JPS58163594A - Method for improving low temperature cracking resistance in weld zone of steel material - Google Patents

Method for improving low temperature cracking resistance in weld zone of steel material

Info

Publication number
JPS58163594A
JPS58163594A JP4658382A JP4658382A JPS58163594A JP S58163594 A JPS58163594 A JP S58163594A JP 4658382 A JP4658382 A JP 4658382A JP 4658382 A JP4658382 A JP 4658382A JP S58163594 A JPS58163594 A JP S58163594A
Authority
JP
Japan
Prior art keywords
welding
arc
flux
steel material
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4658382A
Other languages
Japanese (ja)
Other versions
JPS6235877B2 (en
Inventor
Hirotsugu Inaba
稲葉 洋次
Nobuyuki Yamauchi
山内 信幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4658382A priority Critical patent/JPS58163594A/en
Publication of JPS58163594A publication Critical patent/JPS58163594A/en
Publication of JPS6235877B2 publication Critical patent/JPS6235877B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To prevent the generation of low temp. cracking in the weld heat affected zone in the stage of welding steel material of high carbon equiv., by incorporating a specific small amt. of Zn powder in a flux for welding. CONSTITUTION:In the stage of welding steel material of high carbon equiv. having high strength and high toughness, 0.5-2.0wt% Zn powder is incorporated in a coating flux of a welding electrode for submerged arc welding or in the flux contained in a composite wire for submerged arc welding. Zn of a low m.p. is evaporated by the effect of the high temp. of the arc in the stage of welding, and the partial pressure of H2 in the arc atmosphere is decreased, whereby the amt. of the diffusible hydrogen in the weld metal is decreased without giving any adverse influence on the arc, and the low temp. cracking resistance in the weld heat affected zone by the hydrogen is improved.

Description

【発明の詳細な説明】 この発明は、鋼材溶接部の耐低温割れ性を改善する溶接
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a welding method for improving the cold cracking resistance of a steel weld.

一般に、溶接方法の種類を前わす、炭素当量の高い鋼材
を溶接すると、その溶接熱影響部に低温割れを発生しや
すいことが知られている。低温割れの原因としては、熱
影響部の硬化、拡散性水素の存在、溶接部材の拘束条件
などの要因が考えられるが、特に拡散性水素量の影響の
大きいことが知られている。
In general, it is known that when steel materials with high carbon equivalents are welded using different welding methods, cold cracks are likely to occur in the weld heat affected zone. Possible causes of cold cracking include hardening of the heat-affected zone, the presence of diffusible hydrogen, and restraint conditions of the welded parts, but it is known that the amount of diffusible hydrogen has a particularly large effect.

このように、溶接金属に水素が多い場合に発生する溶接
熱影響部や溶接金属部の低温割れは、溶接熱影響部又は
溶接金属の組織と水素量で決まるものであり、特に、最
近のように高強度・高靭性鋼の溶接においては、手溶接
などの小人熱溶接部゛では熱影響部に、さらにサラマー
ジアーク溶接やMIG溶接のような大入熱溶接では、靭
性な向上させるために焼入れ性向上元素を含有せしめら
れた溶接部にそれぞれ割れが発生しがちである。そして
、水素自体は、フラックス中の結晶水と吸着水の分解に
よるものがほとんどで、一部、大気中の水蒸気も高温多
湿時には水素を増加させる原因となっている。フラック
ス中の結晶水は、そのような結晶水を有する物質を結晶
水をもたない物質と置き換えることやベーキングによっ
て極力少なくできるが、付着水はフラックス製造後の吸
湿によって保持されるもので、その使用前に乾燥される
けれども、サブマージアーク溶接用フラックスや、被覆
アーク溶接棒ではその後も外気にさらされるために再吸
湿しやすいという問題点がある。
In this way, cold cracking in the weld heat affected zone or weld metal that occurs when there is a large amount of hydrogen in the weld metal is determined by the structure and hydrogen content of the weld heat affected zone or weld metal. When welding high-strength and high-toughness steel, welding is performed on the heat-affected zone in small heat welding parts such as manual welding, and in high-heat-input welding such as salamage arc welding and MIG welding to improve toughness. Cracks tend to occur in welded parts containing hardenability-improving elements. Most of the hydrogen itself comes from the decomposition of crystallized water and adsorbed water in the flux, and some water vapor in the atmosphere also causes an increase in hydrogen during times of high temperature and humidity. Crystallization water in flux can be minimized by replacing a substance with crystallization water with a substance without crystallization water or by baking, but adhering water is retained by moisture absorption after flux production, and its Although they are dried before use, fluxes for submerged arc welding and coated arc welding rods have the problem of being susceptible to re-absorption of moisture because they are still exposed to the outside air.

への吸湿はし難いが、吸湿水が存在すると加熱によって
も乾燥し難いために、これも水素による低温割れを発生
しやすいものであった。
However, the presence of hygroscopic water makes it difficult to dry even by heating, and this also tends to cause low-temperature cracking due to hydrogen.

アーク雰囲気中の82分圧を低減する方法として、H2
以外の無害なガスの分圧を上げる方法が考えられ、フラ
ックスや被覆剤中に例えばCaF2のような多量にガス
を発生する成分を添加する方法も一般に行なわれている
。しかしながら、CaF2はそれ自体非常に吸湿性が大
きいため、逆に高H2雰囲気を作りやすく低水素が得ら
れないことが多いので、その使用にあたっては、やはり
7ラツクスや被覆剤の乾燥がより重要となるうえ、使用
時に発生する高いガス圧のためにアーク力が増大し、溶
接条件の選定範囲が狭くならざるを得す、作業性が悪化
するという問題点があった。
As a method to reduce the 82 partial pressure in the arc atmosphere, H2
Methods of increasing the partial pressure of other harmless gases have been considered, and a method of adding a component that generates a large amount of gas, such as CaF2, to the flux or coating agent is also commonly used. However, since CaF2 itself is highly hygroscopic, it tends to create a high H2 atmosphere and often makes it difficult to obtain low hydrogen. Therefore, when using CaF2, it is more important to dry the 7lux and coating material. Moreover, the arc force increases due to the high gas pressure generated during use, which inevitably narrows the selection range of welding conditions and deteriorates workability.

本発明者等は、上述のような観点から、高強度高靭性部
材のような、低温割れが問題となる炭素当量の高い材料
等の溶接に際し、溶接材料の事前乾燥処理を必要とする
こともなく、簡単確実に拡散性水素量を抑え、低温割れ
を防止することので′きる溶接方法を見出すべく研究を
重ねた結果、溶接用フラックス中にZn粉末を含有させ
て溶接を行なうと、Znの沸点が907℃であることか
ら、Zn粉末はアーク雰囲気中で蒸発ガス化して、これ
によりアーク雰囲気中の82分圧が低減され、拡散性水
素量が低下するうえ、アークに対して何ら悪影響を及ぼ
すことがないとの知見を得るに至ったのである。
From the above-mentioned viewpoint, the present inventors have proposed that prior drying treatment of the welding material may be necessary when welding materials with high carbon equivalents where cold cracking is a problem, such as high-strength and high-toughness members. As a result of repeated research to find a welding method that can easily and reliably suppress the amount of diffusible hydrogen and prevent cold cracking, we found that when welding is carried out with Zn powder contained in welding flux, Zn Since the boiling point is 907°C, Zn powder evaporates into gas in the arc atmosphere, which reduces the 82 partial pressure in the arc atmosphere, reduces the amount of diffusible hydrogen, and has no adverse effect on the arc. We have come to the conclusion that there is no adverse effect.

従って、この発明は、上記知見に基いてなされたもので
あって、被覆アーク溶接棒の被覆フラックス、あるいは
複合ワイヤの内蔵フラックスに、0.5〜2.0重量%
のZn粉末を含有させて溶接を行なうことによシ、鋼材
溶接部の耐低温割れ性を改善することに特徴を有するも
のである。
Therefore, the present invention was made based on the above knowledge, and the present invention is based on the above-mentioned findings.
This method is characterized in that the cold cracking resistance of the welded part of the steel material is improved by welding with Zn powder contained therein.

この発明の方法において、Zn粉末の含有量を0.5〜
2.0重量%の範囲に限定した理由は、その含有量が0
1重量%未満では水素低減効果が少なく、特に0.5゛
重量係以上となるとその効果が格段に向上するものであ
り、一方20係を越えて含有せしめると発生するガスの
圧力に′よって溶接金属が飛ばされ、不整合ビート1の
原因となるからである。
In the method of this invention, the content of Zn powder is from 0.5 to
The reason for limiting the range to 2.0% by weight is that the content is 0.
If the hydrogen content is less than 1% by weight, the hydrogen reduction effect will be small, and if the hydrogen content exceeds 0.5%, the effect will be significantly improved.On the other hand, if the hydrogen content exceeds 20%, the pressure of the gas generated will cause welding. This is because the metal is blown off, causing the misaligned beat 1.

フラックスの他の成分については、Zri添加による格
別な影響を受けることがない。特に、同様にガス発生源
であるCaF2成分との相互影響関係もほとんど認めら
れないあで、これらの成分も通常の範囲で含有されてお
れば、何の不都合もなく、この発明を適用することがで
きる。
Other components of the flux are not particularly affected by the addition of Zri. In particular, there is almost no mutual influence with the CaF2 component, which is also a gas generation source, and if these components are also contained within the normal range, the present invention can be applied without any inconvenience. Can be done.

サブマージアーク溶接用複合ワイヤの内蔵フランクス龜
、通常、Fe粉と、溶接金属中のOiを減少させて靭性
を向上させるC aF2と、アーク安定斉jとしてのT
lO2等を主成分としておシ、さらに、フープは、通常
の低C低Mn冷延鋼板を用いて、Si 、 Mll 。
The built-in Franks head of composite wire for submerged arc welding usually contains Fe powder, C aF2 to reduce Oi in the weld metal and improve toughness, and T as arc stabilization uniformity.
In addition, the hoop is made of ordinary low-C, low-Mn cold-rolled steel plate, and is made of Si, Mll, etc. as the main component.

Mo、 ’ B等の溶接金属に必要な元素力I添加され
ているものであるが、これらのいずれを使用する溶接に
おいてもこの発明の方法を適用できること(よ、前述の
とおりである。特に、母材が高張力鋼であって、溶接金
属中にM”LやBを含んだ高強度高靭性溶接金属を得る
ような溶接においては有効なものである。なお、この場
合には、MOやBは主としてワイヤ中に必要量含有させ
るのが良く、複合ワイヤを使用する場合は該ワイヤ中の
フラックス成分として添加してもよい。
Although the necessary elemental force I is added to weld metals such as Mo and B, the method of the present invention can be applied to welding using any of these (as mentioned above, in particular, This is effective in welding where the base metal is high-strength steel and the weld metal contains M''L and B, making it a high-strength, high-toughness weld metal.In this case, MO and B is preferably contained mainly in the required amount in the wire, and when a composite wire is used, it may be added as a flux component in the wire.

MAG用複合ワイヤの内蔵フラックス中にZn粉末を1
添加しても、同様に良好な結果が得られる。
Zn powder is added to the built-in flux of composite wire for MAG.
Similarly good results can be obtained by adding it.

ちなみに、MAG用複合ワイヤの内蔵フラックスとして
は、Ti○、、sio、等のアーク安定材を必須成分と
して、 CaF2. Fe粉、及び合金元素等から成る
もツカ使用されており、CaFl、Ti○71.5i0
2の組成範囲は1〜60%程度である。
By the way, the built-in flux of the composite wire for MAG includes arc stabilizers such as Ti○, sio, etc. as essential components, and CaF2. Materials made of Fe powder and alloying elements are used, such as CaFl, Ti○71.5i0
The composition range of No. 2 is about 1 to 60%.

被覆アーク溶接の場合は、入熱量が小さいために溶接後
の冷却速度が大きく、引張シ強さ75C50ゆ/−級以
上の高張力鋼に於ては溶、液熱影響部にマルテンサイト
が析出し、溶接金属より害lれ力;発生しやすいので、
熱影響部の低温割れ力;問題になるものである。したが
って、母材についてl−450キロ級以上の高張力鋼を
使用した方が低温割れ防止には有効であり、溶接金属は
高張力鋼用低水素溶接棒が対象になる。そして、被覆材
であるフラックスは、CaCO3を主成分とし、C’a
F2 、 TiO2を必須成分として含むものになるが
、高張力鋼でも比較的薄肉の低PCM鋼ではイルミナイ
ト系、チタニア系等のTiO2を主成分としたものに、
Zn粉末を添υ11シて低水素にしたものが有効に使用
できる。
In the case of shielded arc welding, the cooling rate after welding is large because the heat input is small, and martensite precipitates in the heat affected zone of the melt and liquid in high-strength steels with a tensile strength of 75C50Y/- class or higher. However, since it is more likely to cause damage than welded metal,
Cold cracking force in the heat-affected zone: This is a problem. Therefore, it is more effective to prevent cold cracking if high tensile strength steel of 1-450 kg class or higher is used as the base material, and a low hydrogen welding rod for high tensile steel is used as the weld metal. The flux that is the coating material has CaCO3 as its main component, and C'a
F2 and TiO2 are included as an essential component, but even high-strength steels and relatively thin low-PCM steels contain TiO2 as a main component, such as illuminite and titania-based steels.
A material containing low hydrogen by adding Zn powder to υ11 can be effectively used.

従って、CaCO3、CaF2 、 TiO2をそれぞ
れ1〜’6’、0係含むことを必須とする被覆材や、通
常被覆アーク溶接においては、MoやB等は使用されな
い。このようなものにあっては、サプマーソ\アーク溶
接用の内蔵フラックスに使用される場合を除き、CaC
O3゛、 CaF、、 、 TiO2、5in2は、各
1%未満ではアークの安定効果が得られず、60%を越
えるとアンダーカット等の欠陥が発生したり、スラグ量
が多すぎてビード形状を悪化させたりするので、各々、
フラックス中の含有範囲は1〜60%とされているのが
普通である。
Therefore, Mo, B, etc. are not used in coating materials that must contain CaCO3, CaF2, and TiO2 in amounts of 1 to 6 and 0, respectively, and in normal covered arc welding. In such products, CaC
If each of O3゛, CaF, , TiO2, and 5in2 is less than 1%, the arc stabilizing effect cannot be obtained, and if it exceeds 60%, defects such as undercuts may occur, or the amount of slag is too large and the bead shape cannot be obtained. It may worsen the situation, so each
The content range in flux is usually 1 to 60%.

このように、この発明は1種、々のタイプの溶接に適用
して良好な効果を得ることができるものであるが、実施
例によってさらに具体的に説明する。
As described above, the present invention can be applied to each type of welding to obtain good effects, and will be explained more specifically with reference to examples.

まず、第1表に示す通シの成分組成の溶接用フラックス
と、第2表に示す通りの成分組成を有する鋼板及び溶接
ワイヤを用意した。
First, a welding flux having a general composition as shown in Table 1, and a steel plate and a welding wire having a composition as shown in Table 2 were prepared.

第   1   表 第   2   表 次に、第3表に示したように、ワイヤとフラックスとを
組合せて適宜フラックスにZn粉末を添加し、複合ワイ
ヤC以外のものは、ソリッドワイヤを心線にしてその上
にそれぞれ\フラックスを被覆し、被覆溶接棒とした。
Table 1 Table 2 Next, as shown in Table 3, wire and flux are combined, Zn powder is added to the flux as appropriate, and for composite wires other than C, solid wire is used as a core wire. Each was coated with flux to form a coated welding rod.

これを用いて、単電極。Using this, a single electrode.

電流:600A、電圧:45V、溶接速度:60crI
L/m1llの溶接条件で溶接を行なった。なお、複合
ワイヤCを用いた試験番号7のものは、粒状フラックス
を併用して溶接を行なった。このようにして得られた溶
接金属の拡散性水素量、酸素含有量。
Current: 600A, voltage: 45V, welding speed: 60crI
Welding was performed under welding conditions of L/ml. In addition, in test number 7 using composite wire C, welding was performed using granular flux in combination. Diffusible hydrogen content and oxygen content of the weld metal thus obtained.

溶接部のシャルピー衝撃値(vE−go)+及びアンダ
ーカットの発生しない限界溶接速度を測定して。
Measure the Charpy impact value (vE-go)+ of the weld zone and the limit welding speed at which undercut will not occur.

第3表に併せて記載した。なお、アンダーカットの発生
しない限界溶接速度の測定は、電流:600A、電圧:
45vの条件で行なった。
It is also listed in Table 3. In addition, the measurement of the limit welding speed that does not cause undercut is current: 600A, voltage:
The test was carried out under the condition of 45v.

第3表に示した結果からも、本発明溶接法によると拡散
性水素量が低くなり、低温靭性も良好なうえ、溶接速度
も良好なものが実現でき、信頼性と作業性の高い溶接を
実施できることがわかる。
The results shown in Table 3 also show that the welding method of the present invention has a low amount of diffusible hydrogen, good low-temperature toughness, and a good welding speed, resulting in highly reliable and workable welding. It turns out that it can be implemented.

上述のように、この発明によれば、複雑で長時間を要す
るような工程を必要とすることなく、安価に、鋼材溶接
部の耐低温割れ性を改善できるなど工業上有用な効果が
もたらされるのである。
As described above, the present invention brings about industrially useful effects such as being able to improve the cold cracking resistance of steel welds at low cost without requiring complicated and time-consuming processes. It is.

出願人  住友金属工業株式会社 代理人  富  1) 和  夫Applicant: Sumitomo Metal Industries, Ltd. Agent Tomi 1) Kazuo

Claims (1)

【特許請求の範囲】[Claims] 被覆アーク溶接棒の被覆フラックス、あるいは複合ワイ
ヤの内蔵フラッメ屁、0.5〜2.0重量%のZn粉末
を含有させて溶接を行なうことを特徴とする、鋼材溶接
部の耐低温割れ性を改善する方法。
The cold cracking resistance of steel welds is evaluated by welding with the coated flux of a coated arc welding rod, the built-in flame fart of a composite wire, and 0.5 to 2.0% by weight of Zn powder. How to improve.
JP4658382A 1982-03-24 1982-03-24 Method for improving low temperature cracking resistance in weld zone of steel material Granted JPS58163594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4658382A JPS58163594A (en) 1982-03-24 1982-03-24 Method for improving low temperature cracking resistance in weld zone of steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4658382A JPS58163594A (en) 1982-03-24 1982-03-24 Method for improving low temperature cracking resistance in weld zone of steel material

Publications (2)

Publication Number Publication Date
JPS58163594A true JPS58163594A (en) 1983-09-28
JPS6235877B2 JPS6235877B2 (en) 1987-08-04

Family

ID=12751316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4658382A Granted JPS58163594A (en) 1982-03-24 1982-03-24 Method for improving low temperature cracking resistance in weld zone of steel material

Country Status (1)

Country Link
JP (1) JPS58163594A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100322370B1 (en) * 1999-09-22 2002-02-07 이봉주 Electrodes for Flux Cored Arc Welding
EP1500457A1 (en) * 2003-07-25 2005-01-26 Nippon Steel Corporation Method for producing an ultrahigh strength welded steel pipe excellent in cold cracking resistance of weld metal
CN106181125A (en) * 2016-08-30 2016-12-07 四川大西洋焊接材料股份有限公司 Exempt from application bridge steel high-performance weather-proof steel welding rod and preparation method thereof
CN107009051A (en) * 2017-06-14 2017-08-04 海宁瑞奥金属科技有限公司 A kind of high tensile pipeline steel all-position welding low hydrogen high-ductility self-protection flux-cored wire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104014949A (en) * 2014-05-30 2014-09-03 洛阳双瑞特种合金材料有限公司 High-toughness alloy system heat-resistant steel electrode

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100322370B1 (en) * 1999-09-22 2002-02-07 이봉주 Electrodes for Flux Cored Arc Welding
EP1500457A1 (en) * 2003-07-25 2005-01-26 Nippon Steel Corporation Method for producing an ultrahigh strength welded steel pipe excellent in cold cracking resistance of weld metal
CN106181125A (en) * 2016-08-30 2016-12-07 四川大西洋焊接材料股份有限公司 Exempt from application bridge steel high-performance weather-proof steel welding rod and preparation method thereof
CN106181125B (en) * 2016-08-30 2018-06-19 四川大西洋焊接材料股份有限公司 Exempt from application bridge steel high-performance weather-proof steel welding rod and preparation method thereof
CN107009051A (en) * 2017-06-14 2017-08-04 海宁瑞奥金属科技有限公司 A kind of high tensile pipeline steel all-position welding low hydrogen high-ductility self-protection flux-cored wire

Also Published As

Publication number Publication date
JPS6235877B2 (en) 1987-08-04

Similar Documents

Publication Publication Date Title
KR20010013551A (en) Core welding wire with low nitrogen content
US3560702A (en) Composite electrode for consumable electrode arc welding process
US20220362892A1 (en) Flux-cored wire and welding method
US3415976A (en) Arc welding electrode
JPS58163594A (en) Method for improving low temperature cracking resistance in weld zone of steel material
JPS62183994A (en) Wire for gas shielded arc welding of stainless steel
JPS60261679A (en) Method of welding alloy containing nitrogen
JP2021049583A5 (en)
JPH11347790A (en) Coated electrode for ni group high cr alloy
US3342974A (en) Arc welding electrode providing welds having high yield and rupture value
CN113695787B (en) Low-hydrogen anti-cracking flux-cored wire
JPS5847959B2 (en) Low hydrogen coated arc welding rod
JPH08257791A (en) Low hydrogen covered electrode
JPS63101093A (en) Covered electrode for arc welding
PT96373A (en) METAL WELD OF APPROPRIATE WELD FOR HIGH RESISTANCE TO DEFORMATION AND PROCESS FOR ITS DEPOSIT
TWI706825B (en) Method of manufacturing welding electrode
JPH0542390A (en) Low hydrogen type coated electrode for welding 9cr steel
JP3115484B2 (en) Low hydrogen coated arc welding rod and welding method
US4131781A (en) Submerged arc welding process for nickel containing steel
JPH04135089A (en) Welding wire
JPH08174267A (en) Flux cored wire for arc welding
JPS63299889A (en) Flux cored wire for welding
JPS5920435B2 (en) High nitrogen Cr-Ni austenitic steel coated arc welding rod
JP2004001048A (en) Low hydrogen type coated electrode
JPS63242491A (en) Low hydrogen coated electrode