JPS62233757A - Method and apparatus for analyzing boric acid - Google Patents

Method and apparatus for analyzing boric acid

Info

Publication number
JPS62233757A
JPS62233757A JP7775086A JP7775086A JPS62233757A JP S62233757 A JPS62233757 A JP S62233757A JP 7775086 A JP7775086 A JP 7775086A JP 7775086 A JP7775086 A JP 7775086A JP S62233757 A JPS62233757 A JP S62233757A
Authority
JP
Japan
Prior art keywords
boric acid
liquid
eluate
detector
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7775086A
Other languages
Japanese (ja)
Inventor
Takeshi Murayama
健 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP7775086A priority Critical patent/JPS62233757A/en
Publication of JPS62233757A publication Critical patent/JPS62233757A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To easily and exactly analyze the boric acid in a liquid to be measured by supplying an alkaline soln. to the eluate of a sepn. column to adjust the pH thereof, converting boric acid in the liquid to be measured to lithium borate and conducting the liquid to a conductivity detector. CONSTITUTION:The sample in a measuring tube 3g is conveyed to the eluate and flows to the sepn. column 4, where the ions in the sample are separated from the other ions, etc. More specifically, the boric acid (H3BO3) is weakly ionic and therefore, the boric acid is subjected to an adsorption effect, etc., without ion execusion by, for example, a strongly acidic sulfonic type cation exchange resin in the sepn. column 4. The sample is eluted from the sepn. column after the prescribed retention time. The eluate from the column 4 is conducted into an inside chamber 5b of a suppressor 5. The boric acid (H3BO3) is converted to the lithium borate (Li2B4O7) when the pH is adjusted by supplying the alkaline liquid to the eluate. The eluate is conducted to a detector 6, by which the conductivity of the lithium hydroxide is detected.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、被測定液中のホウN2 (I+、803)を
クロマトグラフィツクに分離して分析する方法およびそ
れを用いた分析装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for chromatographically separating and analyzing boron N2 (I+, 803) in a liquid to be measured, and an analytical device using the method.

〈従来の技術〉 イオン交換カラムを用い被測定液中のホウ階をクロマト
グラフィツクに分離して分析しようとする場合、ホウ酸
の解離定数(Kg)が小さく  pK*=−Ibg K
* (1) (m M 大a イ(1,IMI度〕Nt
cff04溶液中で25℃のとき pK*= 195)
ため、導電率検出器でホウ酸を検出することは不可能で
あった。このため、イオン清除クロマトグラフィの手法
を装置化した分析装置を使用し、ホウ酸を多価アルコー
ルと反応させて錯体を生じさせ、上記解離定数を大きく
して導電率検出器で検出することが試みられていた。即
ち、イオンリ1除クロマトグラフィの手法を装置化した
分析装置において、マンニット(C,II、、O,)を
含む移動相の中に上記ホウ酸を含む被測定液を一定量注
入して、該ホウ酸をマンニット錯体に変換してのち分離
カラムで分離し、該分離カラムの溶出液を導電率検出器
に導びいて上記マンニット錯体の4屯率を検出すること
により、上記被測定液中のホウ酸を分析するようにして
いた。
<Prior art> When attempting to chromatographically separate and analyze boric acid in a sample solution using an ion exchange column, the dissociation constant (Kg) of boric acid is small and pK*=-Ibg K
* (1) (m M large a i (1, IMI degree) Nt
pK*=195 at 25°C in cff04 solution
Therefore, it was impossible to detect boric acid with a conductivity detector. For this reason, an attempt was made to use an analyzer based on ion purification chromatography to react boric acid with a polyhydric alcohol to form a complex, increase the above dissociation constant, and detect it with a conductivity detector. It was getting worse. That is, in an analyzer incorporating the method of ion-removal chromatography, a fixed amount of the liquid to be measured containing boric acid is injected into a mobile phase containing mannitol (C, II, , O,). After converting boric acid into a mannitol complex, it is separated in a separation column, and the eluate from the separation column is led to a conductivity detector to detect the 4-tonne ratio of the mannitol complex. They were trying to analyze the boric acid inside.

然し乍ら、上記従来例においては、通常0.2〜0.6
Mfi度という高温度のマンニットを含む溶液が移動相
として使用されるため、該移動相によって上記分離カラ
ムが劣化し易く、分離カラムの寿命が短いという大きな
欠点があった。
However, in the above conventional example, it is usually 0.2 to 0.6
Since a solution containing mannitite at a high temperature of Mfi degrees is used as a mobile phase, the separation column is likely to be deteriorated by the mobile phase, resulting in a major drawback that the life of the separation column is short.

〈発明が解決しようとする問題点〉 本発明は、上述のような従来例の欠点に鑑みてなされた
ものであり、その目的は、分離カラムの劣化を促進せず
長期間安定的に、被測定液中のホウ酸をクロマトグラフ
ィツクに分析できる方法および装置を提供することにあ
る。
<Problems to be Solved by the Invention> The present invention has been made in view of the above-mentioned drawbacks of the conventional examples. It is an object of the present invention to provide a method and apparatus capable of chromatographically analyzing boric acid in a measurement solution.

く問題点を解決するための手段〉 上述のような問題点を解決する゛本発明の′+!f徴は
、ホウ酸の分析力法およびそれを用いた分析4&置にお
いて、分離カラムの溶出液にアルカリ液を供給してp 
IIを調整し被測定液中のホウ酸をホウ幽リチウムに変
えて導電率検出器に導びくようにしたことにある。
Means for solving the above-mentioned problems゛The present invention'+! The f-sign is determined by supplying an alkaline solution to the eluate of the separation column in the boric acid analytical power method and analysis using it.
II was adjusted to change the boric acid in the liquid to be measured into lithium boron and lead it to the conductivity detector.

〈実施例〉 以下、本発明について図を用いて詳しく説明する。第1
図は本発明実施例の構成説明図であり、図中、1aは例
えば2mN濃度の硫削水i8液でなる溶m液が貯留され
た槽、1bは例えば5IlaN濃度の水酸化リチウム溶
液でなる除去液が貯留された槽、It。
<Example> Hereinafter, the present invention will be explained in detail using the drawings. 1st
The figure is an explanatory diagram of the configuration of an embodiment of the present invention, and in the figure, 1a is a tank in which a solution of sulfur shaving water I8 with a concentration of 2 mN is stored, and 1b is a tank with a lithium hydroxide solution with a concentration of 5IlaN, for example. A tank in which the removal liquid is stored, It.

1dは廃液槽、2婁、 2bは送液ポンプ、3は第1〜
第6の接続口31〜3fおよび計量管3g(例えば内容
積口OμQ)を有しその内部流路が実線接続状態と破線
接続状態に交互に切換えられるインジェクタ、4は例え
ば強削性スルホン型陽イオン交換樹脂が充填されてなる
分離カラム、Sは例えば陽イオン交換膜でなるチューブ
5Iによって内部が内室5bと外室5cに区分けされて
なるサプレッサ、6は導電率検出器でなる検出器、7は
分離カラム4、サプレッサ5、および検出器6を収容し
、これらを所定温度(例えば40°C)に保つ恒温槽で
ある。
1d is a waste liquid tank, 2b is a liquid sending pump, 3 is a first to
4 is an injector having sixth connection ports 31 to 3f and a metering tube 3g (e.g. internal volume port OμQ) and whose internal flow path is alternately switched between a solid line connection state and a broken line connection state; A separation column filled with an ion exchange resin, S a suppressor whose interior is divided into an inner chamber 5b and an outer chamber 5c by a tube 5I made of, for example, a cation exchange membrane, and 6 a detector consisting of a conductivity detector; 7 is a constant temperature bath that houses the separation column 4, suppressor 5, and detector 6 and keeps them at a predetermined temperature (for example, 40° C.).

このような構成からなる本発明の実施例において、ポン
プ21が駆動すると、槽り内の溶離液が、ポンプ2I→
インジエクタ3の第1および第2接続口3+、3b→分
離カラム4→サプレッサ5の内室5b→検出器6の流路
を、例えば1.5mQ/m111.の流量で流れ、廃液
槽1cにJJi出される。また、ポンプ2bが駆動する
と、槽1b内の除去液が、ポンプ2b→サプレツサ5の
外室5cm+廃液槽1dの流路を、例えば2.11m9
/min、の流量で流れ、サプレッサ5においてチュー
ブ5Iを介して例えば陽イオン交換を行なうことにより
、内室5b内を流れる溶離液の導電率を低下させる。ま
た、上記除去液に一定濃度以上の水酸化リチウA(Li
Oll)が含まれている場合には、後述の如く、チュー
ブ5易を透過して水酸化リチウムが内室5b内に至り、
該内室内を流れる液体のアルカリ性を強くする。このよ
うな状態で、インジェクタ3の第4接続口3dから試料
(例えば1 ppmのホウ酸を含む被測定液)を注入す
ると、該試料は、第4接続ロ3d→第3接続ロ3c→計
量管3g→第6接続ロ3f→第5接続口3噛の流路で流
れ、計量管3g内を満たす。その後、インジェクタ3が
オンにされ、その内部流路が実線接続状態から破線接続
状態に切換えられる。計量管3g内の上記試料は溶f4
液に搬送されて分離カラム4に至り、ここで上記試料中
のイオンが他のイオン等から分離される。即ち、ホウI
II (H3BOs)は弱イオン性であるため、分離カ
ラム4内の例えば弾止性スルホン型陽イオン交換樹脂で
イオン排除されることなく吸着作用等を受は所定の保持
時間後に分離カラム4から溶出するようになる。該分離
カラム4の溶出液は、サプレッサ5の内室5bに導びか
れ、次の(イ)〜(ハ)で詳しく説明する理由(又は原
理)によって、上記ホウ酸(II j B 03 )が
ホウ醜リチウム(Li、B<Oy)に変換される。
In the embodiment of the present invention having such a configuration, when the pump 21 is driven, the eluent in the tank is pumped 2I→
The first and second connection ports 3+, 3b of the injector 3→separation column 4→inner chamber 5b of the suppressor 5→detector 6 have a flow path of, for example, 1.5 mQ/m111. The liquid flows at a flow rate of JJi and is discharged to the waste liquid tank 1c. Furthermore, when the pump 2b is driven, the removal liquid in the tank 1b spreads through the flow path from the pump 2b to the outer chamber 5cm of the suppressor 5 + the waste liquid tank 1d, for example, by 2.11 m9.
/min, and performs, for example, cation exchange through the tube 5I in the suppressor 5, thereby reducing the conductivity of the eluent flowing in the inner chamber 5b. In addition, the removal solution contains lithium hydroxide A (Li) with a concentration above a certain level.
If the lithium hydroxide contains lithium hydroxide, the lithium hydroxide passes through the tube 5b and reaches the inner chamber 5b, as described later.
The alkalinity of the liquid flowing inside the inner chamber is increased. In this state, when a sample (for example, a liquid to be measured containing 1 ppm of boric acid) is injected from the fourth connection port 3d of the injector 3, the sample is transferred from the fourth connection port 3d to the third connection port 3c to the metering port. It flows through the flow path of pipe 3g→sixth connection hole 3f→fifth connection port 3, and fills the inside of metering tube 3g. Thereafter, the injector 3 is turned on and its internal flow path is switched from the solid line connected state to the broken line connected state. The above sample in measuring tube 3g is molten f4
The sample is transported to a separation column 4, where the ions in the sample are separated from other ions. That is, Hou I
II (H3BOs) is weakly ionic, so it will not be removed by the elastic sulfone-type cation exchange resin in the separation column 4 and will be eluted from the separation column 4 after a predetermined holding time. I come to do it. The eluate from the separation column 4 is led to the inner chamber 5b of the suppressor 5, and the boric acid (II j B 03 ) is It is converted to lithium (Li, B<Oy).

(イ)分離カラム4から溶出する溶は液中の11□50
4がチューブ5Iを介して行なう下式(2)のような陽
イオン交換によってLLSO4に変えられる。
(b) The solution eluted from separation column 4 is 11□50 in the liquid.
4 is converted into LLSO4 by cation exchange as shown in formula (2) below through tube 5I.

(ロ)サプレッサ5の外室5C内を流れる除去液に含ま
れる水酸化リチウム(Li011)の濃度、i去液のp
 Hm、サプレッサ5通過後の溶14i液のT)H偵、
および検出器6における溶離液の導電率(即ち、ベース
ラインの導電率)は下表のようになっている。
(b) Concentration of lithium hydroxide (Li011) contained in the removed liquid flowing in the outer chamber 5C of the suppressor 5, i
Hm, T)H ratio of solution 14i after passing through suppressor 5,
The conductivity of the eluent in the detector 6 (ie, the baseline conductivity) is as shown in the table below.

この表から明らかなように、除去液中のLi01111
度が5’mNを超えると、サプレッサ通過後の溶離液の
pH個とベースラインの導電率が特に大きくなっている
ことが分る。これは、除去液中のL i OIIが上記
チューブ5iを透過して内室5b内に至るからである。
As is clear from this table, Li01111 in the removal solution
It can be seen that when the strength exceeds 5'mN, the pH value of the eluent after passing through the suppressor and the baseline conductivity become particularly large. This is because Li OII in the removal liquid passes through the tube 5i and reaches the interior chamber 5b.

(ハ)ホウ酸(II 3 B Os )は、T) Il
偵が11付近になると、下式(3)のように解離してホ
ウ幽イオン(11□803−)を生ずることが知られて
いるが、その場合、多量の水酸化リチウム(LiOIl
)が存在すると、下式(4)のように反応する。
(c) Boric acid (II 3 B Os ) is T) Il
It is known that when the concentration is around 11, it dissociates as shown in the following formula (3) and generates the ion (11□803-), but in that case, a large amount of lithium hydroxide (LiOIl) is generated.
), the reaction occurs as shown in the following formula (4).

II 3B O,→If ++ H2B Os −(3
)411++411□BL−+21i”+2011− 
→  L r z B a Ov + 7 II x 
O(4)このような理由でサプレッサ5内に水酸化リチ
ウム(LiOtl)が存在すると、該サプレッサの流出
液が検出器6に導びかれることにより、該水酸化リチウ
ムの導?lE率が検出される。ところで、除去液中の水
酸化リチウム(L i OII )濃度が5f1mNで
ある場合、上記表から明らかなようにベースラインの導
電率は1320μs / cmである。このため、上記
(4)式によって生成したホウ酸リチウム(LLB4G
y)が検出器6に到達すると導電率がベースラインより
も低く検出され、負のピークを与えるようになる。即ち
、上記(4)式において4当量のホウm(Il、BO,
)と2当量の水酸化リチウム(Li(011)=)から
2当量のホウ酸リチウム(Lii840?)が生成する
ようになっており、しかもホウ酸リチウムの解離度が水
酸化リチウムの解離度よりも著しく低く導Wl率も低く
なっている。この結果、検出″ia6に到達するホウ酸
リチウム(Li、B、O,)は上記(4)式のホウ噸イ
オン(112B O、つとl:4に対応し、しかも、該
ホウ酸リチウムの導電率がベースラインの導電率よりも
低いのである。第2図は上述のようにして検出器6で検
出された検出信号を図示しない表示部(記録計等)に導
いて描かせたクロマトグラムであり、横軸が時間(単位
は分)を示し縦軸が導電率(単位はμs/cm)を示し
ている。このクロマトグラムから明らかなように lH
ppmという低濃度のホウ酸(It、BO,)が良好な
ピークとして得られ、容易に定性分析や定量分析が行な
えるようになる。尚、ウォータデツプ(WILer D
ip)は上記試料中に含まれている水分によって生ずる
ピークであり、通常負のピークとなって表われるもので
あるが、上記ホウ酸(厳密にはホウ酸リチウム)も負の
ピークとなっで4zh釣スナーめ 笛9闇箇hロマにH
面ノ、デ1±イδ号処理によって双方とも正のピークと
して表わされている。また、第3図は、試料中のホウ酸
濃度を 1Ilpp+a、 511ppm、 Ioop
pm、 500ppmと変化させ、各濃度について第2
図のようなりロマトグラムを作成し、該クロマトグラム
に基いて両対数グラフを用いて作成したホウ酸の検量線
である。第3図において、ホウ1g濃度約10〜200
ppmのとき上記検ffi線は傾き45″の直線となっ
ており、ホウ酸の低濃度領域で優れたiIj線性を示す
検量線となっている。従って、上述のような本発明実施
例によれば、低濃度のホウ酸を正確に分析できることが
分る。
II 3B O,→If ++ H2B Os −(3
)411++411□BL-+21i"+2011-
→ L r z B a Ov + 7 II x
O(4) For this reason, if lithium hydroxide (LiOtl) is present in the suppressor 5, the effluent from the suppressor is led to the detector 6, thereby reducing the amount of lithium hydroxide. The lE rate is detected. By the way, when the lithium hydroxide (L i OII ) concentration in the removal solution is 5f1 mN, the baseline conductivity is 1320 μs/cm as is clear from the above table. Therefore, lithium borate (LLB4G
y) reaches the detector 6, the conductivity is detected to be lower than the baseline, giving a negative peak. That is, in the above formula (4), 4 equivalents of boron (Il, BO,
) and 2 equivalents of lithium hydroxide (Li(011)=) to produce 2 equivalents of lithium borate (Lii840?), and the degree of dissociation of lithium borate is higher than that of lithium hydroxide. The conductive Wl ratio is also extremely low. As a result, the lithium borate (Li, B, O,) that reaches the detection "ia6" corresponds to the boron ion (112B O, 1:4) of the above formula (4), and the conductivity of the lithium borate Figure 2 shows a chromatogram drawn by guiding the detection signal detected by the detector 6 as described above to a display unit (recorder, etc.) not shown. The horizontal axis shows time (in minutes) and the vertical axis shows conductivity (in μs/cm).As is clear from this chromatogram, lH
Boric acid (It, BO,) at a low concentration of ppm can be obtained as a good peak, allowing qualitative and quantitative analysis to be easily performed. In addition, Water Dep (WILer D)
ip) is a peak caused by the water contained in the sample, and usually appears as a negative peak, but the boric acid (strictly speaking, lithium borate) also produces a negative peak. 4zh fishing snare me flute 9 darkness h Roma H
Both of them are expressed as positive peaks by the surface and de1±i δ processing. In addition, Fig. 3 shows the boric acid concentration in the sample as 1Ilpp+a, 511ppm, Ioop
pm, 500 ppm, and the second
This is a calibration curve for boric acid created by creating a chromatogram as shown in the figure and using a log-log graph based on the chromatogram. In Figure 3, the concentration of 1g of porium is approximately 10-200
ppm, the above calibration ffi line is a straight line with a slope of 45'', and is a calibration curve that shows excellent iIj linearity in the low concentration region of boric acid. For example, low concentrations of boric acid can be analyzed accurately.

尚、本発明は上述の実施例に限定されることなく種々の
変形が可能であり、例えば次の(イ)〜(ハ)のように
変えてもよいものとする。
It should be noted that the present invention is not limited to the above-described embodiments, and can be modified in various ways, for example, as shown in the following (a) to (c).

(イ)上記除去液として、水酸化リチウム溶液の代わり
に、水酸化ナトリウム溶液、水酸化カリウム溶液、若し
くは水酸化アンモニウム溶液等を用いてもよい。
(a) As the removal liquid, a sodium hydroxide solution, a potassium hydroxide solution, an ammonium hydroxide solution, or the like may be used instead of the lithium hydroxide solution.

(ロ)上記溶1llIl液として、硫酸水溶液に代えて
、膓止水I8液、硝醜水溶液、リン酷水溶液、過塩素置
水溶液、若しくは蟻酷水溶液惇を用いてもよい。
(b) As the above-mentioned solution, in place of the sulfuric acid aqueous solution, a sulfuric acid aqueous solution, a nitric acid aqueous solution, a phosphorus aqueous solution, a perchlorine aqueous solution, or an aqueous aqueous solution may be used.

(ハ)上記チューブ5自に代えて、シート状の陽イオン
交換膜を用いてサプレッサS内を内室5bと外室5cに
区分けするようにしてもよい。
(c) Instead of the tube 5, a sheet-like cation exchange membrane may be used to divide the inside of the suppressor S into an inner chamber 5b and an outer chamber 5c.

〈発明の効果ン 以上詳しく説明したような本発明によれば、分離カラム
の溶出液にアルカリ液を供給してp IIを調整し被測
定液中のホウ酸をホウ酷リチウムに変えて導電率検出器
に導びくような構成であるため。
<Effects of the Invention> According to the present invention as explained in detail above, an alkaline solution is supplied to the eluate of the separation column to adjust p II and change the boric acid in the liquid to be measured to lithium boron to increase the electrical conductivity. Because the configuration is such that it leads to the detector.

1111記従来例のようにマンニットを含む移動相を用
いる必要もなく、分離カラムも劣化し類く長期間安定す
る利点がある。この結果、被測定液のホウ酸が容易かつ
正確に分析されるようになる。
Unlike the conventional example No. 1111, there is no need to use a mobile phase containing mannitol, and there is an advantage that the separation column is stable for a long period of time without deterioration. As a result, boric acid in the liquid to be measured can be easily and accurately analyzed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の構成説明図、第2図は本発明実
施例を用いて作成したクロマトグラムであり、第3図は
本発明実施例のWc置を用いて作成した検量線である。 h〜1d・・・槽、2s、2b・・・送液ポンプ、3・
・・試料採取弁、4・・・分離カラム、5・・・サプレ
ッサ、6・・・検出器、7・・・恒温槽。 \−L・・− □導電率(psA:m )
Figure 1 is an explanatory diagram of the configuration of the embodiment of the present invention, Figure 2 is a chromatogram created using the embodiment of the present invention, and Figure 3 is a calibration curve created using the Wc setting of the embodiment of the present invention. be. h~1d...tank, 2s, 2b...liquid pump, 3.
... Sample collection valve, 4... Separation column, 5... Suppressor, 6... Detector, 7... Constant temperature bath. \−L・・− □Electrical conductivity (psA:m)

Claims (2)

【特許請求の範囲】[Claims] (1)被測定液中のホウ酸をクロマトグラフィックに分
離して分析する方法において、前記ホウ酸を陽イオン交
換樹脂が充填された分離カラムでクロマトグラフィック
に分離し、その後、該分離カラム溶出液にアルカリ液を
供給してpHを調整し前記ホウ酸をホウ酸リチウムに変
えて導電率検出器に導びき、該検出器で前記ホウ酸リチ
ウムを検出することにより前記ホウ酸を分析するホウ酸
の分析方法。
(1) In a method of chromatographically separating and analyzing boric acid in a liquid to be measured, the boric acid is chromatographically separated in a separation column packed with a cation exchange resin, and then the separation column eluate is The boric acid is analyzed by supplying an alkaline solution to adjust the pH, converting the boric acid into lithium borate, leading to a conductivity detector, and detecting the lithium borate with the detector. analysis method.
(2)被測定液を一定量採取するインジェクタと、陽イ
オン交換樹脂が充填され前記被測定液が溶離液で搬入さ
れると該被測定液中のホウ酸をクロマトグラフィックに
分離する分離カラムと、陽イオン交換膜によって内部が
内室と外室に区分けされ該内室内に前記分離カラムの溶
出液が導びかれると前記イオン交換膜を介して前記外室
からアルカリ液が供給されてpH調整され前記ホウ酸が
ホウ酸リチウムに変換されるサプレッサと、該ホウ酸リ
チウムを検出する導電率検出器とを具備し、該検出器の
出力信号によって前記ホウ酸を分析することを特徴とす
るホウ酸の分析装置。
(2) An injector that collects a certain amount of a liquid to be measured, and a separation column that is filled with a cation exchange resin and that chromatographically separates boric acid in the liquid to be measured when the liquid to be measured is carried in as an eluent. The interior is divided into an inner chamber and an outer chamber by a cation exchange membrane, and when the eluate from the separation column is introduced into the inner chamber, an alkaline solution is supplied from the outer chamber through the ion exchange membrane to adjust the pH. A suppressor for converting the boric acid into lithium borate, and a conductivity detector for detecting the lithium borate, and analyzing the boric acid based on the output signal of the detector. Acid analyzer.
JP7775086A 1986-04-04 1986-04-04 Method and apparatus for analyzing boric acid Pending JPS62233757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7775086A JPS62233757A (en) 1986-04-04 1986-04-04 Method and apparatus for analyzing boric acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7775086A JPS62233757A (en) 1986-04-04 1986-04-04 Method and apparatus for analyzing boric acid

Publications (1)

Publication Number Publication Date
JPS62233757A true JPS62233757A (en) 1987-10-14

Family

ID=13642599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7775086A Pending JPS62233757A (en) 1986-04-04 1986-04-04 Method and apparatus for analyzing boric acid

Country Status (1)

Country Link
JP (1) JPS62233757A (en)

Similar Documents

Publication Publication Date Title
Rechnitz et al. Non-Aqueous Titrations Using A New Solid—Membrane Cupric Ion Electrode
CN111189956B (en) H 2 O 2 Method for detecting content of nitrite in sodium chloride sample by using oxidized ion chromatography
Manganiello et al. Piezoelectric screening coupled on line to capillary electrophoresis for detection and speciation of mercury
JPS62233757A (en) Method and apparatus for analyzing boric acid
CN111157666A (en) Method for simultaneously and quantitatively analyzing sulfite and sulfate ions in amine solution
JPH0515225B2 (en)
JPS59133459A (en) Ion chromatograph
CN104749304A (en) Method for determining concentrations of cyanide ion and sulfide ion in desulphurization solution
JP3166140B2 (en) Free cyanometer
Fernández et al. The use of a suppressor column for calcium removal in the determination of iron in water samples by collision cell ICP-MS
CN114324635B (en) Method for measuring bromate in drinking water by utilizing ion chromatography on-line matrix elimination system
JPH01114751A (en) Analysis of weakly basic ion
JPH0554062B2 (en)
JPS62209357A (en) Method and apparatus for analyzing sulfide ion
JP3339101B2 (en) Method and apparatus for separating and analyzing nitrate ions in phosphoric acid
Hahn et al. Coulometric titrations with an ion exchange separation step
JPH07119748B2 (en) Determination of trace bromine ions in seawater
CN102706949B (en) Method for determination of inorganic element in fuel gas
JPH0820431B2 (en) Cation analyzer
SU1113740A1 (en) Method of quantitative determination of bisaren-chromium cation complexes
JPH01114754A (en) Method for measuring cn- ion
JPH0310073B2 (en)
JP2003014717A (en) Ion analyzer
JPH01113656A (en) Calibrating method for anion analyzing apparatus
JPS61194355A (en) Method and apparatus for measuring minute amount of anion