JPH05145813A - Manufacture of micro lens for solid-state image pickup element - Google Patents

Manufacture of micro lens for solid-state image pickup element

Info

Publication number
JPH05145813A
JPH05145813A JP3329646A JP32964691A JPH05145813A JP H05145813 A JPH05145813 A JP H05145813A JP 3329646 A JP3329646 A JP 3329646A JP 32964691 A JP32964691 A JP 32964691A JP H05145813 A JPH05145813 A JP H05145813A
Authority
JP
Japan
Prior art keywords
solid
microlens
image pickup
state image
transparent resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3329646A
Other languages
Japanese (ja)
Inventor
Toshihiko Isokawa
俊彦 磯川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP3329646A priority Critical patent/JPH05145813A/en
Publication of JPH05145813A publication Critical patent/JPH05145813A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To provide the micro lens for the solid-state image pickup element in which an inter-lens gap is eliminated to enhance the light collection rate. CONSTITUTION:A transparent resin material is applied onto a solid-state image pickup element 1 through rotation to form a flat layer 2, a transparent resin material layer of thermoplastic type is formed onto the flat layer 2 as a lens layer through rotary coating, patterning is implemented by the photolithogoraphy to form a transparent resin layer pattern onto a light receiving section. Then a drooping is caused to a circumferential part of the resin layer pattern through heat treatment to form a background micro lens 3. Then a transparent film 4 is depositted till an inter-lens gap G is eliminated isotropically at a temperature below the softening point of the background micro lens 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、固体撮像素子上に形
成されるマイクロレンズの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a microlens formed on a solid-state image pickup device.

【0002】[0002]

【従来の技術】一般に、CCD等の固体撮像装置は半導
体主面に光電変換部及び信号読み出し部を有しているの
で、実際に光電変換に寄与する領域は素子サイズにも依
存するが、20〜50%程度に制限されている。この欠点を
解決する手段として、従来、固体撮像装置に集光マイク
ロレンズアレイを組み合わせ、入射光を光電変換部に集
光する方法が提案されている。そしてかかるマイクロレ
ンズの形成方法については、例えば特公昭60−597
52号,特願平3−74441号,特願平3−1571
0号などに提案がなされている。
2. Description of the Related Art Generally, a solid-state image pickup device such as a CCD has a photoelectric conversion portion and a signal reading portion on a main surface of a semiconductor. Therefore, the area actually contributing to photoelectric conversion depends on the element size. Limited to ~ 50%. As a means for solving this drawback, a method has conventionally been proposed in which a solid-state imaging device is combined with a condensing microlens array to condense incident light on a photoelectric conversion unit. A method for forming such a microlens is described in, for example, Japanese Patent Publication No. 60-597.
No. 52, Japanese Patent Application No. 3-74441, Japanese Patent Application No. 3-1571
No. 0 etc. have been proposed.

【0003】図4は、従来のマイクロレンズを備えた固
体撮像装置の構成例を示す断面図である。図において、
101 はp型シリコンからなる基板であり、102 はn+
拡散領域で、光電変換受光部に対応する。103 は信号検
出用のAl配線であり、該Al配線103 を含む全面にパッシ
ベーション膜104 が形成されている。そして該パッシベ
ーション膜104 上には各光電変換受光部に対応してマイ
クロレンズ105 が配置されている。
FIG. 4 is a sectional view showing a structural example of a conventional solid-state image pickup device having a microlens. In the figure,
Reference numeral 101 is a substrate made of p-type silicon, and 102 is an n + -type diffusion region, which corresponds to the photoelectric conversion light receiving portion. 103 is an Al wiring for signal detection, and a passivation film 104 is formed on the entire surface including the Al wiring 103. Then, on the passivation film 104, microlenses 105 are arranged corresponding to the photoelectric conversion light receiving portions.

【0004】そして上記マイクロレンズ105 は、通常次
のようなプロセスで形成される。すなわち、まず図5の
(A)に示すように、受光部102 や転送部等を含む半導
体基板101 上に光学的に無色で光透過率の高い材料、例
えばPMMA(ポリメチルメタクリレート)等の樹脂を
回転塗布法により塗布して平坦層 105aを形成する。続
いて図5の(B)に示すように、同様に光学的に無色で
あり、熱軟化性を有する材料を回転塗布法により塗布し
て透明層を形成し、該透明層のマイクロレンズ形成部の
端部をフォトリソグラフィー技術によって除去して透明
層パターン 105bを形成する。次いで熱軟化点以上の熱
処理によって、各透明層パターン 105bの周辺部にだれ
を生じさせ、マイクロレンズ105 を形成する。
The microlens 105 is usually formed by the following process. That is, first, as shown in FIG. 5A, a material that is optically colorless and has a high light transmittance, such as a resin such as PMMA (polymethylmethacrylate), is formed on the semiconductor substrate 101 including the light receiving portion 102 and the transfer portion. Is applied by a spin coating method to form a flat layer 105a. Subsequently, as shown in FIG. 5B, a transparent layer is formed by applying a material that is also optically colorless and has a heat softening property by a spin coating method to form a transparent layer, and a microlens forming portion of the transparent layer. The edges of the transparent layer pattern 105b are removed by photolithography to form a transparent layer pattern 105b. Then, heat treatment at a temperature equal to or higher than the thermal softening point causes sagging in the peripheral portion of each transparent layer pattern 105b to form the microlens 105.

【0005】[0005]

【発明が解決しようとする課題】上記のように固体撮像
素子上にマイクロレンズ105 を形成することにより集光
能力が得られるが、マイクロレンズによる集光率をより
高めるためには、図6に示す各レンズ間のギャップGを
より小さくすることが必要である。しかしながら、マイ
クロレンズ形成用の透光層パターンをフォトリソグラフ
ィー技術で形成する際の制約により、ギャップGは小さ
くても約0.8μm程度は必要となる。すなわち0.8μm
以下のギャップでは、フォトリソグラフィー時における
解像度上、レンズ材料である透光層に対してスペースを
安定して形成することが困難であるし、またその後の熱
軟化点以上の熱処理によるパターン周辺のだれを生じさ
せる時の形状制御が非常に困難である等の問題点がある
からである。
As described above, the condensing ability can be obtained by forming the microlens 105 on the solid-state image pickup device. To increase the condensing rate by the microlens, as shown in FIG. It is necessary to make the gap G between the respective lenses shown smaller. However, the gap G is required to be about 0.8 μm even if the gap G is small due to the restriction in forming the transparent layer pattern for forming the microlens by the photolithography technique. That is 0.8 μm
In the gaps below, it is difficult to form a space stably in the light-transmitting layer that is the lens material due to the resolution during photolithography, and the sag around the pattern due to the subsequent heat treatment above the thermal softening point. This is because there is a problem that it is very difficult to control the shape at the time of causing the phenomenon.

【0006】本発明は、従来のマイクロレンズの製造方
法における上記問題点を解消するためになされたもの
で、レンズ間ギャップを消失させてより集光率を高くし
た固体撮像素子用マイクロレンズの製造方法を提供する
ことを目的とする。
The present invention has been made in order to solve the above-mentioned problems in the conventional method for manufacturing a microlens, and manufactures a microlens for a solid-state image pickup device in which a gap between lenses is eliminated to increase the light collection rate. The purpose is to provide a method.

【0007】[0007]

【課題を解決するための手段及び作用】上記問題点を解
決するため、本発明は、固体撮像素子上にマイクロレン
ズを直接形成する固体撮像素子用マイクロレンズの製造
方法において、前記固体撮像素子の受光側全面に熱軟化
型の透明樹脂層を形成する工程と、該透明樹脂層を前記
固体撮像素子の各受光部に位置するようにパターニング
する工程と、該透明樹脂層パターンを加熱溶融し各透明
樹脂層パターンを凸レンズに形成する工程と、該凸レン
ズ上全面に前記透明樹脂層の溶融温度より低温で透明膜
を該凸レンズ間のギャップがなくなるように堆積形成す
る工程とで固体撮像素子用マイクロレンズを製造するも
のである。
In order to solve the above problems, the present invention provides a method for manufacturing a microlens for a solid-state image pickup device, wherein a microlens is directly formed on the solid-state image pickup device. A step of forming a heat-softening type transparent resin layer on the entire light receiving side, a step of patterning the transparent resin layer so as to be located in each light receiving portion of the solid-state imaging device, and a step of heating and melting the transparent resin layer pattern The process for forming the transparent resin layer pattern on the convex lens and the process for depositing and forming a transparent film on the entire surface of the convex lens at a temperature lower than the melting temperature of the transparent resin layer so as to eliminate the gap between the convex lenses A lens is manufactured.

【0008】このように、固体撮像素子の受光部に対応
して設けられた透明樹脂層パターンを加熱溶融すること
により形成されたレンズ間にギャップを有する凸レンズ
の全面に、低温で透明膜を凸レンズ間のギャップがなく
なるように堆積形成することによって、ギャップ部のな
い高集光率のマイクロレンズが得られる。
As described above, the transparent film is formed on the entire surface of the convex lens having a gap between the lenses formed by heating and melting the transparent resin layer pattern provided corresponding to the light receiving portion of the solid-state image pickup device at low temperature. By depositing and forming so as to eliminate the gap between them, a microlens having a high light collection rate without a gap portion can be obtained.

【0009】[0009]

【実施例】次に実施例について説明する。図1は、本発
明に係る固体撮像素子用マイクロレンズの製造方法の第
1実施例を説明するための製造工程図である。図1の
(A)に示すように、まず受光部や転送部等を備えた固
体撮像素子1上に、光学的に透明な樹脂材料、例えばP
GMA(ポリグリシジルメタクリレート)などを回転塗
布により塗布して平坦層2を所望の厚さに形成する。次
いでこの平坦層2上に、レンズ層として同様に光学的に
透明で熱軟化型の樹脂材料層を回転塗布により形成した
のち、通常のフォトリソグラフィー技術により受光部に
対応してパターニングを行って受光部上に透明樹脂層パ
ターンを形成する。次いで熱軟化点以上の温度による熱
処理で透明樹脂層パターンの周辺部にだれを生じさせ、
凸レンズ状の下地マイクロレンズ3を形成する。この
際、レンズ間ギャップGは、レンズとなる透明樹脂層パ
ターンのフォトリソグラフィー時における抜きスペース
に対応し、解像度が容易に得られる約1.0μm程度にし
ておく。
EXAMPLES Next, examples will be described. FIG. 1 is a manufacturing process diagram for explaining a first embodiment of a method for manufacturing a microlens for a solid-state image sensor according to the present invention. As shown in FIG. 1A, first, an optically transparent resin material such as P is formed on a solid-state image sensor 1 including a light receiving portion, a transfer portion, and the like.
GMA (polyglycidyl methacrylate) or the like is applied by spin coating to form the flat layer 2 with a desired thickness. Next, an optically transparent and heat-softening type resin material layer is similarly formed as a lens layer on the flat layer 2 by spin coating, and then patterning is performed corresponding to the light receiving portion by an ordinary photolithography technique to receive light. A transparent resin layer pattern is formed on the part. Next, heat treatment at a temperature equal to or higher than the thermal softening point causes sagging in the peripheral portion of the transparent resin layer pattern,
A base microlens 3 having a convex lens shape is formed. At this time, the inter-lens gap G is set to about 1.0 μm, which corresponds to the blank space at the time of photolithography of the transparent resin layer pattern to be the lens and which can easily obtain the resolution.

【0010】次に図1の(B)に示すように、下地マイ
クロレンズ3を構成する透明樹脂材料の熱軟化点以下の
温度で形成可能な光学的透明膜4を、等方的に下地マイ
クロレンズ3間のギャップGが消失するまで、すなわち
約0.5μm厚程度堆積させる。例えば、半導体の酸化膜
を形成させる際に用いられる光CVD,プラズマCVD
等の方法によれば、常温〜120 ℃程度のレンズ樹脂材料
の軟化点を越えない温度範囲で、等方的に透明な酸化膜
を形成することができ、透明膜4の堆積時の熱によって
下地マイクロレンズ3が変形する恐れがない。
Next, as shown in FIG. 1B, an optically transparent film 4 isotropically formed by forming an optically transparent film 4 that can be formed at a temperature equal to or lower than the thermal softening point of the transparent resin material forming the underlying microlens 3. Deposition is performed until the gap G between the lenses 3 disappears, that is, about 0.5 μm thick. For example, photo CVD and plasma CVD used when forming an oxide film of a semiconductor.
According to the method described above, an isotropic transparent oxide film can be formed within a temperature range from room temperature to about 120 ° C. which does not exceed the softening point of the lens resin material. There is no fear that the base microlens 3 will be deformed.

【0011】このようにして下地マイクロレンズ3上に
等方的に透明膜4を形成した場合、図1の(B)に示す
ように、レンズ間ギャップのない理想的なレンズ形状が
得られる。なお下地マイクロレンズ3上に形成する等方
的透明膜4はCVD法に限らず、レンズ構成材料の熱軟
化点以下で等方的に成膜できる手法であればいずれの方
法でも用いることが可能である。更に光学的透明膜4は
特に酸化膜に限定されるものではなく、透明であり等方
的に低温形成が可能なものであれば同様に用いることが
できる。
When the transparent film 4 isotropically formed on the base microlens 3 in this manner, an ideal lens shape having no inter-lens gap can be obtained, as shown in FIG. 1B. Note that the isotropic transparent film 4 formed on the underlying microlens 3 is not limited to the CVD method, and any method can be used as long as it is a method capable of forming an isotropic film below the thermal softening point of the lens constituent material. Is. Further, the optically transparent film 4 is not particularly limited to an oxide film, and can be similarly used as long as it is transparent and can be isotropically formed at a low temperature.

【0012】次に第2実施例を図2を参照しながら説明
する。まず第1実施例と同様な手法で下地マイクロレン
ズ3を図1の(A)に示すように形成する。この際、レ
ンズ間ギャップGはやはり同様に約1.0μm程度として
おく。続いて、図2に示すように、半導体の層間絶縁膜
の平坦化等に用いられるスピンオングラス(SOG)を
用いた回転塗布を行い、レンズ樹脂材料の熱軟化点以下
の温度で焼結させて酸化膜5を得る。図2は、このよう
に下地マイクロレンズ3上にSOGによる酸化膜5を堆
積形成した後のレンズ形状を示している。この方法によ
れば、従来生じていたギャップ部がほぼ消失し、高集光
率のマイクロレンズが容易に形成できる。
Next, a second embodiment will be described with reference to FIG. First, the base microlens 3 is formed as shown in FIG. 1A by the same method as in the first embodiment. At this time, the inter-lens gap G is similarly set to about 1.0 μm. Subsequently, as shown in FIG. 2, spin coating using spin-on-glass (SOG), which is used for flattening the interlayer insulating film of the semiconductor, is performed and sintered at a temperature lower than the thermal softening point of the lens resin material. The oxide film 5 is obtained. FIG. 2 shows the lens shape after the oxide film 5 of SOG is deposited and formed on the base microlens 3 as described above. According to this method, the gap portion that has been generated conventionally is almost eliminated, and a microlens having a high light collection rate can be easily formed.

【0013】この図2からわかるように、下地マイクロ
レンズ3上に回転塗布により酸化膜5を形成するため、
酸化膜5は等方的な成膜とならず、レンズ間ギャップ部
に形成される酸化膜5の厚さTOX2は厚く、下地マイク
ロレンズ3の頂部に形成される酸化膜5の厚さTOX1は
薄くなる成膜特性をもっている。これにより最終的なマ
イクロレンズの曲率は、下地マイクロレンズ3より大き
くなる。したがってSOGで形成される酸化膜5による
曲率の変化を考慮し、下地マイクロレンズ3の塗布時の
膜厚を厚くする等の方法により、予め下地マイクロレン
ズ3の曲率を最終設計曲率より小さくしておく必要があ
る。
As can be seen from FIG. 2, since the oxide film 5 is formed on the base microlens 3 by spin coating,
The oxide film 5 is not isotropically formed, the thickness T OX 2 of the oxide film 5 formed in the inter-lens gap portion is large, and the thickness of the oxide film 5 formed on the top of the underlying microlens 3 is large. T OX 1 has a thin film forming characteristic. As a result, the final curvature of the microlens becomes larger than that of the base microlens 3. Therefore, in consideration of the change in curvature due to the oxide film 5 formed of SOG, the curvature of the base microlens 3 is made smaller than the final design curvature in advance by a method such as thickening the film thickness of the base microlens 3 during coating. I need to leave.

【0014】次に第3実施例を図3に基づいて説明す
る。この実施例においても、まず第1実施例と同様の手
法で、下地マイクロレンズ3を図1の(A)に示すよう
に形成する。この際、レンズ間ギャップGはやはり同様
に約1.0μm程度としておく。次いで、図3に示すよう
に、半導体食刻工程で一般的に用いられているリアクテ
ィブ・イオン・エッチング(R・I・E)等のドライエ
ッチング法で、平坦層2と下地マイクロレンズ3との選
択比が1なる条件下で、レンズ間ギャップGが消失する
までエッチングを行う。
Next, a third embodiment will be described with reference to FIG. Also in this embodiment, first, the base microlens 3 is formed as shown in FIG. 1A by the same method as in the first embodiment. At this time, the inter-lens gap G is similarly set to about 1.0 μm. Next, as shown in FIG. 3, the flat layer 2 and the base microlens 3 are formed by a dry etching method such as reactive ion etching (RIE) generally used in the semiconductor etching process. Etching is performed until the inter-lens gap G disappears under the condition that the selection ratio is 1.

【0015】この際、下地マイクロレンズ3の形状によ
って、レンズ底部,ギャップ部近傍に入射したエッチン
グ種は、レンズ表面で図3に示すようにイオン散乱6を
受け、結果的にギャップ部のみのエッチング量が増し、
最終的に形成されるマイクロレンズ7は、ギャップの消
失した形状となる。したがってこの方法によっても、ギ
ャップ部がほぼ消失した高集光マイクロレンズを容易に
形成することができる。
At this time, due to the shape of the base microlens 3, the etching species incident on the lens bottom and the vicinity of the gap are subjected to ion scattering 6 on the lens surface as shown in FIG. 3, and as a result, only the gap is etched. Increase in quantity,
The finally formed microlens 7 has a shape with no gap. Therefore, also by this method, it is possible to easily form the high-condensation microlens in which the gap portion has almost disappeared.

【0016】[0016]

【発明の効果】以上実施例に基づいて説明したように、
本発明によれば、加熱溶融により凸レンズを形成したの
ちに、凸レンズ上に透明膜を凸レンズ間のギャップがな
くなるように堆積形成するか、あるいは凸レンズの表面
を凸レンズ間のギャップがなくなるようにエッチング除
去するようにしたので、レンズ間のギャップが消失し従
来より高い集光率をもつマイクロレンズを容易に実現す
ることができる。
As described above on the basis of the embodiments,
According to the present invention, after forming a convex lens by heating and melting, a transparent film is deposited and formed on the convex lens so that the gap between the convex lenses is eliminated, or the surface of the convex lens is removed by etching so that the gap between the convex lenses is eliminated. Since this is done, the gap between the lenses disappears, and it is possible to easily realize a microlens having a higher light collection rate than in the past.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る固体撮像素子用マイクロレンズの
製造方法の第1実施例を説明するための製造工程図であ
る。
FIG. 1 is a manufacturing process diagram for explaining a first embodiment of a method for manufacturing a microlens for a solid-state image sensor according to the present invention.

【図2】第2実施例を説明するための製造工程図であ
る。
FIG. 2 is a manufacturing process drawing for explaining the second embodiment.

【図3】第3実施例を説明するための製造工程図であ
る。
FIG. 3 is a manufacturing process drawing for explaining the third embodiment.

【図4】従来のマイクロレンズを備えた固体撮像装置の
構成例を示す断面図である。
FIG. 4 is a cross-sectional view showing a configuration example of a conventional solid-state imaging device including a microlens.

【図5】図4に示した固体撮像装置のマイクロレンズの
製造工程を示す図である。
FIG. 5 is a diagram showing a manufacturing process of a microlens of the solid-state imaging device shown in FIG.

【図6】従来の固体撮像装置におけるマイクロレンズ間
のギャップを示す図である。
FIG. 6 is a diagram showing a gap between microlenses in a conventional solid-state imaging device.

【符号の説明】 1 固体撮像素子 2 平坦層 3 下地マイクロレンズ 4 透明膜 5 SOG酸化膜 6 イオン散乱 7 マイクロレンズ[Explanation of reference numerals] 1 solid-state imaging device 2 flat layer 3 base microlens 4 transparent film 5 SOG oxide film 6 ion scattering 7 microlens

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 固体撮像素子上にマイクロレンズを直接
形成する固体撮像素子用マイクロレンズの製造方法にお
いて、前記固体撮像素子の受光側全面に熱軟化型の透明
樹脂層を形成する工程と、該透明樹脂層を前記固体撮像
素子の各受光部に位置するようにパターニングする工程
と、該透明樹脂層パターンを加熱溶融し各透明樹脂層パ
ターンを凸レンズに形成する工程と、該凸レンズ上全面
に前記透明樹脂層の溶融温度より低温で透明膜を該凸レ
ンズ間のギャップがなくなるように堆積形成する工程と
を備えていることを特徴とする固体撮像素子用マイクロ
レンズの製造方法。
1. A method of manufacturing a microlens for a solid-state image pickup device, wherein a microlens is directly formed on the solid-state image pickup device, a step of forming a heat-softening type transparent resin layer on the entire light receiving side of the solid-state image pickup device, Patterning the transparent resin layer so as to be positioned in each light receiving portion of the solid-state imaging device; heating and melting the transparent resin layer pattern to form each transparent resin layer pattern on a convex lens; And a step of depositing a transparent film at a temperature lower than the melting temperature of the transparent resin layer so that the gap between the convex lenses is eliminated.
【請求項2】 前記凸レンズ上に形成する透明膜を、C
VD法あるいはスピンオングラス法で形成することを特
徴とする請求項1記載の固体撮像素子用マイクロレンズ
の製造方法。
2. A transparent film formed on the convex lens is C
The method of manufacturing a microlens for a solid-state image pickup device according to claim 1, wherein the microlens is formed by a VD method or a spin-on-glass method.
【請求項3】 固体撮像素子上にマイクロレンズを直接
形成する固体撮像素子用マイクロレンズの製造方法にお
いて、前記固体撮像素子の受光側全面に透光性の下地透
明膜を形成したのち熱軟化型の透明樹脂層を形成する工
程と、該透明樹脂層を前記固体撮像素子の各受光部に位
置するようにパターニングする工程と、該透明樹脂層パ
ターンを加熱溶融し各透明樹脂層パターンを凸レンズに
形成する工程と、ドライエッチング法により前記凸レン
ズの表面の一部を除去すると共に、前記下地透明膜の一
部を除去して凸レンズ間のギャップをなくす工程とを備
えていることを特徴とする固体撮像素子用マイクロレン
ズの製造方法。
3. A method of manufacturing a microlens for a solid-state image pickup device, wherein a microlens is directly formed on the solid-state image pickup device, wherein a transparent base transparent film is formed on the entire light-receiving side of the solid-state image pickup device, and then the heat-softening type is formed. Forming a transparent resin layer, patterning the transparent resin layer so as to be positioned in each light receiving portion of the solid-state imaging device, and heating and melting the transparent resin layer pattern to form each transparent resin layer pattern into a convex lens. A solid comprising a step of forming and a step of removing a part of the surface of the convex lens by a dry etching method and a part of the base transparent film to eliminate a gap between the convex lenses. A method for manufacturing a microlens for an image sensor.
JP3329646A 1991-11-20 1991-11-20 Manufacture of micro lens for solid-state image pickup element Withdrawn JPH05145813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3329646A JPH05145813A (en) 1991-11-20 1991-11-20 Manufacture of micro lens for solid-state image pickup element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3329646A JPH05145813A (en) 1991-11-20 1991-11-20 Manufacture of micro lens for solid-state image pickup element

Publications (1)

Publication Number Publication Date
JPH05145813A true JPH05145813A (en) 1993-06-11

Family

ID=18223673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3329646A Withdrawn JPH05145813A (en) 1991-11-20 1991-11-20 Manufacture of micro lens for solid-state image pickup element

Country Status (1)

Country Link
JP (1) JPH05145813A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100410613B1 (en) * 2001-06-28 2003-12-18 주식회사 하이닉스반도체 Image sensor with IR filter
KR100436061B1 (en) * 2001-06-28 2004-06-12 주식회사 하이닉스반도체 Method for fabricating Microlense
JP2005019858A (en) * 2003-06-27 2005-01-20 Toppan Printing Co Ltd Two-dimension image converting element
US6950140B2 (en) * 2000-01-26 2005-09-27 Toppan Printing Co., Ltd. Solid image-pickup device having a micro lens array and method of manufacturing the same
JP2009157397A (en) * 2009-04-13 2009-07-16 Sony Corp Method for manufacturing solid image pickup device and solid image pickup device
WO2019244677A1 (en) * 2018-06-21 2019-12-26 東京エレクトロン株式会社 Method for producing microlens and plasma processing apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6950140B2 (en) * 2000-01-26 2005-09-27 Toppan Printing Co., Ltd. Solid image-pickup device having a micro lens array and method of manufacturing the same
KR100410613B1 (en) * 2001-06-28 2003-12-18 주식회사 하이닉스반도체 Image sensor with IR filter
KR100436061B1 (en) * 2001-06-28 2004-06-12 주식회사 하이닉스반도체 Method for fabricating Microlense
JP2005019858A (en) * 2003-06-27 2005-01-20 Toppan Printing Co Ltd Two-dimension image converting element
JP2009157397A (en) * 2009-04-13 2009-07-16 Sony Corp Method for manufacturing solid image pickup device and solid image pickup device
WO2019244677A1 (en) * 2018-06-21 2019-12-26 東京エレクトロン株式会社 Method for producing microlens and plasma processing apparatus

Similar Documents

Publication Publication Date Title
US6362498B2 (en) Color image sensor with embedded microlens array
CN107818995B (en) Method of manufacturing image sensor
JPH05134111A (en) Solid image pick-up apparatus
JP2001111015A (en) Solid-state imaging element
JPH0964325A (en) Solid-state image sensing device and its manufacture
CN110634895B (en) Curved image sensor using thermoplastic substrate material
JPH06112459A (en) On-chip lens and manufacture thereof
US6043001A (en) Dual mask pattern transfer techniques for fabrication of lenslet arrays
JP3992713B2 (en) CMOS image sensor and manufacturing method thereof
JPH05145813A (en) Manufacture of micro lens for solid-state image pickup element
JPH04229802A (en) Solid image pick-up device and manufacture thereof
US8183080B2 (en) Image sensor and manufacturing method thereof
JP2003264284A (en) Solid state imaging element and its manufacturing method
JP2000357786A (en) Solid state imaging device
JP4067175B2 (en) Method for manufacturing solid-state imaging device
JPH05335533A (en) Method of manufacturing solid-state imaging device
JPH07106537A (en) Manufacture of solid-state image sensing device
JPH10173159A (en) Solid-state image pickup element and its manufacturing method
JPS60262458A (en) Manufacture of solid-state image pickup device
KR20000044590A (en) Image sensor and fabrication method
KR100720514B1 (en) Method of manufacturing image sensor
KR100790209B1 (en) CMOS Image sensor
JP2000269474A (en) Solid-state image pickup device and manufacture thereof
KR100521969B1 (en) Image sensor having high light sensitivity and manufacturing method
JPH03238863A (en) Solid state image sensing element and manufacture thereof

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990204