JPS62209357A - Method and apparatus for analyzing sulfide ion - Google Patents

Method and apparatus for analyzing sulfide ion

Info

Publication number
JPS62209357A
JPS62209357A JP5319086A JP5319086A JPS62209357A JP S62209357 A JPS62209357 A JP S62209357A JP 5319086 A JP5319086 A JP 5319086A JP 5319086 A JP5319086 A JP 5319086A JP S62209357 A JPS62209357 A JP S62209357A
Authority
JP
Japan
Prior art keywords
sulfide
liquid
detector
measured
separation column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5319086A
Other languages
Japanese (ja)
Other versions
JPH0515226B2 (en
Inventor
Takeshi Murayama
健 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP5319086A priority Critical patent/JPS62209357A/en
Publication of JPS62209357A publication Critical patent/JPS62209357A/en
Publication of JPH0515226B2 publication Critical patent/JPH0515226B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To enable easy and stable analysis, by detecting conductivity by converting a sulfide ion to lithium sulfide to analyze the sulfide ion. CONSTITUTION:The sulfide ion in a liquid to be measured is separated chromatographically by a separation column 4 packed with a cation exchange resin and, thereafter, the pH of the eluate of the column 4 is adjusted to convert the sulfide ion to lithium sulfide. This converted lithium sulfide is guided to a conductivity detector to measure conductivity and the sulfide ion is detected by detecting lithium sulfide. By this method, the sulfide ion in the liquid to be measured can be analyzed easily and stable.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、被測定液中の硫化物イオン(S”−)をクロ
マトグラフィツクに分離して分析する方法およびそれを
用いた分析装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for chromatographically separating and analyzing sulfide ions (S''-) in a liquid to be measured, and an analysis apparatus using the method.

〈従来の技術〉 イオン交換カラムを用い被測定液中の硫化物イオン(3
2つをクロマトグラフィツクに分離して分析しようとす
る場合、硫化水素a+ZO)の解離定数(Ka)が小さ
く pKa =  −1og Kaの値が大きい(25
℃でpKa = 7.07)ため、従来は下式(1)の
ような化学反応を行なう銀の作用電極をもった電気化学
検出器が必要とされていた。
<Conventional technology> Sulfide ions (3
When attempting to analyze the two by separating them chromatographically, the dissociation constant (Ka) of hydrogen sulfide a + ZO) is small and the value of pKa = -1og Ka is large (25
pKa = 7.07), so conventionally an electrochemical detector having a silver working electrode that performs a chemical reaction as shown in equation (1) below has been required.

2Ag + S”’  −AgzS + 2e−(1)
然し乍ら、被測定液中のイオンをクロマトグラフィツク
に分離・分析する装置の検出器としては、一般に、導電
率検出器が使用されており、その特性も十分研究され安
定した性能が得られている。
2Ag + S"' -AgzS + 2e-(1)
However, a conductivity detector is generally used as a detector in an apparatus for chromatographically separating and analyzing ions in a liquid to be measured, and its characteristics have been thoroughly studied and stable performance has been obtained.

このため、導電率検出器と異なる上記電気化学検出器を
使用することは、検出器特性の安定性の面でも部品供給
の面でも不都合がことが多かった。
For this reason, the use of the electrochemical detector, which is different from the conductivity detector, is often inconvenient both in terms of stability of detector characteristics and in terms of parts supply.

特に、上記作用電極である銀の表面状態は変化し易く、
硫化物イオン(S2−)を安定して測定するには、常に
保守点検を行なわなければならないという煩雑さがあっ
た。
In particular, the surface condition of silver, which is the working electrode, changes easily,
In order to stably measure sulfide ions (S2-), maintenance and inspection must always be performed, which is complicated.

〈発明が解決しようとする問題点〉 本発明はかかる従来例の欠点に鑑みてなされたものであ
り、その目的は、被測定液中の硫化物イオンを導電率検
出器を用いて容易に分析できる方法およびそれを用いた
分析装置を提供することにある。
<Problems to be Solved by the Invention> The present invention has been made in view of the drawbacks of the conventional examples, and its purpose is to easily analyze sulfide ions in a liquid to be measured using a conductivity detector. The purpose of this research is to provide a method and an analytical device using the method.

く問題点を解決するための手段〉 上述のような問題点を解決する本発明の特徴は、硫化物
イオンの分析方法およびそれを用いた分析装置において
、分離カラムの溶出液をpHfJ1整して該溶液中の硫
化物イオンを硫化リチウムに変換させてのち導ffl率
を検出するようにしたことにある。
Means for Solving the Problems> A feature of the present invention that solves the problems described above is that in a method for analyzing sulfide ions and an analyzer using the same, the eluate of the separation column is adjusted to pH fJ1. The purpose is to convert the sulfide ions in the solution into lithium sulfide and then detect the conduction ffl rate.

〈実施例〉 以下、本発明について図を用いて詳しく説明する。第1
図は本発明実施例の構成説明図であり、図中、1aは例
えば2mN濃度の硫酸水溶液でなる溶出液が貯留された
槽、1bは例えば50mN濃度の水酸化リチウム溶液で
なる除去液が貯留された槽、Ic。
<Example> Hereinafter, the present invention will be explained in detail using the drawings. 1st
The figure is an explanatory diagram of the configuration of an embodiment of the present invention. In the figure, 1a is a tank in which an eluate made of, for example, a 2 mN aqueous sulfuric acid solution is stored, and 1b is a tank in which a removal liquid is stored, for example, a lithium hydroxide solution with a 50 mN concentration. tank, Ic.

1dは廃液槽、2a、2bは送液ポンプ、3は第1〜第
6の接続口3a〜3fおよび計量管3g(例えば内容積
100μIl)を有しその内部流路が実線接続状態と破
線接続状態に交互に切換えられるインジェクタ、4は例
えば強酷性スルホン壓陽イオン交換樹脂が充填されてな
る分離カラム、5は例えば陽イオン交換膜でなるチュー
ブ5aによって内部が内室5bと外室5cに区分けされ
てなるサプレッサ、6は導電率検出器でなる検出器、7
は分離カラム4、サプレッサ5、および検出器6を収容
し、これらを所定温度(例えば40℃)に保つ恒温槽で
ある。
1d is a waste liquid tank, 2a and 2b are liquid sending pumps, and 3 is a first to sixth connection port 3a to 3f and a measuring tube 3g (for example, internal volume 100μIl), and its internal flow path is connected with a solid line and a broken line. 4 is a separation column filled with, for example, a harsh sulfone cation exchange resin, and 5 is a tube 5a made of, for example, a cation exchange membrane, which divides the inside into an inner chamber 5b and an outer chamber 5c. A suppressor consisting of a divided section, 6 a detector consisting of a conductivity detector, 7
is a constant temperature bath that houses the separation column 4, suppressor 5, and detector 6 and keeps them at a predetermined temperature (for example, 40° C.).

このような構成からなる本発明の実施例において、ポン
プ2aが駆動すると、槽la内の溶離液が、ポンプ2a
→インジエクタ3の第1および第2接続口3a、 3b
→分離カラム4→サプレッサ5の内室5b→検出器6の
流路を、例えば1.5m l /win、で流れ、廃液
槽1cに排出される。また、ポンプ2bが駆動すると、
槽lb内の除去液が、ポンプ2b→サプレツサ5の外室
5c→廃液槽!dの流路を、例えば1.5ml/1n、
で流れ、サプレッサ5においてチューブ5aを介して例
えば陽イオン交換を行なうことにより、内室5b内を流
れる溶離液の導電率を低下させる。
In the embodiment of the present invention having such a configuration, when the pump 2a is driven, the eluent in the tank la is transferred to the pump 2a.
→First and second connection ports 3a and 3b of injector 3
The liquid flows through the flow path of → separation column 4 → inner chamber 5b of suppressor 5 → detector 6 at a flow rate of, for example, 1.5 ml/win, and is discharged to waste liquid tank 1c. Moreover, when the pump 2b is driven,
The removed liquid in tank lb is transferred from pump 2b to outer chamber 5c of suppressor 5 to waste liquid tank! For example, the flow path of d is 1.5 ml/1n,
The conductivity of the eluent flowing in the inner chamber 5b is reduced by performing, for example, cation exchange through the tube 5a in the suppressor 5.

また、上記除去液に一定濃度以上の水酸化リチウム(L
iOII)が含まれている場合には、後述の如く、チュ
ーブ5aを透過して水酸化リチウムが内室5b内に至り
、該内室内を流れる液体造アルカリ性を強くにする。こ
のような状態で、インジェクタ3の第4接続口3dカら
試料(例えば+00ppmの52−を含む被測定液)を
注入すると、該試料は、第4接続ロ3d→第3接続ロ3
c→計量管3g→第6接続ロ3f→第5接続口3cの流
路で流れ、計量管3g内を満たす。
In addition, lithium hydroxide (L
iOII), as described later, lithium hydroxide passes through the tube 5a and reaches the inner chamber 5b, thereby increasing the alkalinity of the liquid flowing inside the inner chamber. In this state, when a sample (for example, a liquid to be measured containing +00 ppm of 52-) is injected from the fourth connection port 3d of the injector 3, the sample flows from the fourth connection port 3d to the third connection port 3.
It flows through the flow path c→metering tube 3g→sixth connection hole 3f→fifth connection port 3c, filling the inside of the metering tube 3g.

その後、インジェクタ3がオンにされ、その内部流路が
実線接続状態から破線接続状態に切換えられる。計量管
3g内の上記試料は溶離液に搬送されて分離カラム4に
至り、ここで上記試料中のイオンが他のイオン等から分
離される。即ち、硫化物イオン(S”−)は弱イオン性
であるため、分離カラム4内の例えば強峻性スルホン型
陽イオン交換樹脂でイオン排除されることなく吸着作用
等を受は所定の保持時間後に分離カラム4がら溶iする
ようになる。該分離カラム4の溶出液は、サプレッサ5
の内室5bに導びかれ、次の(イ)〜(ハ)で詳しく説
明する理由(又は原理)、にょって、上記(52−)が
Li2Sに変換される。
Thereafter, the injector 3 is turned on and its internal flow path is switched from the solid line connected state to the broken line connected state. The sample in the measuring tube 3g is carried by the eluent and reaches the separation column 4, where the ions in the sample are separated from other ions. In other words, since sulfide ions (S"-) are weakly ionic, they can be held for a predetermined retention time without being removed by the strong sulfone-type cation exchange resin in the separation column 4. Later, the separation column 4 becomes dissolved.The eluate from the separation column 4 is passed through the suppressor 5.
The above (52-) is converted to Li2S for the reasons (or principles) explained in detail in (a) to (c) below.

(イ)分離カラム4から溶出する溶離液中のIh5O,
がチューブ5aを介して行なう下式(2)のような陽イ
オン交換によってLizS04に変えられる。
(b) Ih5O in the eluent eluted from separation column 4,
is converted to LizS04 by cation exchange as shown in equation (2) below through the tube 5a.

2H” + 5042− + 2Li”→Re5in)
 −+2Li” + SOt”−+2「ν仰esin)
            ・・・(2)(ロ)サプレッ
サ5の外室5c内を流れる除去液に含まれる水酸化リチ
ウム(LiO+I)の濃度、除去液のpH値、サプレッ
サ5通過後の溶離液のpH値、および検出器6における
溶離液の導電率(即ち、ベースラインの導電率)は下表
のようになっている。この表から明らかなように、除去
液中のLiOH濃度が5鱈を超えると、サプレッサ通過
後の溶離液のpH値とベースラインの導電率が特に大き
くなっていることが分る。これは、除去液中のLiOH
が上記チューブ5aを透過して内室5b内に至るからで
ある。
2H” + 5042- + 2Li”→Re5in)
-+2Li" + SOt"-+2"ν esin)
...(2) (b) The concentration of lithium hydroxide (LiO+I) contained in the removal liquid flowing in the outer chamber 5c of the suppressor 5, the pH value of the removal liquid, the pH value of the eluent after passing through the suppressor 5, and The conductivity of the eluent in the detector 6 (ie, the baseline conductivity) is as shown in the table below. As is clear from this table, it can be seen that when the LiOH concentration in the removal solution exceeds 5, the pH value and baseline electrical conductivity of the eluent after passing through the suppressor become particularly large. This is because LiOH in the removal solution
This is because the liquid passes through the tube 5a and reaches the inner chamber 5b.

(ハ)硫化水素(H,S・)は、pH値が目付近になる
と下式(3)のように解離して硫化物イオン(S2つを
生ずることが知られているが、その場合、多量の水酸化
リチウム(LiOIl)が存在すると下式(4)のよう
にJVる。
(c) It is known that hydrogen sulfide (H, S) dissociates as shown in the following formula (3) when the pH value approaches the eye level, producing two sulfide ions (S). In that case, When a large amount of lithium hydroxide (LiOIl) is present, JV is expressed as shown in the following formula (4).

H2S   →  2N”  + S”   (3)2
H” 十S” + 2Li” + 20tl−→ Li
zS +21120 (4)このようにしてサプレッサ
5内で硫化リチウム(LizS)が生ずると、該サプレ
ッサの流出液が検出器6に導びかれ、硫化リチウムの導
電率が検出される。ところで、除去液中の水酸化リチウ
ム(Li011)濃度が50mNである場合、上記表か
ら明らかなようにベースラインの導1U率は1320μ
s/cmである。このため、上記(4)式によって生成
した硫化リチウム(LizS)が上記検出器6に到達す
ると導電率がベースラインよりも低く検出され、負のピ
ークを与えるようになる。即ち、上記(4)式において
水酸化リチウムが1当量減少すると硫化リチウムが0.
5当量生成するようになっており、しかも硫化リチウム
の解離度が水酸化リチウムの解離度よも りも著しく低く導電率が低くなっている。この結果、上
記検出器6に到達する硫化リチウムは上記(4)式の硫
化物イオン(S’−)と1対2に対応し、しかも、その
導電率がベースラインの導電率よりも低いのである。
H2S → 2N” + S” (3)2
H"10S" + 2Li" + 20tl-→ Li
zS +21120 (4) When lithium sulfide (LizS) is generated in the suppressor 5 in this way, the effluent of the suppressor is led to the detector 6, and the conductivity of the lithium sulfide is detected. By the way, when the concentration of lithium hydroxide (Li011) in the removal solution is 50 mN, the baseline conductivity 1U rate is 1320 μ as is clear from the above table.
s/cm. Therefore, when the lithium sulfide (LizS) generated by the above equation (4) reaches the detector 6, the conductivity is detected to be lower than the baseline, giving a negative peak. That is, in the above equation (4), when lithium hydroxide decreases by 1 equivalent, lithium sulfide decreases by 0.
5 equivalents are produced, and the degree of dissociation of lithium sulfide is significantly lower than that of lithium hydroxide, resulting in a lower electrical conductivity. As a result, the lithium sulfide that reaches the detector 6 has a one-to-two ratio with the sulfide ions (S'-) in equation (4) above, and its conductivity is lower than the baseline conductivity. be.

第2Fl!Jは上述のようにして検出器6で検出された
検出信号を図示しない表示部(記録計等)に導いて描か
せたクロマトグラムであり、横軸が時間(単位は分)を
示し縦軸が導を率(単位はμs/cm)を示している。
2nd Fl! J is a chromatogram drawn by guiding the detection signal detected by the detector 6 as described above to a display unit (recorder, etc.) not shown, in which the horizontal axis represents time (in minutes) and the vertical axis represents time. indicates the conductivity rate (unit: μs/cm).

このクロマトグラムから明らかなように1100ppと
いう低濃度の硫化物イオン(S2−)が良好なピークと
して得られ、容易に定性分析や定量分析が行なえるよう
になる。尚、ウォーダデップ(Water Dip)は
上記試料中に含まれている水分によって生ずるピークで
あり、通常負のピークとなって現われるものであるが、
上記硫化物イオン(S’−)も負のピークとなって現わ
れるため、第2図のクロマトグラムでは信号処理によっ
て双方とも正のピークとして表わされている。
As is clear from this chromatogram, sulfide ions (S2-) at a low concentration of 1100 pp can be obtained as a good peak, allowing qualitative and quantitative analysis to be easily performed. Note that Water Dip is a peak caused by water contained in the sample, and usually appears as a negative peak.
Since the sulfide ion (S'-) also appears as a negative peak, in the chromatogram shown in FIG. 2, both are represented as positive peaks by signal processing.

尚、本発明は上述の実施例に限定されることなく種々の
変形が可能であり、例えば次の(イ)〜(ハ)のように
変えてもよいものとする。
It should be noted that the present invention is not limited to the above-described embodiments, and can be modified in various ways, for example, as shown in the following (a) to (c).

(イ)上記除去液として、水酸化リチウム溶液の代わり
に、水階化ナトリウム溶液、水酸化カリウム溶液、若し
くは水酸化アンモニウム溶液等を用いてもよい。
(a) As the removal liquid, a sodium hydroxide solution, a potassium hydroxide solution, an ammonium hydroxide solution, or the like may be used instead of the lithium hydroxide solution.

(ロ)上記溶離液として、硫酸水溶液に代えて、塩酸水
溶液、硝酸水溶液、リン酸水溶液、過塩素酸水溶液、若
しくは蟻酌水溶液等を用いてもよい。
(b) As the eluent, an aqueous hydrochloric acid solution, an aqueous nitric acid solution, an aqueous phosphoric acid solution, an aqueous perchloric acid solution, an aqueous ant liquor solution, or the like may be used instead of an aqueous sulfuric acid solution.

(ハ)上記チューブ5aに代えて、シート状の陽イオン
交換膜を用いてサプレッサ5内を内室5bと外室5cに
区分けするようにしてもよい。
(c) Instead of the tube 5a, a sheet-like cation exchange membrane may be used to divide the inside of the suppressor 5 into an inner chamber 5b and an outer chamber 5c.

〈発明の効果〉 以上詳しく説明したような本発明によれば、導電率検出
器を用いて被測定液中の硫化物イオンを分析するような
構成であるため1.1IiI記従来例に比して容易かつ
安定的に被測定液中の硫化物イオンを分析できる利点が
ある。
<Effects of the Invention> According to the present invention as described in detail above, the conductivity detector is used to analyze sulfide ions in the liquid to be measured. This method has the advantage that sulfide ions in the liquid to be measured can be easily and stably analyzed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の構成説明図、第2図は本発明実
施例を用いて作成したクロマトグラムである。 1a〜1d・・・槽、2a、2b・・・送液ポンプ、3
・・・試料採「、4・・・分離カラム、5・・・サプレ
ッサ、6・・・検出器、7・・・恒温槽。
FIG. 1 is an explanatory diagram of the configuration of an embodiment of the present invention, and FIG. 2 is a chromatogram prepared using the embodiment of the present invention. 1a to 1d...tank, 2a, 2b...liquid pump, 3
...Sample collection, 4... Separation column, 5... Suppressor, 6... Detector, 7... Constant temperature bath.

Claims (2)

【特許請求の範囲】[Claims] (1)被測定液中の硫化物イオンをクロマトグラフィッ
クに分離して分析する方法において、前記硫化物イオン
を陽イオン交換樹脂が充填された分離カラムでクロマト
グラフィックに分離し、その後、該分離カラム溶出液の
pHを調整して前記硫化物イオンを硫化リチウムに変え
て導電率検出器に導びき、該検出器で前記硫化リチウム
を検出することにより前記硫化物イオンを分析する硫化
物イオン分析方法。
(1) In a method of chromatographically separating and analyzing sulfide ions in a liquid to be measured, the sulfide ions are chromatographically separated using a separation column packed with a cation exchange resin, and then the separation column A sulfide ion analysis method in which the sulfide ions are converted to lithium sulfide by adjusting the pH of the eluate and guided to a conductivity detector, and the sulfide ions are analyzed by detecting the lithium sulfide with the detector. .
(2)被測定液を一定量採取するインジェクタと、陽イ
オン交換樹脂が充填され前記被測定液が溶離液で搬入さ
れると該被測定液中の硫化物イオンをクロマトグラフィ
ックに分離する分離カラムと、陽イオン交換膜によって
内部が内室と外室に区分けされ該内室内に前記分離カラ
ムの溶出液が導びかれると前記イオン交換膜を介して前
記外室からアルカリ液が供給されてpH調整され前記硫
化物イオンが硫化リチウムに変換されるサプレッサと、
該硫化リチウムを検出する導電率検出器とを具備し、該
検出器の出力信号によって前記硫化物イオンを分析する
ことを特徴とする硫化物イオンの分析装置。
(2) An injector that collects a certain amount of a liquid to be measured, and a separation column that is filled with a cation exchange resin and that chromatographically separates sulfide ions in the liquid to be measured when the liquid to be measured is carried in as an eluent. The interior is divided into an inner chamber and an outer chamber by a cation exchange membrane, and when the eluate from the separation column is introduced into the inner chamber, alkaline solution is supplied from the outer chamber via the ion exchange membrane to adjust the pH. a suppressor in which the sulfide ions are regulated and converted to lithium sulfide;
A sulfide ion analysis device comprising: a conductivity detector for detecting the lithium sulfide; and analyzing the sulfide ions based on an output signal from the detector.
JP5319086A 1986-03-11 1986-03-11 Method and apparatus for analyzing sulfide ion Granted JPS62209357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5319086A JPS62209357A (en) 1986-03-11 1986-03-11 Method and apparatus for analyzing sulfide ion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5319086A JPS62209357A (en) 1986-03-11 1986-03-11 Method and apparatus for analyzing sulfide ion

Publications (2)

Publication Number Publication Date
JPS62209357A true JPS62209357A (en) 1987-09-14
JPH0515226B2 JPH0515226B2 (en) 1993-03-01

Family

ID=12935956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5319086A Granted JPS62209357A (en) 1986-03-11 1986-03-11 Method and apparatus for analyzing sulfide ion

Country Status (1)

Country Link
JP (1) JPS62209357A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100051A (en) * 1983-08-12 1985-06-03 ダイオネツクス コ−ポレ−シヨン Method and device for ion analysis and detection using reverse system inhibition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100051A (en) * 1983-08-12 1985-06-03 ダイオネツクス コ−ポレ−シヨン Method and device for ion analysis and detection using reverse system inhibition

Also Published As

Publication number Publication date
JPH0515226B2 (en) 1993-03-01

Similar Documents

Publication Publication Date Title
CN101692093B (en) Automatic analyzer for anionic surfactant in water and automatic analysis method
WO2007035346A1 (en) Recycling of suppressor regenerants
Jermak et al. Headspace single‐drop microextraction with in‐drop derivatization and capillary electrophoretic determination for free cyanide analysis
Frenzel et al. Flow-injection potentiometris stripping analysis—a new concept for east trace determinations
Cox et al. Separation of mixtures of cations by Donnan dialysis
CN113899822A (en) Method for determining purity of lithium hexafluorophosphate based on ion chromatography technology
JPS62209357A (en) Method and apparatus for analyzing sulfide ion
CN113030287A (en) Method for determining TSED-2 in lithium ion battery electrolyte containing lithium hexafluorophosphate
JPH0515225B2 (en)
CN111157666A (en) Method for simultaneously and quantitatively analyzing sulfite and sulfate ions in amine solution
JPS62233757A (en) Method and apparatus for analyzing boric acid
CN104749304A (en) Method for determining concentrations of cyanide ion and sulfide ion in desulphurization solution
CN115165765B (en) Online detection method for air formaldehyde
CN219657551U (en) Water quality detection and analysis device based on strontium ion electrode
JPS60190858A (en) Anion analytical method and apparatus thereof
JPS6311857A (en) Method for quantifying very small amount of bromine ion in high concentration chlorine ion
JP2000356630A (en) Measuring method for fluoride ion
Buldini et al. Application of ion chromatography to the analysis of lead–acid battery electrolyte
JPS6350752A (en) On-line moisture analyzer
Sánchez-Pedreño et al. Derivative dynamic response of ion-selective electrodes. Application to the precipitate-based iodide-selective electrode in the presence of interfering ions
SU1413506A1 (en) Method of determining carbon dioxide content in carbonate rock
SU1704056A1 (en) Method of determination of low concentration of sodium in ammonium-containing solutions
JPS61194355A (en) Method and apparatus for measuring minute amount of anion
JPH01114751A (en) Analysis of weakly basic ion
Olin et al. Automated instrumentation for determination of stability constants from solubility