JP3115484B2 - Low hydrogen coated arc welding rod and welding method - Google Patents

Low hydrogen coated arc welding rod and welding method

Info

Publication number
JP3115484B2
JP3115484B2 JP06185154A JP18515494A JP3115484B2 JP 3115484 B2 JP3115484 B2 JP 3115484B2 JP 06185154 A JP06185154 A JP 06185154A JP 18515494 A JP18515494 A JP 18515494A JP 3115484 B2 JP3115484 B2 JP 3115484B2
Authority
JP
Japan
Prior art keywords
welding
weight
steel
vanadium
welding rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06185154A
Other languages
Japanese (ja)
Other versions
JPH07323392A (en
Inventor
正 糟谷
國秀 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26428552&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3115484(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP06185154A priority Critical patent/JP3115484B2/en
Publication of JPH07323392A publication Critical patent/JPH07323392A/en
Application granted granted Critical
Publication of JP3115484B2 publication Critical patent/JP3115484B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、490N/mm2 級以
上の高張力鋼を対象とし、鋼溶接部の耐低温割れ性を改
善する低水素系被覆アーク溶接棒およびそれを用いた溶
接方法に関するものである。
BACKGROUND OF THE INVENTION This invention is directed to a 490 N / mm 2 or higher grade high tensile steel, low hydrogen type covered electrode to improve the low-temperature cracking resistance of the steel weld and welding process using the same It is about.

【0002】[0002]

【従来の技術】船舶や建築の大型化に伴い、鋼材の軽量
化のために高張力鋼材の使用が増加している。高張力鋼
は降伏点並びに引張強さを高めるために少量の合金元素
を含ませてあるため、高張力鋼をアーク溶接する場合、
よく溶接低温割れが発生することが知られている。
2. Description of the Related Art With the increase in size of ships and buildings, the use of high-tensile steel materials has been increasing in order to reduce the weight of steel materials. Since high strength steel contains a small amount of alloying elements to increase the yield point and tensile strength, when arc welding high strength steel,
It is well known that low-temperature cracking occurs frequently.

【0003】低温割れの原因としては溶接部の硬化、拡
散性水素量、溶接部材の拘束度などの要因があるが、特
に拡散性水素量の影響が大きいことが知られている。こ
のように、溶接金属に水素が多い場合に発生する低温割
れは溶接金属部の組織と水素量で決まるものであり、特
に最近のように高強度・高靱性鋼の溶接においては被覆
アーク溶接棒に強度・靱性を向上させるために焼き入れ
性元素を含有させており、母材熱影響部より溶接部に割
れが発生しがちである。
[0003] The causes of low-temperature cracking include factors such as the hardness of the weld, the amount of diffusible hydrogen, and the degree of restraint of the welded member. It is known that the effect of the amount of diffusible hydrogen is particularly large. As described above, the low-temperature cracking that occurs when the weld metal contains a large amount of hydrogen is determined by the structure of the weld metal and the amount of hydrogen. Particularly in recent welding of high-strength, high-toughness steel, a coated arc welding rod is used. In order to improve the strength and toughness, a hardenable element is contained, and cracks tend to occur in the welded portion from the heat affected zone of the base material.

【0004】母材熱影響部に生じる割れは、近年の制御
圧延制御冷却技術により低炭素当量を確保しつつ高強度
を達成する方法を採用することにより改善することが可
能である。炭素当量は低温割れ感受性を評価する指標で
あり、これが低いほど耐低温割れ感受性は向上する。こ
の方法は低炭素当量化に伴う強度低下を製造条件によっ
て補うという思想であるが、この方法をそのまま溶接金
属の耐低温割れ感受性改善に当てはめることは、制御圧
延制御冷却特有の技術である低温加熱圧延工程や加速冷
却工程を溶接継手に適用できないため事実上不可能であ
る。
[0004] Cracks occurring in the heat-affected zone of the base metal can be improved by employing a method of achieving high strength while securing a low carbon equivalent by a recent controlled rolling control cooling technique. The carbon equivalent is an index for evaluating cold cracking susceptibility, and the lower the carbon equivalent, the higher the cold cracking susceptibility. The idea of this method is to compensate for the decrease in strength due to the low carbon equivalent by the production conditions.However, applying this method directly to improving the low-temperature cracking susceptibility of the weld metal is a low-temperature heating technique, a technology unique to controlled rolling control cooling. This is practically impossible because the rolling process and the accelerated cooling process cannot be applied to the welded joint.

【0005】溶接割れを防止ないしは軽減する手段とし
て、いくつかの方法が見出されているが、この中で、従
来から最も一般的に用いられ、かつ溶接割れに最も効果
があるとされているのが、母材を予熱または後熱する方
法である。この方法は、溶接部の冷却速度を緩やかにし
て、溶接部の組織にマルテンサイトが生成するのを少な
くする効果と溶接部の拡散性水素の放出時間を長くして
水素脆化を抑制する効果および残留応力の発生を緩和す
る効果がある。これらの効果を達成するための予熱温度
は、母材の成分、母材の板厚、強度および溶接材料の組
成等によって異なるが、590N/mm2 級高張力鋼の
溶接では、一般に100℃前後が採用され、高いもので
は200℃にも達している。このように高い予熱温度
は、溶接作業を著しく困難にするうえに、溶接施工費の
急増を招く元になり、予熱を必要としない、または予熱
温度を低減できる耐割れ性の極めて優れた被覆アーク溶
接棒の開発が要望されている。
[0005] Several methods have been found as means for preventing or reducing welding cracks. Among them, among them, conventionally, the method is most commonly used and is considered to be the most effective for welding cracks. This is a method of preheating or post-heating the base material. This method has the effect of slowing down the cooling rate of the weld, reducing the generation of martensite in the structure of the weld, and prolonging the release time of diffusible hydrogen in the weld to suppress hydrogen embrittlement. And there is an effect of alleviating generation of residual stress. The preheating temperature for achieving these effects varies depending on the components of the base material, the thickness of the base material, the strength, the composition of the welding material, and the like, but generally about 100 ° C. for welding 590 N / mm 2 class high strength steel. It is as high as 200 ° C. Such a high preheating temperature makes the welding operation extremely difficult and, in addition, causes a sharp rise in welding work costs. A coated arc that does not require preheating or has an excellent crack resistance that can reduce the preheating temperature. There is a demand for the development of a welding rod.

【0006】極厚鋼板を予熱しないで溶接割れを防ぐ方
法として、例えば、特公昭59−15758号公報や特
公昭60−48280号公報に炭酸ガス雰囲気で高温焼
成を行って溶接部に拡散性水素が発生するのを極端に減
らした被覆アーク溶接棒を用いる方法がある。この方法
は、合金剤を少なくして、溶接割れに悪影響を及ぼす炭
素当量を低減した鋼材に対して一部効果を示している
が、溶接棒製造の手間と費用がかさみ、汎用性にも欠け
る。また、いくら溶接棒自体の拡散性水素量を低減して
も、大気中の水蒸気が高温多湿時には水素を増加させる
原因となる。
As a method of preventing welding cracks without preheating a very thick steel plate, for example, Japanese Patent Publication No. 59-15758 and Japanese Patent Publication No. 60-48280 disclose diffusing hydrogen to a weld portion by performing high temperature firing in a carbon dioxide gas atmosphere. There is a method using a covered arc welding rod in which occurrence of cracks is extremely reduced. This method has shown some effects on steel materials with reduced alloying agents and reduced carbon equivalents that have a negative effect on weld cracking, but it adds to the labor and cost of manufacturing welding rods and lacks versatility. . Also, no matter how much the amount of diffusible hydrogen in the welding rod itself is reduced, water vapor in the atmosphere causes an increase in hydrogen at high temperatures and high humidity.

【0007】バナジウムを含有させた被覆アーク溶接棒
としては、例えば、特開平3−285793号公報に
は、60キロ級以上の高張力鋼用に良好な破壊靱性が得
られる低水素系被覆アーク溶接棒が提案されているが、
バナジウムは強度を向上させる目的のために添加されて
いるものであり、耐低温割れ性の改善には至っていな
い。また、特公昭60−45993号公報には、炭酸マ
グネシウム、弗化カルシウムを含有した耐ピット性が向
上する低水素系被覆アーク溶接棒が提案されているが、
バナジウムは前述と同様に溶接金属の強度が要求される
場合に他のNi,Cr,Mo,Cu,Nbなどの合金剤
と共に添加されるのであって、耐低温割れ性の改善には
至っていない。
As a coated arc welding rod containing vanadium, for example, Japanese Unexamined Patent Publication (Kokai) No. 3-285793 discloses a low-hydrogen-based coated arc welding electrode capable of obtaining good fracture toughness for high-tensile steel of 60 kg or more. A stick has been proposed,
Vanadium is added for the purpose of improving the strength, and has not been improved in low-temperature cracking resistance. Japanese Patent Publication No. 60-49993 proposes a low hydrogen coated arc welding rod containing magnesium carbonate and calcium fluoride and having improved pit resistance.
As described above, vanadium is added together with other alloying agents such as Ni, Cr, Mo, Cu, and Nb when the strength of the weld metal is required, and has not been improved in low-temperature cracking resistance.

【0008】一方、特開平5−161993号公報や特
開平2−220797号公報には、Cr−Mo系低合金
鋼用被覆アーク溶接棒が提案されているが、バナジウム
の添加は高温におけるクリープ特性を改善させるのが目
的であり、やはり耐低温割れ性を向上させるものではな
い。よって、これら技術は予熱なしの施工あるいは予熱
温度の低減効果が期待できない。
On the other hand, JP-A-5-161993 and JP-A-2-220797 propose a coated arc welding rod for Cr-Mo based low alloy steel, but the addition of vanadium causes creep characteristics at high temperatures. The purpose is to improve the low temperature cracking resistance. Therefore, these techniques cannot be expected to work without preheating or to reduce the preheating temperature.

【0009】バナジウムを添加すると水素のトラップ効
果があることが酒井らにより(「鉄と鋼」、Vol.7
2(1986)、No.9、p.1375)既に知られ
ている。この研究によると、バナジウムを0.25%以
上添加した場合に初めて効果があり、0.1%添加では
無添加とほとんど差がないことが示されている。本発明
は後に詳細に説明するように、溶接金属中のバナジウム
を0.05〜0.25%の範囲内にすることを主な手段
としており、酒井らの研究結果である水素トラップが期
待できる範囲と一致しない。また、この研究発表に記載
されている発明は圧力容器用Cr−Mo鋼が運転中に、
鋼中に進入してきた水素が引き起こす鋼材の延性低下を
防止するものであり、水素が外部より定常的に供給され
る場合に対して有効な技術であるため、溶接割れのよう
に水素が一時的に供給される場合とは本質的に異なる。
さらに、酸素を数100ppm含有し、かつそのミクロ
組織が主として凝固のままの組織で母材と本質的に異な
る溶接金属において、バナジウム添加が溶接割れを防止
する予熱温度を低減する効果があるかどうかは、この研
究結果からは明らかにできない。
Sakai et al. (“Iron and Steel”, Vol. 7) show that the addition of vanadium has an effect of trapping hydrogen.
2 (1986); 9, p. 1375) It is already known. According to this study, the effect is obtained only when vanadium is added in an amount of 0.25% or more, and it is shown that the addition of 0.1% hardly differs from the case where no vanadium is added. As will be described in detail later, the present invention mainly uses vanadium in the range of 0.05 to 0.25% in the weld metal, and a hydrogen trap which is a result of the research by Sakai et al. Can be expected. Does not match range. In addition, the invention described in this research presentation shows that Cr-Mo steel for pressure vessels
This is a technique that prevents the reduction in ductility of steel caused by hydrogen that has entered steel and is an effective technique for the case where hydrogen is constantly supplied from the outside. Is essentially different from the case where
Furthermore, in a weld metal containing several hundred ppm of oxygen and whose microstructure is essentially a solidified structure and is essentially different from the base material, whether vanadium addition has an effect of reducing the preheating temperature to prevent weld cracking. Cannot be clarified from the results of this study.

【0010】[0010]

【発明が解決しようとする課題】本発明は、上記従来技
術の問題点を解決するためになされたものであって、主
として490N/mm2 級以上の高張力鋼の溶接に際し
ても、予熱を必要としない、または予熱温度を低減でき
る耐割れ性の極めて優れた低水素系被覆アーク溶接棒お
よび溶接方法を提供することを目的とするものである。
[0008] The present invention was made to solve the problems of the prior art, even when predominantly 490 N / mm 2 or higher grade of welding a high strength steel, require preheating It is an object of the present invention to provide a low-hydrogen-based coated arc welding rod and a welding method which are extremely excellent in crack resistance and can reduce the preheating temperature.

【0011】[0011]

【課題を解決するための手段】本発明は前記課題を解決
するものであって、少なくとも金属炭酸塩および金属弗
化物を含む490N/mm 2 級以上の高張力鋼用の被覆
アーク溶接棒において、バナジウムを下式(1)に基づ
いた範囲で満足するように心線と被覆剤の一方または両
方に含有したことを特徴とする低水素系被覆アーク溶接
棒である。 0.05≦Wv+0.38Fv≦0.25 ・・・・・・・(1) ここで、 Wv:心線全質量に対する心線中のバナジウムの含有量
(重量%) Fv:被覆剤全質量に対する被覆剤中のバナジウムの含
有量(重量%)
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and is directed to a coated arc welding rod for high-tensile steel of at least 490 N / mm 2 class containing at least a metal carbonate and a metal fluoride. A low hydrogen coated arc welding rod characterized in that vanadium is contained in one or both of a core wire and a coating agent so as to satisfy a range based on the following formula (1). 0.05 ≦ Wv + 0.38 Fv ≦ 0.25 (1) where, Wv: the content (% by weight) of vanadium in the core wire with respect to the total mass of the core wire Fv: with respect to the total mass of the coating agent Vanadium content in coatings (% by weight)

【0012】なお上記の被覆剤中のバナジウムとは、金
属バナジウム、フェロバナジウムなどの合金、化合物さ
らにこれらの混合物、混合粉末を指すものである。
The term "vanadium" in the above coating agent refers to alloys and compounds such as metal vanadium and ferrovanadium, as well as mixtures and powders thereof.

【0013】またさらに、引張強度が490N/mm2
以上かつ880N/mm2 以下であり、重量%で示され
る鋼中の含有量を各化学記号であらわしたとき、下記
(2)式で計算されるPcmが0.14〜0.24%の
鋼材と、前記の低水素系被覆アーク溶接棒を用いること
を特徴とする溶接方法である。 Pcm=C+Si/30+(Mn+Cu+Cr)/20+Mo/15 +V/10+5B ・・・・・・・・・・(2)
Further, the tensile strength is 490 N / mm 2
When the content in the steel is not less than 880 N / mm 2 and represented by% by weight and represented by each chemical symbol, the Pcm calculated by the following equation (2) is 0.14 to 0.24%. And a welding method using the low hydrogen-based coated arc welding rod. Pcm = C + Si / 30 + (Mn + Cu + Cr) / 20 + Mo / 15 + V / 10 + 5B (2)

【0014】[0014]

【作用】本発明者等は、拡散性水素量を低減する方法以
外で予熱温度を低減しても低温割れが防止できる被覆ア
ーク溶接棒および溶接方法を開発すべく研究を重ねた。
その結果、従来Cr−Mo鋼用溶接材料で主に高温強度
特性を向上させるために添加使用されているバナジウム
に着目し、溶接金属中に特定量含有させることにした。
バナジウムは微細炭化物を生成し溶接金属中の炭素を固
定することによってマトリックス中の炭素を低減させ、
それにより溶接金属の割れ感受性を低下させることがで
き、かつこれにより溶接金属の耐割れ性が向上するう
え、強度をも確保できるとの知見を得るに至った。さら
に、前記(2)式で示すPcmを所定の範囲内に抑えた
鋼材と本発明における被覆アーク溶接棒を組み合わせて
用いることにより、予熱温度を低減しても溶接金属およ
びHAZ両方の割れを防ぐことができることを知見する
に至ったのである。本発明はかかる知見に基づいてなさ
れたものであり、以下に作用を詳細に説明する。
The present inventors have conducted research to develop a coated arc welding rod and a welding method that can prevent low-temperature cracking even if the preheating temperature is reduced by a method other than the method of reducing the amount of diffusible hydrogen.
As a result, the present inventors focused on vanadium, which has been conventionally used in Cr-Mo steel welding materials mainly for improving high-temperature strength characteristics, and decided to include a specific amount in the weld metal.
Vanadium reduces carbon in the matrix by producing fine carbides and fixing the carbon in the weld metal,
This has led to the finding that the cracking susceptibility of the weld metal can be reduced, thereby improving the crack resistance of the weld metal and ensuring the strength. Furthermore, by using a steel material in which Pcm represented by the above formula (2) is kept within a predetermined range and a coated arc welding rod in the present invention, cracks in both the weld metal and the HAZ can be prevented even when the preheating temperature is reduced. They came to know that they could do it. The present invention has been made based on such findings, and the operation will be described in detail below.

【0015】まず被覆アーク溶接棒に関して述べるが、
これに関し本発明者等は以下のような試験を行った。す
なわち重量%で、ルチル2%、炭酸石灰47%、炭酸バ
リウム4%、蛍石16%、フェロシリコン10%、フェ
ロマンガン2%、フェロモリブデン2〜5%、フェロバ
ナジウム(50%バナジウム)0〜1.6%、粘結剤の
乾固量8.2%、塗装剤1%、残部が鉄粉からなる被覆
剤を、C:0.06〜0.07%、Si:0.01%、
Mn:0.49〜0.51%、V:0〜0.28%、
P:0.01%、S:0.01%、N:0.002%、
残部がFeの直径4.0mm、長さ400mmの鋼心線
に被覆外径6.4mmに被覆塗装した後、乾燥、焼成し
た溶接棒を作成した。
First, the coated arc welding rod will be described.
In this regard, the present inventors conducted the following tests. That is, in weight%, rutile 2%, carbonated lime 47%, barium carbonate 4%, fluorite 16%, ferrosilicon 10%, ferromanganese 2%, ferromolybdenum 2-5%, ferrovanadium (50% vanadium) 0 1.6%, 8.2% of the dry weight of the binder, 1% of the coating agent, and the coating agent consisting of iron powder with the balance being C: 0.06-0.07%, Si: 0.01%,
Mn: 0.49 to 0.51%, V: 0 to 0.28%,
P: 0.01%, S: 0.01%, N: 0.002%,
The remaining portion was coated with a steel core wire having a Fe diameter of 4.0 mm and a length of 400 mm to a coating outer diameter of 6.4 mm, and then dried and fired to prepare a welding rod.

【0016】これら溶接棒を用い、溶接金属の耐割れ性
を調査するU形溶接割れ試験(JIS Z3157)を
行った。鋼材は、JIS規格のSM590Bの板厚30
mmを用い、溶接電流170A、溶接入熱17kJ/c
m、気温30℃、相対湿度80%の条件で実施し、割れ
停止に必要な予熱温度を求めた。表1はその結果であ
り、図1に(1)式において用いたV量と割れ停止予熱
温度との関係をグラフで示した。(1)式において、被
覆剤中のバナジウムに0.38の係数を乗じたのは、そ
れによって心線中の含有量と等価になることがわかった
ためである。
Using these welding rods, a U-shaped welding crack test (JIS Z3157) for investigating the crack resistance of the weld metal was performed. The steel material is JIS SM590B thickness 30
mm, welding current 170A, welding heat input 17kJ / c
m, the temperature was 30 ° C., and the relative humidity was 80%, and the preheating temperature required for stopping cracking was determined. Table 1 shows the results, and FIG. 1 is a graph showing the relationship between the V amount used in the equation (1) and the crack stop preheating temperature. In the formula (1), the reason why the coefficient of 0.38 is multiplied by vanadium in the coating agent is that it has been found that it becomes equivalent to the content in the cord.

【0017】[0017]

【表1】 [Table 1]

【0018】表1および図1より明かなごとく溶接棒心
線または被覆剤のいずれか一方あるいは両方に添加する
(1)式で定めるバナジウム量が0.05重量%未満の
溶接棒No.1、2、3および9の割れ停止に必要な予
熱温度は、75℃〜125℃である。一方、(1)式の
バナジウム量0.05〜0.25重量%の溶接棒No.
4、5、6、10、11、13、14、16および17
の割れ停止に必要な予熱温度は、溶接金属中の水素の吸
蔵作用と、微細炭化物を生成し溶接金属中の炭素を固定
することの相乗作用によって50℃以下となり、特に溶
接棒中のバナジウム量が0.15重量%近傍の溶接棒N
o.5、10および14は格段に優れた耐割れ性が得ら
れた。しかし、バナジウム量が0.25重量%を超えた
溶接棒No.7、8、12、15、18および19は微
細炭化物の生成が期待できず、逆に強度が高くなりすぎ
割れ停止に必要な予熱温度は、75℃〜125℃であ
る。
As is clear from Table 1 and FIG. 1, the welding rod No. having a vanadium content of less than 0.05% by weight as defined by the formula (1) added to one or both of the welding rod core and the coating agent. The preheat temperature required to stop cracks 1, 2, 3 and 9 is between 75 ° C and 125 ° C. On the other hand, the welding rod No. having the vanadium content of 0.05 to 0.25% by weight in the formula (1) was used.
4, 5, 6, 10, 11, 13, 14, 16, and 17
The preheating temperature required to stop the cracking of the weld is 50 ° C or less due to the synergistic action of storing hydrogen in the weld metal and fixing the carbon in the weld metal by generating fine carbides, particularly the amount of vanadium in the welding rod. Is about 0.15% by weight of welding rod N
o. 5, 10 and 14 had remarkably excellent crack resistance. However, the welding rod No. with the vanadium amount exceeding 0.25% by weight. For 7, 8, 12, 15, 18 and 19, the formation of fine carbides cannot be expected, and conversely, the strength becomes too high, and the preheating temperature required for stopping cracking is 75 ° C to 125 ° C.

【0019】心線および被覆剤のいずれか一方あるいは
両方から添加する場合、バナジウムは上記範囲内であれ
ば任意の割合で選定できる。
In the case where vanadium is added from one or both of the core wire and the coating agent, vanadium can be selected at any ratio as long as it is within the above range.

【0020】次に、本発明の溶接棒は被覆剤中に炭酸カ
ルシウム、炭酸バリウム、炭酸マグネシウム、炭酸マン
ガンなどの炭酸塩や弗化カルシウム、弗化バリウム、弗
化マグネシウム、弗化マンガン、弗化リチウム、弗化ア
ルミニウムなどの弗素化合物を添加できる。炭酸塩はア
ーク中で分解し、CO2 ガスを発生して溶融メタルを大
気から遮断し、アーク雰囲気中の水素、窒素のガス分圧
を下げると共に塩基性のスラグを生成する効果を有す
る。これら炭酸塩の添加範囲は5〜75重量%が適当で
ある。弗素化合物はいずれもスラグの融点を下げて流動
性の良いスラグをつくる。またアーク中で分解した弗素
は溶融メタルや溶融スラグの水素と反応し、溶接金属の
水素分圧を下げて機械性能の良好な溶接金属をつくる。
これら弗素化合物の添加範囲は、5〜30重量%が適当
である。
Next, the welding rod of the present invention contains a carbonate such as calcium carbonate, barium carbonate, magnesium carbonate and manganese carbonate, calcium fluoride, barium fluoride, magnesium fluoride, manganese fluoride, fluoride fluoride in the coating agent. Fluorine compounds such as lithium and aluminum fluoride can be added. The carbonate is decomposed in the arc, generates CO 2 gas, shuts off the molten metal from the atmosphere, has the effect of reducing the partial pressure of hydrogen and nitrogen gases in the arc atmosphere and producing basic slag. The range of addition of these carbonates is suitably from 5 to 75% by weight. Any fluorine compound lowers the melting point of the slag to form a slag with good fluidity. In addition, the fluorine decomposed in the arc reacts with the hydrogen of the molten metal or molten slag to lower the hydrogen partial pressure of the weld metal to produce a weld metal having good mechanical performance.
The range of addition of these fluorine compounds is suitably from 5 to 30% by weight.

【0021】さらに、マンガン、チタン、シリコン、ア
ルミニウム、マグネシウムなどの脱酸剤を1〜20重量
%、鉄粉、アルカリ金属、ルチルなどのアーク安定剤を
2〜20重量%、珪酸ソーダ、珪酸カリで代表される水
ガラスなどの粘結剤を10〜30重量%添加できる。ま
たその品位については目標とする性能を確保できれば限
定するものではない。本発明溶接棒の製造は通常の手段
と同様、所定の割合に配合された前記各種粉体の被覆原
料を乾式混合し、これに粘結剤を添加して混練を行った
被覆剤を被覆率が20〜50重量%となるように通常の
塗装機により鋼心線に被覆塗装したのち、乾燥し、焼成
を行うものである。
Further, 1 to 20% by weight of a deoxidizing agent such as manganese, titanium, silicon, aluminum and magnesium, 2 to 20% by weight of an arc stabilizer such as iron powder, alkali metal and rutile, sodium silicate and potassium silicate Can be added in an amount of 10 to 30% by weight. The quality is not limited as long as the target performance can be secured. The production of the welding rod of the present invention is carried out in the same manner as in ordinary means, by dry-mixing the coating materials of the various powders mixed in a predetermined ratio, adding a binder to the mixture, and kneading the coating material. Is coated and coated on a steel core wire by a usual coating machine so that the content becomes 20 to 50% by weight, followed by drying and firing.

【0022】また、ここにいう鋼心線とはJIS G3
523に該当する溶接棒心線が使用でき、さらに機械性
能を向上させるために炭素を0.01〜0.04重量
%、窒素を0.001〜0.005重量%、酸素を0.
001〜0.01重量%に低減させた心線なども指すも
のである。
Further, the steel core wire referred to herein is JIS G3.
523 can be used, and in order to further improve mechanical performance, 0.01 to 0.04% by weight of carbon, 0.001 to 0.005% by weight of nitrogen, and 0.1 to 0.005% by weight of oxygen.
It also indicates a core wire reduced to 001 to 0.01% by weight.

【0023】次に、鋼材について述べる。鋼材の溶接熱
影響部(HAZ)低温割れ感受性は、式(1)に示した
ような炭素当量でほぼ評価できることがわかっている。
従って、式(1)の値を低く抑えればそれだけ予熱温度
を低くしてもHAZ割れを防ぐことができる。高張力鋼
においては溶接割れ防止予熱温度はHAZ割れを防止す
るというよりも溶接金属割れを防止するために決定され
る場合が多かった。この理由は、高張力鋼においてはH
AZよりも溶接金属の方が割れ感受性が高いという事実
からくるものであった。しかし、本発明により溶接金属
の耐低温割れ感受性は飛躍的に向上した。そのため、溶
接金属に割れを発生させないという観点からは予熱温度
を低減することが可能となったが、その一方でHAZ割
れがこの予熱温度で防ぐことができるとは限らない。そ
のため、HAZ割れを防ぐ意味から鋼材を限定する必要
があった。
Next, steel materials will be described. It has been found that the welding heat affected zone (HAZ) low temperature cracking susceptibility of a steel material can be almost evaluated by the carbon equivalent as shown in equation (1).
Therefore, if the value of equation (1) is kept low, HAZ cracking can be prevented even if the preheating temperature is lowered accordingly. In high-strength steels, the welding crack prevention preheating temperature is often determined to prevent weld metal cracking rather than to prevent HAZ cracking. The reason for this is that in high strength steels H
This was due to the fact that the weld metal was more sensitive to cracking than AZ. However, according to the present invention, the low-temperature cracking susceptibility of the weld metal has been dramatically improved. Therefore, from the viewpoint of preventing cracks from occurring in the weld metal, the preheating temperature can be reduced, but HAZ cracking cannot always be prevented at this preheating temperature. Therefore, it was necessary to limit the steel materials in order to prevent HAZ cracking.

【0024】引張強度を限定した理由は、引張強度が4
90N/mm2 未満では、従来鋼材、従来低水素系溶接
棒という従来技術のみで充分予熱を低くできていたた
め、本発明をあえて用いる必要がないと判断したためで
ある。また、引張強度の上限880N/mm2 は、これ
を上回る強度では制御圧延制御冷却技術を駆使しても、
HAZの耐低温割れ感受性を保ちながら、強度を確保し
つつ良好な母材靱性を得ることが難しいと判断したため
である。
The reason for limiting the tensile strength is that the tensile strength is 4
At less than 90 N / mm 2, it was determined that it was not necessary to use the present invention because preheating was sufficiently reduced only by the conventional techniques of the conventional steel material and the conventional low hydrogen welding rod. In addition, the upper limit of the tensile strength of 880 N / mm 2 , if the strength exceeds this, even if the control rolling control cooling technology is used,
This is because it has been determined that it is difficult to obtain good base material toughness while maintaining strength while maintaining the low-temperature cracking resistance of the HAZ.

【0025】Pcmを限定した理由は次の通りである。
まず、HAZの低温割れ感受性が鋼材組成、そしてそれ
から計算されるPcmのみでほぼ決定される理由を述べ
る。HAZは、溶接熱により急熱急冷され、組織そのも
のが溶接前の鋼材のそれとは全く異なってしまう。特に
溶接金属に隣接するHAZは、最高加熱温度が鋼材の融
点近くまでに達するため、オーステナイト粒が粗大とな
り、この理由から焼きが入りやすくなり硬さが他の部分
より硬くなる。このような硬化した部分は低温割れが起
こりやすく、しかも融点直下まで加熱されるため、HA
Zの組織は溶接前の鋼材組織にはほとんど依存しない。
HAZの低温割れ感受性が鋼材の組成、そして組成より
計算されるPcmのみで評価できるのは、以上のような
背景があるからである。したがって、鋼材の製造過程が
何であれ、Pcmがある値以下ならばHAZの耐低温割
れ感受性は確保することができる。
The reason for limiting Pcm is as follows.
First, the reason why the cold cracking susceptibility of HAZ is almost determined only by the steel material composition and the Pcm calculated therefrom will be described. The HAZ is rapidly quenched by the welding heat, and the structure itself is completely different from that of the steel material before welding. In particular, in the HAZ adjacent to the weld metal, the maximum heating temperature reaches near the melting point of the steel material, so that the austenite grains become coarse, and for this reason, quenching is more likely to occur and the hardness becomes harder than other parts. Such a hardened portion is susceptible to low-temperature cracking and is heated to just below the melting point.
The structure of Z hardly depends on the steel structure before welding.
The reason why the cold cracking susceptibility of the HAZ can be evaluated only by the composition of the steel material and the Pcm calculated from the composition is because of the above background. Therefore, whatever the production process of the steel material, if the Pcm is below a certain value, the HAZ can have the low-temperature cracking resistance.

【0026】Pcmの上限0.24重量%は、HAZの
耐低温割れ感受性を確保するために設定した。また、P
cmを0.24重量%以下と制限しても、制御圧延制御
冷却等の技術を利用することにより、鋼材の強度を49
0N/mm2 以上880N/mm2 以下の範囲に設定す
ることは従来の技術を用いれば特に難しいことではな
い。
The upper limit of Pcm of 0.24% by weight was set in order to secure the low-temperature cracking susceptibility of HAZ. Also, P
Even if the cm is limited to 0.24% by weight or less, the strength of the steel material can be reduced by 49% by using a technique such as controlled rolling control cooling.
It is not particularly difficult to set the value in the range from 0 N / mm 2 to 880 N / mm 2 using conventional techniques.

【0027】Pcmの下限は、主として鋼材そのものの
靱性を確保する観点から設定した。すなわち、Pcmを
本発明より下回る範囲に設定しても現在の鋼材製造技術
をもってすれば(例えば、加速冷却を常温まで行うな
ど)強度を490N/mm2 以上にすることは可能であ
る。しかし、この場合、鋼材そのものの靱性が劣化して
しまう。溶接構造物全体の信頼性を考慮すると、このよ
うな靱性が低い鋼材を使用することは、たとえ予熱温度
を低減することによるメリットがあったとしても産業上
好ましいことではないと考えた。Pcmの下限0.14
重量%は、以上のような理由により設定した。
The lower limit of Pcm is set mainly from the viewpoint of securing the toughness of the steel material itself. That is, even if Pcm is set to a range lower than that of the present invention, it is possible to increase the strength to 490 N / mm 2 or more by using the current steel material manufacturing technology (for example, performing accelerated cooling to room temperature). However, in this case, the toughness of the steel material itself deteriorates. Considering the reliability of the entire welded structure, it is considered that using such a steel material having low toughness is not industrially preferable even if there is an advantage by reducing the preheating temperature. Pcm lower limit 0.14
The weight% was set for the reasons described above.

【0028】次に、鋼材の成分について、その好ましい
範囲について述べる。まず、鋼材の基本成分について述
べる。鋼材のCおよびMnは、母材の強度靱性を確保す
る上で不可欠な元素である。しかし、過度の添加は焼入
性を上げすぎるため、その範囲をそれぞれ0.03〜
0.18重量%、0.6〜1.4重量%とすることが望
ましい。
Next, preferred ranges of the components of the steel material will be described. First, the basic components of steel are described. C and Mn of the steel material are indispensable elements for securing the strength toughness of the base material. However, excessive addition increases the hardenability too much, so the range is 0.03 to 0.03 respectively.
It is desirable that the content be 0.18% by weight and 0.6 to 1.4% by weight.

【0029】Siは、添加量が多すぎるとHAZ靱性が
劣化するが、添加量が少なすぎると脱酸効果がなくなり
介在物が母材に導入される危険性がでてくるためその範
囲を0.01%〜0.6重量%とすることが望ましい。
If the addition amount of Si is too large, the HAZ toughness is deteriorated, but if the addition amount is too small, the deoxidizing effect is lost and there is a risk that inclusions are introduced into the base material. It is desirably 0.011% to 0.6% by weight.

【0030】PおよびSは不純物であるが、母材、HA
Zの靱性劣化が生じ、かつSは硫化物を生成するので上
限をそれぞれ0.02重量%、0.001重量%とする
ことが望ましい。
P and S are impurities, but the base material, HA
Since the toughness of Z is deteriorated and S forms sulfide, the upper limits are preferably set to 0.02% by weight and 0.001% by weight, respectively.

【0031】Alは、脱酸に必要な量、および靱性を劣
化させない量という観点から0.01〜0.06重量%
の範囲に設定することが望ましい。
Al is used in an amount of 0.01 to 0.06% by weight from the viewpoint of the amount required for deoxidation and the amount that does not deteriorate toughness.
It is desirable to set in the range.

【0032】次に、鋼材について、必要に応じ選択的に
一種または二種以上添加できる元素について述べる。N
bは、析出効果による強度向上を期待できる元素である
が、HAZ硬さも上昇するので0.005〜0.04重
量%の範囲に設定することが望ましい。
Next, elements which can be selectively added to the steel material, if necessary, alone or in combination of two or more will be described. N
b is an element that can be expected to improve the strength due to the precipitation effect, but also increases the HAZ hardness, so that it is desirable to set b in the range of 0.005 to 0.04% by weight.

【0033】Tiは、TiNとして母材およびHAZの
細粒化に有効である。しかし、Ti、Nとも過度の添加
は母材およびHAZの靱性を劣化させるので、その範囲
をTiは0.005〜0.030重量%、Nは0.00
6重量%以下とすることが望ましい。
[0033] Ti is effective as TiN for refining the base material and HAZ. However, excessive addition of both Ti and N deteriorates the toughness of the base material and HAZ, so that the range is 0.005 to 0.030% by weight of Ti and 0.005% by weight of N.
It is desirable that the content be 6% by weight or less.

【0034】Moは、母材の強度、靱性を向上させる
が、添加量が多すぎると靱性、溶接性の劣化を招くた
め、その範囲を0.05〜0.5重量%とすることが望
ましい。
Mo improves the strength and toughness of the base material. However, if the added amount is too large, the toughness and weldability are deteriorated. Therefore, the range is preferably 0.05 to 0.5% by weight. .

【0035】NiおよびCuは、強度靱性向上に有効な
元素であるが過度の添加はHAZ靱性に影響を与え、さ
らにCuについては鋼材製造時にCuクラックが発生す
る危険性が生じてくるためその範囲をそれぞれ0.1〜
1.0重量%とすることが望ましい。
Although Ni and Cu are effective elements for improving the strength and toughness, excessive addition affects the HAZ toughness. Further, Cu may cause Cu cracks during the production of steel, so that the range is limited. Each 0.1 ~
Desirably, the content is 1.0% by weight.

【0036】VはNb同様析出効果に寄与するものであ
るが、Nbほどの働きがないためその範囲を0.01〜
0.10重量%とすることが望ましい。
V contributes to the precipitation effect similarly to Nb, but does not perform as much as Nb, so the range is 0.01 to 0.01%.
It is desirably 0.10% by weight.

【0037】Bは、旧オーステナイト粒界に偏析するこ
とにより焼入性を向上させる。しかし、過度の添加は焼
入性が大きくなりすぎ、HAZ靱性等が劣化するためそ
の範囲を0.0005〜0.0030重量%とすること
が望ましい。
B improves hardenability by segregating at the prior austenite grain boundaries. However, excessive addition results in excessive hardenability and deteriorates HAZ toughness and the like. Therefore, the range is preferably 0.0005 to 0.0030% by weight.

【0038】次に、望ましい溶接条件について述べる。
溶接入熱量は、HAZ硬さ、溶接金属硬さ等に影響を与
える要因であり、過度に入熱量を抑えることは良好な継
手特性を得る観点からは望ましくない。したがって、本
発明の範囲においては、入熱量を0.6kJ/mm以上
に設定することが望ましい。しかし、高い入熱量を採用
することは、溶接施工効率を改善するものの、継手靱性
確保の観点から4.0kJ/mm以下にすることが望ま
しい。
Next, desirable welding conditions will be described.
The welding heat input is a factor that affects the HAZ hardness, the weld metal hardness, and the like, and excessive suppression of the heat input is not desirable from the viewpoint of obtaining good joint characteristics. Therefore, within the scope of the present invention, it is desirable to set the heat input to 0.6 kJ / mm or more. However, although adopting a high heat input improves welding work efficiency, it is desirable that the heat input be 4.0 kJ / mm or less from the viewpoint of securing joint toughness.

【0039】[0039]

【実施例】 実施例1 初めに請求項1に対する実施例について説明する。表2
に実施例において用いた溶接棒の心線(各4.0mm)
の組成を示す。表3、表4に被覆剤化学成分を示した溶
接棒を用いて、棒径4.0mm、棒長400mmで被覆
外径は6.3mmの溶接棒を作製した。表3、表4にお
いて、A−1〜A−20が本発明溶接棒であり、B−1
〜B−12は比較溶接棒である。
Embodiment 1 First, an embodiment according to claim 1 will be described. Table 2
The core of the welding rod used in the examples (4.0 mm each)
Is shown. Using welding rods having the coating agent chemical components shown in Tables 3 and 4, welding rods having a rod diameter of 4.0 mm, a rod length of 400 mm, and a coating outer diameter of 6.3 mm were produced. In Tables 3 and 4, A-1 to A-20 are welding rods of the present invention, and B-1
B-12 are comparative welding rods.

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【表3】 [Table 3]

【0042】[0042]

【表4】 [Table 4]

【0043】これら溶接棒による溶接金属の耐割れ性を
調査するU形溶接割れ試験(JISZ3157)を行っ
た。鋼材は、溶接棒の強度によってJIS規格の590
N/mm2 級および780N/mm2 級の板厚30mm
を選択した。溶接条件は、溶接電流170A、溶接入熱
17kJ/cm、気温30℃、相対湿度80%の条件で
実施し、割れ停止に必要な予熱温度を求めた。割れ観察
を行った結果、割れはすべての溶接金属に生じていた。
A U-shaped welding crack test (JISZ3157) was conducted to investigate the cracking resistance of the weld metal with these welding rods. Depending on the strength of the welding rod, 590 of JIS standard
N / mm 2 primary and 780N / mm 2 class thickness 30mm
Was selected. The welding conditions were a welding current of 170 A, a welding heat input of 17 kJ / cm, an air temperature of 30 ° C., and a relative humidity of 80%, and the preheating temperature required for stopping cracking was determined. As a result of crack observation, cracks were found in all the weld metals.

【0044】本発明溶接棒による溶接割れ停止予熱温度
は、適正なバナジウム量が含有されているため590N
/mm2 級溶接棒において50℃以下であり、780N
/mm2 級溶接棒では75℃以下であり、特に溶接棒全
体のバナジウム量が0.15重量%近傍の溶接棒A−
2、A−3、A−6、A−13、A−17は溶接割れ停
止温度が30℃まで低下しており、非常に良好な耐低温
割れ性を有している。
The preheating temperature for stopping welding cracks by the welding rod of the present invention is 590 N since an appropriate amount of vanadium is contained.
/ Mm 2 class welding rod is 50 ℃ or less, 780N
/ Mm 2 class welding rod has a temperature of 75 ° C. or less.
2, A-3, A-6, A-13, and A-17 have a weld crack stop temperature as low as 30 ° C. and have very good low temperature crack resistance.

【0045】比較溶接棒B−1、B−12は溶接棒中に
バナジウムを含有していない通常の溶接棒であり、溶接
割れ停止予熱温度は125℃以上であった。B−2、B
−10は、心線中のバナジウムが多すぎるため、またB
−3、B−11は被覆剤中のバナジウムが多すぎるため
溶接割れ停止予熱温度は75℃以上であった。
The comparative welding rods B-1 and B-12 were ordinary welding rods containing no vanadium in the welding rod, and the welding crack stop preheating temperature was 125 ° C. or higher. B-2, B
-10 is due to too much vanadium in the core,
-3 and B-11 contained too much vanadium in the coating agent, so that the welding crack stop preheating temperature was 75 ° C. or higher.

【0046】B−4、B−9は心線と被覆剤からのバナ
ジウムを含有しているが、その範囲が超えているので溶
接割れ停止予熱温度は75℃以上であった。B−5、B
−8は被覆剤からのバナジウムを含有しているが、その
添加量が少なすぎるため溶接割れ停止予熱温度は75℃
以上であった。B−6、B−7は心線からのバナジウム
を含有しているが、その添加量が少なすぎるため溶接割
れ停止予熱温度は100℃以上であった。
B-4 and B-9 contain vanadium from the core wire and the coating agent, but since the range was exceeded, the preheating temperature for stopping welding cracks was 75 ° C. or higher. B-5, B
-8 contains vanadium from the coating agent, but the preheating temperature for stopping welding cracking is 75 ° C. because the added amount is too small.
That was all. B-6 and B-7 contain vanadium from the core wire, but the preheating temperature for stopping welding cracking was 100 ° C. or more because the amount of addition was too small.

【0047】実施例2 次に請求項2に対する実施例について説明する。表5は
y形溶接割れ試験(JIS Z3158)に用いた鋼材
の化学組成を重量%で示したものである。表6はy形溶
接割れ試験に用いた鋼材の記号(表5の記号に対応す
る)、低水素系被覆アーク溶接棒の記号(表3、表4の
記号に対応する)、およびそのときの割れ停止限界予熱
温度を示している。割れ試験は、30℃で湿度80%の
雰囲気中で、溶接電流170A、溶接入熱量17kJ/
cmの条件で行い、また鋼材板厚はすべて38mmであ
った。表6の限界予熱温度は、HAZおよび溶接金属両
方の割れ防止が可能となった温度である。
Embodiment 2 Next, an embodiment according to claim 2 will be described. Table 5 shows the chemical composition of the steel material used in the y-type welding crack test (JIS Z3158) by weight%. Table 6 shows the symbols of the steel materials (corresponding to the symbols in Table 5), the symbols of the low-hydrogen-based coated arc welding rods (corresponding to the symbols in Tables 3 and 4) used in the y-type welding crack test, and the values at that time. It shows the critical preheat temperature for crack arrest. The cracking test was carried out in an atmosphere of 30 ° C. and 80% humidity with a welding current of 170 A and a welding heat input of 17 kJ /
cm, and the steel sheet thickness was 38 mm in all cases. The limit preheating temperature in Table 6 is a temperature at which crack prevention of both the HAZ and the weld metal has become possible.

【0048】[0048]

【表5】 [Table 5]

【0049】[0049]

【表6】 [Table 6]

【0050】表6より、590N/mm2 級の鋼材、溶
接棒の組み合わせ(No.1、2、3、4)において、
鋼材のPcmは0.14〜0.24重量%の範囲に入っ
ているが、用いた溶接棒により限界予熱温度に大きな差
が生じている。本発明例であるNo.1およびNo.3
では、50℃予熱で割れを防ぐことが可能であったが、
比較例No.2およびNo.4では、溶接金属割れは5
0℃予熱では防ぐことができず、それぞれ125℃、7
5℃予熱をする必要がある。
As shown in Table 6, in the combination of 590 N / mm 2 grade steel material and welding rod (Nos. 1, 2, 3, and 4),
Although the Pcm of the steel material is in the range of 0.14 to 0.24% by weight, there is a large difference in the critical preheating temperature depending on the welding rod used. No. 1 of the present invention example. 1 and No. 3
It was possible to prevent cracking by preheating at 50 ° C,
Comparative Example No. 2 and No. In 4, the weld metal crack is 5
It cannot be prevented by preheating at 0 ° C.
It is necessary to preheat at 5 ° C.

【0051】また、表6の780N/mm2 級の鋼材、
溶接棒の組み合わせ(No.5、6、7、8)において
は、本発明例であるNo.5のみ50℃予熱で割れが防
止可能であり、No.6、7、8は100℃以上予熱す
る必要がある。No.6は、鋼材のPcmが0.14〜
0.24重量%の範囲内であるにもかかわらず、溶接棒
のバナジウムが適切でないため予熱温度が高くなってい
る。また、No.7では、溶接棒のバナジウムが適切で
あるA−11溶接棒を用いるが、鋼材のPcmが0.2
7重量%本発明の範囲外であるため、HAZにおける割
れ感受性が高く、100℃予熱をしないと割れが防げな
かった。すなわち、予熱を低くし、かつ健全な溶接継手
を得るためには、本発明例(No.1、3、5)のよう
に、鋼材、溶接棒ともに適切な選択をしなければならな
いことがわかる。
In addition, 780 N / mm 2 grade steel materials shown in Table 6
In the combination of the welding rods (Nos. 5, 6, 7, 8), No. 5 of the present invention example. No. 5 can be prevented from cracking by preheating at 50 ° C. 6, 7, and 8 need to be preheated to 100 ° C. or more. No. 6: Pcm of steel material is 0.14 ~
Despite being in the range of 0.24% by weight, the preheating temperature is high due to the inadequacy of the vanadium in the welding rod. In addition, No. In No. 7, an A-11 welding rod whose vanadium is appropriate is used.
Since the content is outside the range of the present invention, cracking susceptibility in HAZ is high, and cracking cannot be prevented unless preheating at 100 ° C. That is, in order to lower the preheating and obtain a sound welded joint, it is necessary to appropriately select both the steel material and the welding rod as in the present invention examples (Nos. 1, 3, and 5). .

【0052】[0052]

【発明の効果】以上のように本発明溶接棒および溶接方
法によれば、従来の高張力鋼溶接棒および溶接方法と比
較して耐低温割れ性を著しく向上させたものであり、こ
れは従来の高張力鋼溶接棒では到底達成し得ないもの
で、各種産業の発展に貢献するところ極めて大である。
As described above, according to the welding rod and the welding method of the present invention, the low-temperature cracking resistance is remarkably improved as compared with the conventional high-strength steel welding rod and the conventional welding method. It cannot be achieved with high-strength steel welding rods at all, and contributes greatly to the development of various industries.

【図面の簡単な説明】[Brief description of the drawings]

【図1】溶接棒中のバナジウム量と割れ停止予熱温度と
の関係を示すグラフ
FIG. 1 is a graph showing the relationship between the amount of vanadium in a welding rod and the preheating temperature for stopping cracking.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−161993(JP,A) 特開 昭61−180695(JP,A) 日本規格協会編「JISハンドブック 鉄鋼」(1990−4−20)日本規格協会 p.1302−1303 (58)調査した分野(Int.Cl.7,DB名) B23K 9/00,35/30 B23K 35/36,35/365 C22C 38/00 JICSTファイル(JOIS)────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-5-161993 (JP, A) JP-A-61-180695 (JP, A) Edited by the Japan Standards Association, "JIS Handbook Iron and Steel" (1990-4-20) Japan Standards Association p. 1302-1303 (58) Field surveyed (Int. Cl. 7 , DB name) B23K 9 / 00,35 / 30 B23K 35 / 36,35 / 365 C22C 38/00 JICST file (JOIS)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくとも金属炭酸塩および金属弗化物
を含む490N/mm 2 級以上の高張力鋼用の被覆アー
ク溶接棒において、バナジウムを下式(1)に基づいた
範囲で満足するように心線と被覆剤の一方または両方に
含有したことを特徴とする低水素系被覆アーク溶接棒。 0.05≦Wv+0.38Fv≦0.25 ・・・・・・・(1) ここで、 Wv:心線全質量に対する心線中のバナジウムの含有量
(重量%) Fv:被覆剤全質量に対する被覆剤中のバナジウムの含
有量(重量%)
1. A coated arc welding rod for high-strength steel of at least 490 N / mm 2 containing at least a metal carbonate and a metal fluoride, wherein vanadium is formed so as to satisfy a range based on the following formula (1). A low-hydrogen coated arc welding rod characterized in that it is contained in one or both of a wire and a coating agent. 0.05 ≦ Wv + 0.38 Fv ≦ 0.25 (1) where, Wv: the content (% by weight) of vanadium in the core wire with respect to the total mass of the core wire Fv: with respect to the total mass of the coating agent Vanadium content in coatings (% by weight)
【請求項2】 引張強度が490N/mm2 以上かつ8
80N/mm2 以下であり、重量%で示される鋼中の含
有量を各化学記号であらわしたとき、下記(2)式で計
算されるPcmが0.14〜0.24%の鋼材と、請求
項1記載の低水素系被覆アーク溶接棒を用いることを特
徴とする溶接方法。 Pcm=C+Si/30+(Mn+Cu+Cr)/20+Mo/15 +V/10+5B ・・・・・・・・・・(2)
2. Tensile strength of 490 N / mm 2 or more and 8
A steel material having a Pcm of 0.14 to 0.24%, which is not more than 80 N / mm 2 and is represented by the chemical symbol when the content in the steel is represented by% by weight, A welding method using the low hydrogen-based coated arc welding rod according to claim 1. Pcm = C + Si / 30 + (Mn + Cu + Cr) / 20 + Mo / 15 + V / 10 + 5B (2)
JP06185154A 1994-04-04 1994-07-15 Low hydrogen coated arc welding rod and welding method Expired - Lifetime JP3115484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06185154A JP3115484B2 (en) 1994-04-04 1994-07-15 Low hydrogen coated arc welding rod and welding method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-87257 1994-04-04
JP8725794 1994-04-04
JP06185154A JP3115484B2 (en) 1994-04-04 1994-07-15 Low hydrogen coated arc welding rod and welding method

Publications (2)

Publication Number Publication Date
JPH07323392A JPH07323392A (en) 1995-12-12
JP3115484B2 true JP3115484B2 (en) 2000-12-04

Family

ID=26428552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06185154A Expired - Lifetime JP3115484B2 (en) 1994-04-04 1994-07-15 Low hydrogen coated arc welding rod and welding method

Country Status (1)

Country Link
JP (1) JP3115484B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101844282A (en) * 2009-03-27 2010-09-29 株式会社神户制钢所 Low-hydrogen coated electric arc welding bar
CN102528310A (en) * 2010-12-28 2012-07-04 昆山京群焊材科技有限公司 Hydrogen-induced crack resisting high-ductility ultra-low hydrogen welding electrode

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021171801A (en) * 2020-04-28 2021-11-01 三菱重工業株式会社 Coated-arc welding method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
日本規格協会編「JISハンドブック 鉄鋼」(1990−4−20)日本規格協会p.1302−1303

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101844282A (en) * 2009-03-27 2010-09-29 株式会社神户制钢所 Low-hydrogen coated electric arc welding bar
CN101844282B (en) * 2009-03-27 2012-12-12 株式会社神户制钢所 Low-hydrogen coated electric arc welding bar
CN102528310A (en) * 2010-12-28 2012-07-04 昆山京群焊材科技有限公司 Hydrogen-induced crack resisting high-ductility ultra-low hydrogen welding electrode

Also Published As

Publication number Publication date
JPH07323392A (en) 1995-12-12

Similar Documents

Publication Publication Date Title
US4366364A (en) Flux-cored wire for use in gas-shielded arc welding
KR100920549B1 (en) Flux-cored wire for gas shielded arc welding
JP3258135B2 (en) Submerged arc welding method for high strength Cr-Mo steel
JP2003213366A (en) Steel having excellent toughness in base metal and large -small heat input weld heat-affected zone
JP3329261B2 (en) Welding materials and welded joints for high temperature high strength steel
JP3354460B2 (en) Covered arc welding method for high strength steel
JP3258190B2 (en) Submerged arc welding method for high strength Cr-Mo steel and weld metal
JP3115484B2 (en) Low hydrogen coated arc welding rod and welding method
JP2780140B2 (en) Welding wire for fire-resistant steel with excellent weather resistance
JP2001001181A (en) Wire for gas shielded arc welding
JP2711071B2 (en) Bond flux for submerged arc welding
JPH08257789A (en) Submerged arc welding
JP3184657B2 (en) Covered arc welding rod for high Cr ferritic heat resistant steel
JP3208556B2 (en) Flux-cored wire for arc welding
JP2002018593A (en) Welding material for low alloy heat resistant steel and weld metal
JP3881944B2 (en) Welding material, welding method and welded joint
JP3481547B2 (en) Solid wire for gas shielded arc welding
JP3163838B2 (en) Bond flux for submerged arc welding
US4131781A (en) Submerged arc welding process for nickel containing steel
JPH07303991A (en) Wire and bonded flux for submerged arc welding of 780mpa or 960mpa steel
WO2023032932A1 (en) Submerged arc welding method
JPH0542390A (en) Low hydrogen type coated electrode for welding 9cr steel
SU1328124A1 (en) Charge for core wire
JPH0811313B2 (en) TIG welding wire for Cr-Mo steel
JPH04313488A (en) Tig welding wire for high tension steel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000912