつ被覆アーク溶接する点に要旨を
有するものである。
[Means for Solving the Problems] The present invention, which has achieved the above object, has a gist in that covered arc welding is performed while shielding the periphery of the arc with a low-humidity gas.

[作用コ 被覆アーク溶接棒の被覆剤中には前述の様な炭酸塩か含
まれ、溶接熱による分解を受けて発生する炭酸ガスがア
ーク周囲を大気からある程度シールドするのであるが、
炭酸ガスの発生量には上述の如き限界もある為大気から
完全に遮断することはできない。従って大気雰囲気中の
湿度か高りれば、この水分がアーク雰囲気中に侵入し、
ついには溶接金属中に水素成分が混入することになり、
低温割れを起こし易くなる。
[Effects] The coating material of coated arc welding rods contains carbonates as mentioned above, and the carbon dioxide gas generated by decomposition due to welding heat shields the area around the arc from the atmosphere to some extent.
Since there is a limit to the amount of carbon dioxide gas generated as mentioned above, it is not possible to completely shut it off from the atmosphere. Therefore, if the humidity in the atmosphere increases, this moisture will enter the arc atmosphere.
Eventually, hydrogen components will be mixed into the weld metal,
Cold cracking is more likely to occur.

そこで本発明ではアーク周囲を低湿度ガスによってシー
ルドし、大気τ囲気中から水素成分(水分)が侵入する
のを抑制する様に構成したのである。その結果溶接金属
中に侵入する水素量を低下させることがでN、予熱又は
後熱における加熱温度及び加熱時間の削減を可能ならし
め、効率的な溶接作業が行なえる様になったのである。
Therefore, in the present invention, the area around the arc is shielded with a low-humidity gas to suppress intrusion of hydrogen components (moisture) from the atmosphere τ. As a result, by reducing the amount of hydrogen penetrating into the weld metal, it has become possible to reduce the heating temperature and heating time for N, preheating or postheating, and it has become possible to perform efficient welding work.

[実施例] 第1図は本発明方法を示す説明図である。溶接母材7に
は被覆アーク溶接棒2か接近せしめられてアーク5を発
生し、溶融池8を形成する。溶融1也8が凝固した部分
では溶接金属1及びスラグ4か順次成形されている。ノ
ズル3からは低7扉度の気体(例えば乾燥炭酸カス)か
アーク5の周囲を取り囲む様に供給されてガスシール)
ζ域6か形成され、大気中の水素成分(水分)か溶融池
8ひいては溶接金属1中に侵入しない様に保護している
[Example] FIG. 1 is an explanatory diagram showing the method of the present invention. A coated arc welding rod 2 is brought close to the welding base material 7 to generate an arc 5 and form a molten pool 8. In the part where the molten metal 1 and 8 have solidified, weld metal 1 and slag 4 are sequentially formed. From the nozzle 3, a low-level gas (for example, dry carbon dioxide scum) is supplied to surround the arc 5 and create a gas seal)
A ζ region 6 is formed to protect hydrogen components (moisture) in the atmosphere from entering the molten pool 8 and, furthermore, the weld metal 1.

溶接作業方法は、片手にCO7吹イ」り用ノズルを持ち
、もう一方の手で溶接ポルターを操作し、アーク発生点
の斜め方向からシールドカスか供給される用にして被覆
棒を運棒させて行く。
The welding method is to hold the CO7 blowing nozzle in one hand, operate the welding porter with the other hand, and operate the covered rod so that shielding scum is supplied diagonally from the arc generation point. Go.

実験例1 第1図に示した方法によって5mmφの+3Cr−4N
i鋼用極低水素系被覆アーク溶接棒を使用したときにお
りる溶接金属中の拡散性水素量の測定を行なった。尚水
素量の測定は抽出時間48時間のガスクロマl−グラフ
法を使用し、溶接電流は210A、運棒比08.溶接時
の大気雰囲気は(イ) (FA度20℃−相対湿度70
%及び(ロ)温度30℃−相対湿度80%の条件下で行
なった。また炭酸カスシールドは6mmφのノズルな使
用し乾燥炭酸ガスを流量20fl/minで供給して行
なった。尚炭酸ガスシールドを行なわない他は上記と全
く同一条件下で従来法(比較例)を実施した。これらの
結果を第3図(グラフ)に示す。
Experimental Example 1 +3Cr-4N of 5mmφ was prepared by the method shown in Figure 1.
The amount of diffusible hydrogen in the weld metal was measured when an ultra-low hydrogen coated arc welding rod for steel was used. The amount of hydrogen was measured using a gas chroma l-graph method with an extraction time of 48 hours, a welding current of 210A, and a rod operating ratio of 08. The atmospheric atmosphere during welding is (a) (FA degree 20℃ - relative humidity 70
% and (b) The test was carried out under the conditions of a temperature of 30° C. and a relative humidity of 80%. Carbon dioxide sludge shielding was carried out by using a 6 mmφ nozzle and supplying dry carbon dioxide gas at a flow rate of 20 fl/min. A conventional method (comparative example) was carried out under exactly the same conditions as above, except that carbon dioxide shielding was not performed. These results are shown in FIG. 3 (graph).

グラフ中黒丸印は従来法で溶接した場合の測定結果を示
し、白丸印は本発明方法を使用した場合の測定結果を示
す。
The filled circles in the graph indicate the measurement results when welding by the conventional method, and the open circles indicate the measurement results when the method of the present invention is used.

該グラフから明らかな様に、低湿度の炭酸ガスシールド
を行なわない従来法では、大気雰囲気の影響をまともに
受けて溶接金属中の拡散性水素量が増加している。これ
に対し本発明方法では大気雰囲気を変えてもはX同様の
結果を示しており、大気の影響はほとんど受けないこと
が分かる。
As is clear from the graph, in the conventional method without carbon dioxide shielding at low humidity, the amount of diffusible hydrogen in the weld metal increases due to the influence of the atmospheric atmosphere. On the other hand, the method of the present invention shows the same results as X even if the atmospheric atmosphere is changed, and it can be seen that the method is hardly influenced by the atmosphere.

第4図は上記と同じ溶接棒を用いて溶接電流を変化させ
た場合の拡散性水素量の変化を示す。尚グラフ中の各印
は上記の例と同様であり、大気雰囲気は温度20℃−相
対湿度80%とする。この結果によると従来の方法では
溶接電流を高めるにつれて溶接金属中の拡散性水素量も
増加しているか、本発明方法を利用した場合には溶接電
流な高くしても拡散性水素量(Jはとんど変化しておら
ず、水素量の少ない溶接金属が得られる。
FIG. 4 shows the change in the amount of diffusible hydrogen when the welding current is changed using the same welding rod as above. Note that each mark in the graph is the same as in the above example, and the atmospheric atmosphere has a temperature of 20° C. and a relative humidity of 80%. These results indicate that in the conventional method, the amount of diffusible hydrogen in the weld metal increases as the welding current increases, whereas when using the method of the present invention, the amount of diffusible hydrogen (J) increases even if the welding current increases. A weld metal that is almost unchanged and has a low hydrogen content is obtained.

実験例2 汎用されているJIS 04316相当の低水素系溶接
棒(株式会社神戸製鋼所製LB47)を使用して実験例
1と同様の実験を行なった。拡散性水素量の測定結果を
第5図(グラフ)に示す。尚溶接棒は4mmφのものを
使用し、大気雰囲気は温度30℃−相対湿度80%に設
定した。第5図に見られる様に実験例1と同様、本発明
方法を利用したとき(白丸印)には溶接金属中の拡散性
水素量を低くすることができることが明らかになった。
Experimental Example 2 An experiment similar to Experimental Example 1 was conducted using a commonly used low hydrogen welding rod (LB47 manufactured by Kobe Steel, Ltd.) corresponding to JIS 04316. The measurement results of the amount of diffusible hydrogen are shown in FIG. 5 (graph). A welding rod with a diameter of 4 mm was used, and the atmosphere was set at a temperature of 30° C. and a relative humidity of 80%. As seen in FIG. 5, as in Experimental Example 1, it was revealed that the amount of diffusible hydrogen in the weld metal could be lowered when the method of the present invention was used (white circles).

またイルミナイl−系溶接棒を使用したときにも同様の
効果が得られた。
Similar effects were also obtained when an Illumina l-based welding rod was used.

実験例3 0.05C−12,5Cr −3,8N i鋳鋼旬月を
対象とし、JIS Z 3157に沿ってU型溶接割れ
試験を行ない、予熱温度と断面割れ甲との関係を調へた
。尚大気雰囲気は温度30℃−相対湿度80%とし、本
発明方法では6mmすのノズルを使用して毎分20fl
の低湿炭酸ガスをアーク周囲にイハ給した。
Experimental Example 3 A U-shaped weld cracking test was conducted in accordance with JIS Z 3157 using 0.05C-12,5Cr-3,8N i cast steel, and the relationship between preheating temperature and cross-sectional crack thickness was investigated. The atmospheric atmosphere is at a temperature of 30°C and a relative humidity of 80%, and in the method of the present invention, a 6 mm nozzle is used to produce 20 fl/min.
low-humidity carbon dioxide gas was supplied around the arc.

第6図(グラフ)は上記実験の結果を示すものであり、
前例と同様黒丸印は従来法による測定結果を示し、白丸
印は本発明方法による測定結果を示す。該グラフから明
らかな様に従来法では120℃未満の予熱では断面割れ
か発生し易かったか、本発明方法では予熱しないで溶接
をした場合でも割れは発生しなかった。
Figure 6 (graph) shows the results of the above experiment,
As in the previous example, black circles indicate the measurement results by the conventional method, and white circles indicate the measurement results by the method of the present invention. As is clear from the graph, in the conventional method, cross-sectional cracking was likely to occur when preheating was less than 120°C, whereas in the method of the present invention, no cracking occurred even when welding was performed without preheating.

また本発明を利用した場合には予熱と同様に後熱を行う
必要もなくなる。
Further, when the present invention is utilized, there is no need to perform post-heating as well as pre-heating.

本発明に利用するシールドカスは上記例の炭酸カスに限
らず低湿空気を用いても良く、炭酸ガスを用いよりも空
気のほうが溶接作業性は高くなる。
The shielding scum used in the present invention is not limited to the carbon dioxide scum in the above example, but low-humidity air may also be used, and the welding workability is higher when using air than when using carbon dioxide gas.

[発明の効果] 本発明方法を利用することにより大気雰囲気からの水素
侵入か抑制され、溶接金属中の拡散性水素量は減少され
るので、高温の予熱又は後熱を行なわないでも低温割れ
の抑制効果か発揮される。
[Effects of the Invention] By using the method of the present invention, hydrogen intrusion from the atmosphere is suppressed and the amount of diffusible hydrogen in the weld metal is reduced, so low-temperature cracking can be prevented even without high-temperature preheating or postheating. A suppressive effect is exerted.

従って作業環境の改善がはかられ効率的な溶接作業が行
なえる様になった。
Therefore, the working environment has been improved and welding work can be carried out more efficiently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の一実施例を示す説明図、第2図は
従来方法において溶接電流と拡散性水素量の関係を示す
グラフ、第3図は溶接時の大気雰囲気の変化と拡散性水
素量の変化の関係を示すグラフ、第4図は溶接電流の変
化と拡散性水素量の変化の関係を示すグラフ、第5図は
JIS D4318相当の溶接棒を使った場合の拡散性
水素量の相違を示すグラフ、第6図は断面割れ率と予熱
温度の関係を示すグラフである。 1・・・溶接金属    2・・・被M熔接棒3・・・
ノズル     4・・・スラグ5・・・アーク   
  6・・・シール1ミガス7・・・溶接母材    
8・・・溶融池1、OLn−J  の  へ  − 綻$、−宝礪ヒペ ■ Ln  ++j の N 。 (イ)  −+j  rつ  へ  6心
Fig. 1 is an explanatory diagram showing an example of the method of the present invention, Fig. 2 is a graph showing the relationship between welding current and the amount of diffusible hydrogen in the conventional method, and Fig. 3 is a graph showing changes in the atmospheric atmosphere during welding and diffusivity. A graph showing the relationship between changes in the amount of hydrogen, Figure 4 is a graph showing the relationship between changes in welding current and changes in the amount of diffusible hydrogen, and Figure 5 is the amount of diffusible hydrogen when using a welding rod equivalent to JIS D4318. FIG. 6 is a graph showing the relationship between cross-sectional cracking rate and preheating temperature. 1... Welding metal 2... M welding rod 3...
Nozzle 4...Slug 5...Arc
6... Seal 1 Migas 7... Welding base material
8... Molten pool 1, OLn-J's - 缄$, -Takara-Hipe ■ Ln ++j's N. (a) −+j r to 6 hearts

Claims (1)

【特許請求の範囲】[Claims]  低温割れを発生しやすい材料を予熱し、被覆アーク溶
接棒を用いて溶接するに当たり、アーク周囲を低湿気体
によってシールドすることを特徴とする被覆アーク溶接
方法。
A coated arc welding method characterized by shielding the periphery of the arc with a low-humidity gas when preheating materials that are prone to low-temperature cracking and welding them using a coated arc welding rod.
JP7596486A 1986-04-02 1986-04-02 Shielded arc welding method Pending JPS62234668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7596486A JPS62234668A (en) 1986-04-02 1986-04-02 Shielded arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7596486A JPS62234668A (en) 1986-04-02 1986-04-02 Shielded arc welding method

Publications (1)

Publication Number Publication Date
JPS62234668A true JPS62234668A (en) 1987-10-14

Family

ID=13591408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7596486A Pending JPS62234668A (en) 1986-04-02 1986-04-02 Shielded arc welding method

Country Status (1)

Country Link
JP (1) JPS62234668A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010519045A (en) * 2007-02-22 2010-06-03 フロニウス・インテルナツィオナール・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Apparatus and method for measuring protective gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010519045A (en) * 2007-02-22 2010-06-03 フロニウス・インテルナツィオナール・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Apparatus and method for measuring protective gas
US8210025B2 (en) 2007-02-22 2012-07-03 Fronius International Gmbh Arrangement and method for protective-gas measurement

Similar Documents

Publication Publication Date Title
CN108526750A (en) A kind of high-strength and high ductility high-nitrogen austenitic stainless steel welding wire and preparation method thereof
CN105051238A (en) Hot-dip galvanized steel plate with excellent coating adhesion and process for producing same
US2432773A (en) Coated welding electrode
US7518082B2 (en) Method for arc welding of ductile cast iron
JP5137412B2 (en) Gas shielded arc welding method for galvanized steel bar and stainless steel plate
JPH05375A (en) Submerged arc welding method and equipment for steel pipe
JPS62234668A (en) Shielded arc welding method
JPH11347790A (en) Coated electrode for ni group high cr alloy
CN109530849A (en) A kind of acidic environment carbon steel piping welding procedure method
JPH11147196A (en) Shielded metal arc welding method for high tensile strength steel
Mathers Welding of Titanium & Its Alloys
US2023818A (en) Coated steel electrode for arc welding
JPS58163594A (en) Method for improving low temperature cracking resistance in weld zone of steel material
KR19990023483A (en) Process for producing solvent containing wire by recrystallization annealing
NO830197L (en) PROCEDURE FOR MANUFACTURING STEEL WITH LOW HYDROGEN CONTENT.
SU1438942A1 (en) Composition of shielding gases for arc welding of high-melting metals
JPH0542390A (en) Low hydrogen type coated electrode for welding 9cr steel
JPH0994694A (en) Flux cored wire for stainless steel
JPH11123589A (en) Low hydrogen type covered electrode
CN111843106A (en) Overlaying welding dilution compensation process
SU925602A1 (en) Electrode coating composition
JPS59127994A (en) Low hydrogen type coated electrode
JPS57160591A (en) Preventing method for sticking of molten metal during welding
JPS62224497A (en) Low hydrogen coated arc electrode
KR101032615B1 (en) Covered electrode for cast iron