JPS6223161A - Solid-state image pickup device with microlens - Google Patents

Solid-state image pickup device with microlens

Info

Publication number
JPS6223161A
JPS6223161A JP60164576A JP16457685A JPS6223161A JP S6223161 A JPS6223161 A JP S6223161A JP 60164576 A JP60164576 A JP 60164576A JP 16457685 A JP16457685 A JP 16457685A JP S6223161 A JPS6223161 A JP S6223161A
Authority
JP
Japan
Prior art keywords
silicon nitride
film
microlens
oxide film
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60164576A
Other languages
Japanese (ja)
Inventor
Shigeru Takahara
茂 高原
Masao Yamawaki
正雄 山脇
Satoshi Hirose
広瀬 諭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60164576A priority Critical patent/JPS6223161A/en
Publication of JPS6223161A publication Critical patent/JPS6223161A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase light-gathering power by forming a microlens by an silicon nitride film. CONSTITUTION:An N-type semiconductor region 2 is shaped onto an silicon substrate 1, an silicon oxide film 4 and a polysilicon film 9 are deposited, an silicon nitride film 10 is deposited, and patterning so as to cover sections except the N-type semiconductor region 2 and oxidation are conducted, thus forming end sections covered with the silicon nitride film 10 to a tapered shape. When the silicon nitride film 10 and the upper silicon oxide film 4 are removed and the polysilicon film 9 is oxidized, the silicon oxide film 4 is shaped as the form is left as it is, and the silicon nitride film is deposited on the surface of the silicon oxide film 4 and flattened, thus shaping an silicon nitride lens 5, then depositing the silicon oxide film 4 on the surface of the silicon nitride lens 5. The silicon nitride lens 5 is held by materials having low refractive indices, thus displaying a convex lens effect.

Description

【発明の詳細な説明】 とべより、光、感度の向上χはかったマイクロレンズ付
固体撮像装スに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solid-state imaging device with a microlens that has improved light and sensitivity.

〔従来の技術〕[Conventional technology]

43図(a)〜Cd)は従来のマイクロレンズの杉成工
稈乞示すし4で、11は基板、12は込明樹、信である
。このよ’5KLで作成されろマイクロレンズを固体撮
像素子に応用する場合には、基板11のかわりに固体撮
像素子の上にレンズを形成することぺなる。
43 (a) to Cd) show the conventional microlens, 4, 11 is the substrate, and 12 is the lens. When applying a microlens made with 5KL to a solid-state image sensor, the lens must be formed on the solid-state image sensor instead of the substrate 11.

本レンズを固体撮像素子に応用した例としては文献(Y
asuo l5hihara、 Kitgumi Ta
nlgaki、 IEDM83.P497〜)がある。
An example of applying this lens to a solid-state image sensor is the literature (Y
asuo l5hihara, Kitgumi Ta
nlgaki, IEDM83. There are P497~).

次に、形成工程について説明するCまず1m3G4C*
)の基板11上に第3図(b)のように透明樹脂12t
t形成する。次に、第3図(c)のように透明樹脂12
ft(固体撮像ぶ部上べ形成する場合には各画素間1)
エンチングすることにより分割する。次に、加F111
ft行うことにより1分割された各透明樹脂12は溶融
し1表面張力によって第3図(d)1て示すようにレン
ズ状の形成が得られろ。透明樹脂12の厚さによつ℃レ
ンズの厚さが決まるので焦点距離の511@が可吐とな
る。透明樹脂12の屈折率は約1.5であり、表面が空
気(屈折率中1)葺屈折率か1.5より小さい物質の場
合、レンズとしての慟ざを4Tする2 第4図は上記の方法でマイクロレンズを形成したマイク
ロレンズ付固体虚像装置の橘造を示す断rirJ図で、
13はp型のシリコン基板、14は受光部となるn型半
導体領域、15はドレインとなるn型半導体領域、16
はフィールド酸化膜、17はポリシリコンプート、18
はシリコン酸化膜。
Next, we will explain the formation processC First, 1m3G4C*
) on the substrate 11 of the transparent resin 12t as shown in FIG. 3(b).
t form. Next, as shown in FIG. 3(c), the transparent resin 12
ft (1 between each pixel when forming the solid-state imaging section on top)
Divide by enching. Next, Canada F111
By performing ft, each divided transparent resin 12 is melted and a lens-like formation is obtained due to surface tension as shown in FIG. 3(d). Since the thickness of the °C lens is determined by the thickness of the transparent resin 12, a focal length of 511@ can be ejected. The refractive index of the transparent resin 12 is about 1.5, and if the surface is made of air (with a refractive index of 1) or a substance with a refractive index smaller than 1.5, the refractive index as a lens is 4T2. This is a cross-sectional rirJ diagram showing the Tachibana-zukuri solid-state virtual image device with microlenses formed by the method of
13 is a p-type silicon substrate, 14 is an n-type semiconductor region that becomes a light receiving section, 15 is an n-type semiconductor region that becomes a drain, 16
is a field oxide film, 17 is a polysilicon layer, 18 is a
is a silicon oxide film.

19はアルミ配り、20けシリコン酸化膜、21はアル
ミ4光膜、22は平坦化膜、23はマイクロレンズであ
る。
19 is an aluminum layer, 20 silicon oxide films, 21 is an aluminum 4-light film, 22 is a flattening film, and 23 is a microlens.

〔発明が解決しよ5とする問題点〕 従来のマイクロレンズ付固体虚像装置は上記のように構
成され工いろので、マイクルレンズ23上に、透明の保
設用樹脂等の屈折率が1.5に近い物質を設けろとレン
ズ効果が失われ、集光力が低下し工しま5と(・5問題
点があった。
[Problems to be Solved by the Invention] Since the conventional solid-state virtual image device with a microlens is constructed as described above and has a mechanical color, a transparent storage resin or the like with a refractive index of 1. If a substance close to 5 is provided, the lens effect will be lost and the light gathering power will decrease, causing problems with 5 and (5).

この発明は、かかる問題点をM決するためKなされたも
ので、固体撮像素子の表面に投げる保護膜によって、レ
ンズ効果が失われず高い集光力が得られろマイクルレン
ズ付固体撮像装u?:得ることt目的とする。
This invention was made to solve this problem, and it is possible to obtain high light-gathering power without losing the lens effect by applying a protective film to the surface of the solid-state imaging device. : The purpose is to obtain.

c問題点を解決するための手段〕 この発明に係るマイクpし/ズ付固体盪像装置ハ、マイ
クQン/ズを窒化ノリフンg<よって形成したものであ
る。
Means for Solving Problems C] In the solid-state imaging device with microphones according to the present invention, the microphones are formed of nitrided glue.

〔作用〕[Effect]

この発明においては、マイクロレンズを形成する窒化シ
リコン膜の屈折率が高く、近接する他の9によってレン
ズ効果が失われることがない。
In this invention, the refractive index of the silicon nitride film forming the microlens is high, and the lens effect is not lost due to the other 9 in the vicinity.

〔実施例〕〔Example〕

第1図はこの発明のマイクロレンズ付固体虚像装置の一
実施例の−IIIj素を示す断面図で、1はp型のシリ
コン基板、2は受光部となるn型半導体領域、3はドレ
インとなるnm半導体領領域 4はシリコン酸化膜、5
は窒化シリコンレンズ、6はポリシリコンゲート、Tは
アルミ配線、8はフィールド酸化膜である。
FIG. 1 is a cross-sectional view showing the -IIIj element of an embodiment of the solid-state virtual image device with microlens of the present invention, in which 1 is a p-type silicon substrate, 2 is an n-type semiconductor region which becomes a light receiving part, and 3 is a drain. nm semiconductor region 4 is a silicon oxide film, 5 is a silicon oxide film;
6 is a silicon nitride lens, 6 is a polysilicon gate, T is an aluminum wiring, and 8 is a field oxide film.

第2図(a)〜(J)は、第り図に示したマイクロレン
ズ付固体虚像装置の製造工程を示す図で、第1囚と同一
符号は同一部分を示し、9はポリシリコン膜、10は窒
化シリコン膜である。
FIGS. 2(a) to 2(J) are diagrams showing the manufacturing process of the solid-state virtual image device with a microlens shown in FIG. 10 is a silicon nitride film.

以下、製造工程tt説明する。The manufacturing process tt will be explained below.

まず、第2図(a)K示すよ517C,シリフン基板1
上に受光部となるn型半導体領域2をフォトダイオード
として使用するために形成する。次w、第2図(b)&
C示すよ5に、シリコン酸化膜4を熱酸化またはCVD
法等により℃形成する。次いで第2図(c)K示すよ5
に、ポリシリコン膜9を、たとえばLPCVD法等によ
って堆積させる。そして、:n2図(d) l’c示す
よ5に、薄いシリコン酸化膜4を熱酸化またはCVD法
等によって形成したのち、第2図(e) K示すように
、窒化シリコン膜10をLPCVD法等により堆積させ
、n型半導体領域2以外を覆うようにバク−二/グする
First, as shown in FIG. 2(a)K, 517C, silicon substrate 1
An n-type semiconductor region 2 serving as a light receiving portion is formed on the top for use as a photodiode. Next w, Figure 2 (b) &
5, the silicon oxide film 4 is thermally oxidized or CVD
Formed at ℃ by method etc. Next, Fig. 2(c) shows K5.
Next, a polysilicon film 9 is deposited by, for example, LPCVD. Then, as shown in Figure 2(d)l'c, a thin silicon oxide film 4 is formed by thermal oxidation or CVD, and then, as shown in Figure 2(e)K, a silicon nitride film 10 is formed by LPCVD. The film is deposited by a method such as a method, and is then back-dipped to cover areas other than the n-type semiconductor region 2.

次に、第2図Cf) K示すよ5に、酸化を行うと窒化
シリコン模10の下部のポリシリコンfA9は酸化され
ス、窒化シリフン膜10に覆われ工いない部分だけが酸
化されてK(化シリコン膜101て覆われ1こ端の部分
は、A営バーズビーク(bird’s beaJと呼ば
れろよ5なテーバ状になる。欠番で、第2図(g)に示
すように、窒化シリコン模10および上側のシリコン酸
化膜4を除去する。このとき、上側のシリコン酸化膜4
のエツチングは、ポリシリコン膜9の下に形成されてい
るシリコン酸化膜4が露出したところで止める。次に、
第2図(h)vC示すよ5K、ポリシリコン膜9を酸化
すると、この形成のfま、ポリシリコン膜9は、シリコ
ン酸化膜4となる。この後、第2図(+)江示すよ5 
K。
Next, as shown in FIG. 2 (Cf) 5, when oxidation is performed, the polysilicon fA9 at the bottom of the silicon nitride pattern 10 is oxidized, and only the unprocessed portion covered with the silicon nitride film 10 is oxidized. The end portion covered with the silicon nitride film 101 has a tapered shape called a bird's beak (bird's beak). 10 and the upper silicon oxide film 4 are removed. At this time, the upper silicon oxide film 4
The etching is stopped when the silicon oxide film 4 formed under the polysilicon film 9 is exposed. next,
When the polysilicon film 9 is oxidized by 5K as shown in FIG. After this, Figure 2 (+) will be shown.
K.

シリコン酸化膜4の表面にLPCVD法等により窒化シ
リコン模を堆積し、表面を二ノ千パック法等を用いて平
坦化すれば窒化シリコンレンズ5が形成されろ。さらに
、この後、第2図(j) K示すよ5に、窒化シリコン
レンズ50表面1ccVD法等によりシリコン酸化膜4
を堆積させる。ここで、2化シリコン膜の屈折率が2.
82、シリコン酸化rA4の屈折率1.98であるため
、窒化シリコンレンズ5は屈折率の低い材料ではさまれ
ろことになり、凸レンズ効果を呈する。そして、この凸
レンズ効果はシリコン酸化膜4上罠侵で形成されるフィ
ルタ等の材料の性質に依存しない。
A silicon nitride lens 5 is formed by depositing a silicon nitride pattern on the surface of the silicon oxide film 4 by the LPCVD method or the like, and flattening the surface by using the Ninosen pack method or the like. Furthermore, after this, as shown in FIG.
deposit. Here, the refractive index of the silicon dioxide film is 2.
82. Since the refractive index of silicon oxide rA4 is 1.98, the silicon nitride lens 5 must be sandwiched between materials having a low refractive index, and exhibits a convex lens effect. This convex lens effect does not depend on the properties of the material of the filter or the like formed by trapping on the silicon oxide film 4.

なお、上記実施例では、窒化シリコンレンズ5の形成後
に1槓さセろ得としてシリコン酸化膜4を示し1こが、
これは、窒化頃の屈折率(2,82)よりも低ければ他
の材料でもよい。
In the above embodiment, the silicon oxide film 4 is formed as a layer after the silicon nitride lens 5 is formed.
This may be any other material as long as it is lower than the refractive index (2,82) of the nitrided material.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明しγことおり、マイクロレンズを屈
折率の高〜・2化シリコン模で形成したので。
As explained above, in this invention, the microlens is formed of silicon dioxide having a high refractive index.

固体撮像装置の表面保護膜、ま1こはカラーフィルタの
材料、形成によつ曵、凸レンズ効果が失われず集光力の
高いマイクロレンズ付固体撮像装置が得られろと〜・5
効果かある。
Due to the material and formation of the surface protective film of the solid-state imaging device, and the color filter, we hope to be able to obtain a solid-state imaging device with a microlens that has high light-gathering power without losing the convex lens effect.
It's effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明のマイクロレンズ付固体撮像装置の一
実施例の一万素を示す断面図、第2図(at〜(Dは、
第1図に示したマイクロレンズ付固体撮像装置の製造工
程を示す図、@3図(a)〜(d)は、従来のマイクロ
レンズの形成工程を示す図、第4図は従来のマイクロレ
ンズ付固体撮像装置の構3tを示す断面図である。 図におい王、4はノリコン酸化膜、5は窒化シリコンレ
ンズである。 なお、各図中の16】−符号は、ビ]−fた番ま相当部
分な示す。 代理人 大 岩 f′Ia  雄   (外2名ン第1
図 5窒化シリコンレンス 第2図 第2図 り 第2図 CI) 第3図 La)
FIG. 1 is a sectional view showing 10,000 elements of an embodiment of a solid-state imaging device with a microlens according to the present invention, and FIG.
Figure 1 shows the manufacturing process of the solid-state imaging device with a microlens; Figures 3 (a) to (d) show the process of forming a conventional microlens; Figure 4 shows the manufacturing process of a conventional microlens. It is a sectional view showing structure 3t of the attached solid-state imaging device. In the figure, 4 is a silicon oxide film, and 5 is a silicon nitride lens. In each figure, the symbol 16]- indicates the part corresponding to the number B]-f. Agent: Oiwa f'Ia (2 others, 1st)
Figure 5 Silicon nitride lens Figure 2 Figure 2 Figure 2 CI) Figure 3 La)

Claims (2)

【特許請求の範囲】[Claims] (1)光検出部を基板上に一次元または二次元に配置し
、前記光検出部上に集光用のマイクロレンズをそれぞれ
有するマイクロレンズ付固体撮像装置において、前記各
マイクロレンズを窒化シリコン膜で形成したことを特徴
とするマイクロレンズ付固体撮像装置。
(1) In a solid-state imaging device with a microlens, in which a photodetecting section is arranged one-dimensionally or two-dimensionally on a substrate, and each microlens for condensing light is provided on the photodetecting section, each of the microlenses is formed using a silicon nitride film. A solid-state imaging device with a microlens, characterized in that it is formed of.
(2)マイクロレンズは、上面が平坦であることを特徴
とする特許請求の範囲第(1)項記載のマイクロレンズ
付固体撮像装置。
(2) A solid-state imaging device with a microlens according to claim (1), wherein the microlens has a flat upper surface.
JP60164576A 1985-07-23 1985-07-23 Solid-state image pickup device with microlens Pending JPS6223161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60164576A JPS6223161A (en) 1985-07-23 1985-07-23 Solid-state image pickup device with microlens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60164576A JPS6223161A (en) 1985-07-23 1985-07-23 Solid-state image pickup device with microlens

Publications (1)

Publication Number Publication Date
JPS6223161A true JPS6223161A (en) 1987-01-31

Family

ID=15795791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60164576A Pending JPS6223161A (en) 1985-07-23 1985-07-23 Solid-state image pickup device with microlens

Country Status (1)

Country Link
JP (1) JPS6223161A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04234707A (en) * 1990-12-31 1992-08-24 Samsung Electron Co Ltd Color filter and manufacture thereof
JPH04252074A (en) * 1991-01-28 1992-09-08 Nec Corp Solid-state image sensing element
WO1995008192A1 (en) * 1993-09-17 1995-03-23 Polaroid Corporation Forming microlenses on solid state imager
JP2000039530A (en) * 1998-07-22 2000-02-08 Sony Corp Optical signal transmission system and its manufacture
US6221687B1 (en) * 1999-12-23 2001-04-24 Tower Semiconductor Ltd. Color image sensor with embedded microlens array
US7208783B2 (en) 2004-11-09 2007-04-24 Micron Technology, Inc. Optical enhancement of integrated circuit photodetectors
KR100802305B1 (en) 2006-12-27 2008-02-11 동부일렉트로닉스 주식회사 Image sensor fabricating method
KR100821849B1 (en) 2006-12-20 2008-04-14 동부일렉트로닉스 주식회사 Image sensor and the fabricating method thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04234707A (en) * 1990-12-31 1992-08-24 Samsung Electron Co Ltd Color filter and manufacture thereof
JPH04252074A (en) * 1991-01-28 1992-09-08 Nec Corp Solid-state image sensing element
WO1995008192A1 (en) * 1993-09-17 1995-03-23 Polaroid Corporation Forming microlenses on solid state imager
US5670384A (en) * 1993-09-17 1997-09-23 Polaroid Corporation Process for forming solid state imager with microlenses
JP2000039530A (en) * 1998-07-22 2000-02-08 Sony Corp Optical signal transmission system and its manufacture
US6221687B1 (en) * 1999-12-23 2001-04-24 Tower Semiconductor Ltd. Color image sensor with embedded microlens array
US7208783B2 (en) 2004-11-09 2007-04-24 Micron Technology, Inc. Optical enhancement of integrated circuit photodetectors
US7459733B2 (en) 2004-11-09 2008-12-02 Aptina Imaging Corporation Optical enhancement of integrated circuit photodetectors
GB2455224A (en) * 2004-11-09 2009-06-03 Micron Technology Inc Integrated circuit photodetector with an embedded microlens
GB2420224B (en) * 2004-11-09 2009-09-09 Agilent Technologies Inc Integrated circuit photodetectors
GB2455224B (en) * 2004-11-09 2009-11-18 Micron Technology Inc Integrated circuit photodetetectors
US7704780B2 (en) 2004-11-09 2010-04-27 Aptina Imaging Corporation Optical enhancement of integrated circuit photodetectors
KR100821849B1 (en) 2006-12-20 2008-04-14 동부일렉트로닉스 주식회사 Image sensor and the fabricating method thereof
KR100802305B1 (en) 2006-12-27 2008-02-11 동부일렉트로닉스 주식회사 Image sensor fabricating method

Similar Documents

Publication Publication Date Title
JP3447510B2 (en) Solid-state imaging device, manufacturing method thereof, and solid-state imaging device
JPH05134111A (en) Solid image pick-up apparatus
US8338900B2 (en) Image sensor having curved micro-mirrors over the sensing photodiode and method for fabricating
US6414343B1 (en) Solid-state imaging device having aspheric lenses
CN101661946B (en) Solid-state imaging device and method for manufacturing the same
TW201236146A (en) Solid-state image pickup device, method for manufacturing solid-state image pickup device, and electronic apparatus
JPH10270672A (en) Solid-state image pickup element
JPS6223161A (en) Solid-state image pickup device with microlens
JPH05335533A (en) Method of manufacturing solid-state imaging device
JP2737946B2 (en) Method for manufacturing solid-state imaging device
JPH07106537A (en) Manufacture of solid-state image sensing device
JPH07105481B2 (en) Method of manufacturing solid-state imaging device
JP2820074B2 (en) Solid-state imaging device and manufacturing method thereof
JP2003133536A (en) Solid-stage imaging device
WO2004093196A1 (en) Solid-state imager and method for manufacturing same
JPH04259256A (en) Solid state image sensor
JPH0945885A (en) Ccd solid-state image pickup divice and its preparation
JPS60262458A (en) Manufacture of solid-state image pickup device
JPS61287263A (en) Solid-state image pickup device and manufacture thereof
JP3152300B2 (en) Solid-state imaging device and method of manufacturing the same
JPS5999763A (en) Solid-state image-pickup device
JPH05145813A (en) Manufacture of micro lens for solid-state image pickup element
JPH06132515A (en) Solid-state imaging device
JP2002094038A (en) Solid-stage image pickup device and its manufacturing method
JPS6350057A (en) Manufacture of solid-state image sensing device