JPH0310073B2 - - Google Patents

Info

Publication number
JPH0310073B2
JPH0310073B2 JP2609383A JP2609383A JPH0310073B2 JP H0310073 B2 JPH0310073 B2 JP H0310073B2 JP 2609383 A JP2609383 A JP 2609383A JP 2609383 A JP2609383 A JP 2609383A JP H0310073 B2 JPH0310073 B2 JP H0310073B2
Authority
JP
Japan
Prior art keywords
sample
water
eluent
ion species
injector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2609383A
Other languages
Japanese (ja)
Other versions
JPS59151049A (en
Inventor
Takeshi Murayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2609383A priority Critical patent/JPS59151049A/en
Publication of JPS59151049A publication Critical patent/JPS59151049A/en
Publication of JPH0310073B2 publication Critical patent/JPH0310073B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/96Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation using ion-exchange
    • G01N2030/965Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation using ion-exchange suppressor columns

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】 本発明は、イオンクロマトグラフイーによりサ
ンプルに含まれる微量の所望イオン種を定量分析
する微量イオン種測定方法およびその装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a trace ion species measuring method and apparatus for quantitatively analyzing trace amounts of desired ion species contained in a sample by ion chromatography.

イオンクロマトグラフイーは、サンプル中のイ
オン種を定量分析するのに極めて有効なものであ
るが、微量のイオン種を定量分析する場合には、
サンプル中の水による負のピーク(以下、ウオー
タデイツプという)に近接して溶出するイオン種
を正確に測定することが困難であつた。例えば、
ppbレベルのF-、Cl-を含むサンプルを、イオン
交換膜チユーブ形バツクグランド除去装置を用い
て炭酸系の溶離液でイオンクロマトグラフイーに
よる測定を行なうと、F-、Cl-の溶出位置にウオ
ータデイツプが重なり測定上大きな障害となつて
いた。
Ion chromatography is extremely effective for quantitatively analyzing ionic species in samples, but when quantitatively analyzing trace amounts of ionic species,
It has been difficult to accurately measure ion species that elute in the vicinity of a negative peak due to water (hereinafter referred to as water dip) in a sample. for example,
When a sample containing ppb levels of F - and Cl - is measured by ion chromatography using a carbonate-based eluent using an ion exchange membrane tube background removal device, the F - and Cl - elution positions are The water dips overlapped, creating a major hindrance in measurement.

このウオータデイツプは、溶離液がバツクグラ
ンド除去装置で炭酸に変換されてバツクグランド
が低減されたとき、依然として炭酸の有する導電
率のバツクグランドが残存しているため、サンプ
ル中の水の部分が溶出してくるとその部分は炭酸
を含んでおらずさらに導電率が低くなつて生ずる
ものである。
This water dip is caused by the fact that when the eluent is converted to carbonic acid in a background removal device to reduce the background, the conductivity background of carbonic acid still remains, so the water portion of the sample is eluted. When the carbonic acid is removed, that part contains no carbonic acid and its conductivity becomes even lower.

然るに、従来、このウオータデツプを解消する
ため、サンプル中にあらかじめ炭酸ナトリウムや
炭酸水素ナトリウムを加え、溶離液と同じ組成に
しておく方法がとられていた。この方法は、試薬
を添加する処理が必要なので比較的多量のサンプ
ルを必要とするうえ、炭酸の濃度を正確に合わせ
ておかないとサンプル中に存在するイオンによら
ないピークが出現するなどの欠点があつた。更
に、サンプルが純水などであつて極低濃度領域の
測定を必要とする場合には、濃縮カラム法が用い
られることが多いが、この濃縮カラムを用いると
きは炭酸塩を添加する前述の方法は用いることが
できないという欠点もあつた。
However, in order to eliminate this water depth, conventional methods have been used in which sodium carbonate or sodium hydrogen carbonate is added to the sample in advance to make it have the same composition as the eluent. This method requires a relatively large amount of sample because it requires the addition of reagents, and also has drawbacks such as the appearance of peaks that are not due to ions present in the sample unless the concentration of carbonic acid is adjusted accurately. It was hot. Furthermore, when the sample is pure water and measurement in the extremely low concentration range is required, the concentration column method is often used; however, when using this concentration column, the aforementioned method of adding carbonate is used. It also had the disadvantage that it could not be used.

本発明は、かかる欠点に鑑みてなされたもので
あり、その目的は、上述のごときウオータデイツ
プを完全に解消し、これに近接して溶出する微量
のイオン種をも正確に定量分析できるような微量
イオン種測定方法およびその測定装置を提供する
ことにある。
The present invention was made in view of these drawbacks, and its purpose is to completely eliminate the water dip described above, and to create a trace amount that can accurately quantitatively analyze even trace amounts of ionic species that elute in close proximity to the water dip. An object of the present invention is to provide a method for measuring ion species and a measuring device therefor.

以下、本発明について図を用いて詳細に説明す
る。第1図は、本発明実施例の構成説明図であ
り、図中、1〜3は夫々水、第1溶離液、および
スキヤベンジヤ液を送液する第1〜第3のポン
プ、4,5は夫々第1、第2のポンプ1,2によ
つて生ずる脈動を防止するダンパー、6は圧力
計、7はサンプルを所定量採取するインジエク
タ、8はイオン交換樹脂等が充填され所定のイオ
ン種を分離する分離カラム、9は分離カラム8か
らの溶出液および前記スキヤベンジヤ液が夫々独
立して流れる内室9aおよび外室9bがイオン交
換膜9cによつて隣接して形成されてなるバツク
グランド除去装置、10は前記内室9aから導か
れる液体の導電率を検出する検出器、11は分離
カラム8、バツクグランド除去装置9および検出
器10を収容しこれらを所定の温度に保つ恒温槽
である。また、第1ポンプ1、ダンパー4、イン
ジエクタ7、分離カラム8、バツクグランド除去
装置9の内室9a、および検出器10を第2溶離
液(前記接続部12で前記水と第1溶離液とが合
流してなる液)が流れ第1流路を構成している。
更に、第2ポンプ2およびダンパー5を経由して
第1の溶離液が流れ第2流路を構成している。
尚、このような構成でなる装置から前記第2流路
が完全に除去されると共に、前記第1流路に前記
第1溶離液のみが流れるように従来の装置(以
下、従来装置という)が構成されていた。
Hereinafter, the present invention will be explained in detail using figures. FIG. 1 is an explanatory diagram of the configuration of an embodiment of the present invention, in which 1 to 3 are first to third pumps for feeding water, a first eluent, and a scavenge liquid, respectively; 4 and 5 are Dampers prevent pulsation caused by the first and second pumps 1 and 2, respectively; 6 is a pressure gauge; 7 is an injector for collecting a predetermined amount of sample; A separation column 9 for separation is a background removal device in which an inner chamber 9a and an outer chamber 9b are formed adjacent to each other by an ion exchange membrane 9c, through which the eluate from the separation column 8 and the scavenging liquid flow independently, respectively. , 10 is a detector for detecting the conductivity of the liquid led from the inner chamber 9a, and 11 is a constant temperature bath that accommodates the separation column 8, the background remover 9, and the detector 10 and keeps them at a predetermined temperature. In addition, the first pump 1, the damper 4, the injector 7, the separation column 8, the interior chamber 9a of the background removal device 9, and the detector 10 are connected to the second eluent (the water and the first eluent are connected at the connection part 12). (liquid formed by the merging of the two) flows and constitutes the first flow path.
Furthermore, the first eluent flows via the second pump 2 and damper 5, forming a second flow path.
Note that the conventional device (hereinafter referred to as the conventional device) is configured such that the second flow path is completely removed from the device having such a configuration, and only the first eluent flows into the first flow path. It was configured.

以下、上記構成からなる本発明実施例の動作お
よびそれを用いた実験結果について説明する。第
1図において、第1ポンプ1により上記第1流路
に水を1ml/min.で供給すると共に、第2ポン
プにより上記第2流路に8mM・Na2CO3/8m
M・Na2HCOでなる第1溶離液を1ml/min.で
供給する。従つて、上記第1流路の接続部12以
降には4mM・Na2CO3/4mM・NaHCO3でな
る第2溶離液が2ml/min.で流れることになる。
また、上記外室9bには第3ポンプ3により所定
のスキヤベンジヤ液を流す。この状態で、検出器
10からは基準状態を示す信号(記録計のベース
ラインなど)が得られる。次に、インジエクタ7
により、例えば、50ppbのF-、100ppbのCl-
150ppbのCl-、300ppbのPO3- 4、100ppbのBr-
300ppbのNO3 -、および400ppbのSO4 2-を含む標
準サンプルを100μ採取する。該サンプルは水
で搬送されて接続部12に至り、その後上記第2
溶離液で搬送されて分離カラム8に到達し、含有
するイオン種が所定の分離を受ける。その後、上
記標準サンプルは、第2溶離液で搬送されてバツ
クグランド除去装置9に至り、含有する反対電荷
イオン種(Naなど)が除去される。該除去装置
の内室9aから導かれる溶出液は、検出器10に
よつてその導電率が検出され、記録計などに第2
図に示すようなクロマトグラムが得られるように
なつた。同様にして、イオンを含まない水を測定
したところ第3図に示すようなクロマトグラムが
得られた。
Hereinafter, the operation of the embodiment of the present invention having the above configuration and the results of experiments using the same will be explained. In FIG. 1, a first pump 1 supplies water to the first flow path at a rate of 1 ml/min., and a second pump supplies water to the second flow path at a rate of 8mM Na 2 CO 3 /8m.
A first eluent consisting of M.Na 2 HCO is fed at 1 ml/min. Therefore, the second eluent consisting of 4mM.Na 2 CO 3 /4mM.NaHCO 3 flows at a rate of 2 ml/min. after the connecting portion 12 of the first flow path.
Further, a predetermined scavenge liquid is caused to flow into the outer chamber 9b by the third pump 3. In this state, a signal indicating a reference state (such as a recorder baseline) is obtained from the detector 10. Next, injector 7
For example, 50 ppb F - , 100 ppb Cl - ,
150ppb Cl- , 300ppb PO3-4 , 100ppb Br- ,
A 100μ standard sample containing 300 ppb NO 3 - and 400 ppb SO 4 2- is taken. The sample is transported by water to the connection 12 and then to the second
The ions are carried by the eluent and reach the separation column 8, where the contained ionic species undergo a predetermined separation. Thereafter, the standard sample is transported by a second eluent to the background removal device 9, where the oppositely charged ionic species (such as Na) contained therein are removed. The conductivity of the eluate led from the inner chamber 9a of the removal device is detected by the detector 10, and the conductivity is detected by a second recorder or the like.
A chromatogram like the one shown in the figure can now be obtained. When ion-free water was measured in the same manner, a chromatogram as shown in FIG. 3 was obtained.

ところで、上記従来装置を用いて、上記第1流
路に4mM・Na2CO3/4mM・NaHCO3でなる
溶離液を2ml/min.で流し上記標準サンプルお
よび上記水を夫々測定すると、夫々第4図および
第5図に示すクロマトグラムが得られた。第4図
において、F-イオンの溶出位置付近に大きな負
のピークが現出しており、第5図からそのピーク
が水に起因する上記ウオータデイツプであること
が分る。従つて、第3図(若しくは第2図)と第
5図(若しくは第4図)との比較から、上述のご
とき本発明の実施例によれば、ウオータデツプが
完全に解消されることが判明する。
By the way, when using the conventional apparatus described above and measuring the standard sample and water by flowing an eluent consisting of 4mM Na 2 CO 3 /4mM NaHCO 3 into the first channel at 2 ml/min. The chromatograms shown in Figures 4 and 5 were obtained. In FIG. 4, a large negative peak appears near the elution position of F - ions, and it can be seen from FIG. 5 that this peak is the water dip caused by water. Therefore, from a comparison between FIG. 3 (or FIG. 2) and FIG. 5 (or FIG. 4), it is clear that according to the embodiment of the present invention as described above, water depth is completely eliminated. .

以上詳しく説明したような本発明の実施例によ
れば、上記ウオータデイツプが完全に解消され、
これに近接して溶出する微量イオン種をも正確に
定量分析できる利点がある。このため、前記従来
例において困難であつた純水中などの微量イオン
種測定も容易且つ正確にできる利点がある。ま
た、本発明に係わる装置は、上記従来装置に第2
ポンプ2およびダンパー5を有する上記第2流路
を付加するだけの簡単な構成であるため、ウオー
タデイツプ解消という大きな利点を有する割には
容易且つ安価に製造できる利点もある。
According to the embodiment of the present invention as described in detail above, the water dip is completely eliminated,
This method has the advantage of being able to accurately and quantitatively analyze trace ion species that elute in the vicinity. Therefore, there is an advantage that it is possible to easily and accurately measure trace amounts of ion species in pure water, etc., which was difficult in the conventional example. Furthermore, the device according to the present invention is second to the conventional device described above.
Since the structure is simple, just adding the second flow path having the pump 2 and the damper 5, it has the great advantage of eliminating water dips, and also has the advantage of being easy and inexpensive to manufacture.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の構成説明図、第2図お
よび第3図は本発明実施例を用いて作成されたク
ロマトグラム、第4図および第5図は従来装置を
用いて作成されたクロマトグラムである。 1〜3……ポンプ、4,5……ダンパー、7…
…インジエクタ、8……分離カラム、9……バツ
クグランド除去装置、10……検出器、11……
恒温槽。
Fig. 1 is an explanatory diagram of the configuration of the embodiment of the present invention, Figs. 2 and 3 are chromatograms created using the embodiment of the present invention, and Figs. 4 and 5 are chromatograms created using the conventional apparatus. This is a chromatogram. 1-3...Pump, 4,5...Damper, 7...
...Injector, 8...Separation column, 9...Background removal device, 10...Detector, 11...
Constant temperature bath.

Claims (1)

【特許請求の範囲】 1 イオンクロマトグラフイーによりサンプルに
含まれる所望のイオン種を定量分析するイオン種
測定方法において、採取した所定量の前記サンプ
ルを水でもつて搬送する第1流路の所定接続部で
第2流路からの第1溶離液を合流させ、該溶離液
と前記水を混合し第2溶離液となして流すことに
より、前記サンプル中の水によつて生ずる負のピ
ークを消去することを特徴とする微量イオン種測
定方法。 2 前記接続部は、サンプルを所定量採取するイ
ンジエクタと該サンプル中のイオン種を分離する
分離カラムとの間に設けられたことを特徴とする
特許請求範囲第1項記載の微量イオン種測定方
法。 3 サンプルを所定量採取するインジエクタと、
所定の溶離液で搬送された前記サンプルに含まれ
るイオン種を分離する分離カラムと、該分離カラ
ムからの溶出液に含まれる反対電荷イオン種を除
去するバツクグランド除去装置と、該除去装置か
らの溶出液の導電率を検出する検出器とを具備す
るイオン種測定装置において、前記インジエクタ
で採取された前記サンプルを水で搬送する第1流
路の所定接続部に第2の流路を接続し、該第2流
路を流れる溶離液が前記水と合流するように構成
したことを特徴とするイオン種測定装置。 4 前記接続部は、前記インジエクタと分離カラ
ムとの間に設けられたことを特徴とする特許請求
範囲第3項記載のイオン種測定装置。
[Scope of Claims] 1. In an ion species measurement method for quantitatively analyzing a desired ion species contained in a sample by ion chromatography, a predetermined connection of a first flow path through which a predetermined amount of the collected sample is conveyed with water. The first eluent from the second flow path is combined in the second flow path, and the eluent and the water are mixed and flowed as a second eluent, thereby eliminating the negative peak caused by the water in the sample. A method for measuring trace ionic species, characterized by: 2. The trace ion species measuring method according to claim 1, wherein the connection part is provided between an injector that collects a predetermined amount of a sample and a separation column that separates ion species in the sample. . 3 an injector that collects a predetermined amount of sample;
a separation column that separates ionic species contained in the sample carried by a predetermined eluent; a background removal device that removes oppositely charged ionic species contained in the eluate from the separation column; In the ion species measuring device comprising a detector for detecting the conductivity of the eluate, a second channel is connected to a predetermined connection part of the first channel through which the sample collected by the injector is transported by water. An ion species measuring device characterized in that the eluent flowing through the second channel is configured to merge with the water. 4. The ion species measuring device according to claim 3, wherein the connection portion is provided between the injector and the separation column.
JP2609383A 1983-02-18 1983-02-18 Method and apparatus for measuring trace of ion seed Granted JPS59151049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2609383A JPS59151049A (en) 1983-02-18 1983-02-18 Method and apparatus for measuring trace of ion seed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2609383A JPS59151049A (en) 1983-02-18 1983-02-18 Method and apparatus for measuring trace of ion seed

Publications (2)

Publication Number Publication Date
JPS59151049A JPS59151049A (en) 1984-08-29
JPH0310073B2 true JPH0310073B2 (en) 1991-02-12

Family

ID=12183981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2609383A Granted JPS59151049A (en) 1983-02-18 1983-02-18 Method and apparatus for measuring trace of ion seed

Country Status (1)

Country Link
JP (1) JPS59151049A (en)

Also Published As

Publication number Publication date
JPS59151049A (en) 1984-08-29

Similar Documents

Publication Publication Date Title
US4584276A (en) Method for analysis of anions
US4751189A (en) Method for balancing background conductivity for ion chromatography
Anderson Ion chromatography: a new technique for clinical chemistry.
US4849110A (en) Method and apparatus for liquid chromatography
JPS60219554A (en) Method and apparatus for measuring minor component in major component
US4672042A (en) Method of and apparatus for chromatographic analysis
Smith et al. Determination of metal ions by liquid chromatography incorporating dithiocarbamates in the eluent
Fishman et al. Determination of selected anions in water by ion chromatography
Hooijschuur et al. Potential of microcolumn liquid chromatography and capillary electrophoresis with flame photometric detection for determination of polar phosphorus-containing pesticides
Sargent et al. Salting-out chromatography: Aliphatic and polyglycol ethers, carboxylic acids by roger sargent and wm. rieman
Kientz et al. The potential of on‐line flame photometric detection in microcolumn liquid chromatography
Jupille et al. High-speed analysis for acid-rain anions by Single-Column Ion Chromatography (SCIC)
JPH0310073B2 (en)
Edholm et al. Automated analysis of terbutaline (Bricanyl R) in human plasma with liquid chromatography and electrochemical detection using column-switching (multidimensional chromatography)
d'Angelo et al. Fluoride, chloride, nitrate, and sulfate in aqueous solution by chemically suppressed ion chromatography
Bergquist et al. Quantitative analysis of terbutaline (Bricanyl®) in human plasma with liquid chromatography and electrochemical detection using on-line enrichment
JPS61223555A (en) Analysis of ion species and apparatus using the same
KR101566400B1 (en) Analytical method of perchlorate in water with ion chromatography
RU2210073C1 (en) Method of gas chromatograph analysis of content of admixtures in gases and device for realization of this method
JPS60190858A (en) Anion analytical method and apparatus thereof
Frenzel et al. High speed determination of sulfate by nonsuppressed ion chromatography
JPH0769312B2 (en) Simultaneous analysis method for nitrogen-containing ions and its equipment
CA1135338A (en) Combination apparatus and method for chromatographic separation and quantitative analysis of multiple ionic species
JP2000214146A (en) Inorganic anion analyzing method
JP3003310B2 (en) Analysis method for trace ion species