JPS6223059Y2 - - Google Patents

Info

Publication number
JPS6223059Y2
JPS6223059Y2 JP7134581U JP7134581U JPS6223059Y2 JP S6223059 Y2 JPS6223059 Y2 JP S6223059Y2 JP 7134581 U JP7134581 U JP 7134581U JP 7134581 U JP7134581 U JP 7134581U JP S6223059 Y2 JPS6223059 Y2 JP S6223059Y2
Authority
JP
Japan
Prior art keywords
iron core
core
electromagnetic steel
iron
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7134581U
Other languages
Japanese (ja)
Other versions
JPS57183706U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7134581U priority Critical patent/JPS6223059Y2/ja
Publication of JPS57183706U publication Critical patent/JPS57183706U/ja
Application granted granted Critical
Publication of JPS6223059Y2 publication Critical patent/JPS6223059Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Electromagnets (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 本考案は回転磁界を発生させる多極磁化鉄心に
関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a multipolar magnetized iron core that generates a rotating magnetic field.

従来の技術 強磁性材料の磁気探傷或いは脱磁をする場合2
極又は3極、4極のなどの多極の磁化ヨークを用
いる方法がある。この方法は上記多極の磁化ヨー
クのコイルに移相の異なる電流をそれぞれのコイ
ルに通電し、これによつて発生する回転磁界によ
つて多方向に残留する磁気を同時に脱磁するもの
である。ところで上記のように回転磁界を発生さ
せると鉄心内部にも回転磁界が発生し普通の鉄心
の組方では鉄心内部を通る磁束は電磁鋼板の平面
に対し垂直又はある角度をなすため磁気抵抗が発
生し効率が低下すると共に発生によつて長時間の
使用ができなくなる等の欠点を有するものであつ
た。
Conventional technology When performing magnetic flaw detection or demagnetization of ferromagnetic materials 2
There is a method using a multi-pole magnetization yoke such as a pole or a three-pole or four-pole magnetization yoke. In this method, currents with different phase shifts are applied to the coils of the multi-pole magnetizing yoke, and the resulting rotating magnetic field simultaneously demagnetizes residual magnetism in multiple directions. . By the way, when a rotating magnetic field is generated as described above, a rotating magnetic field is also generated inside the iron core, and with the normal construction of the iron core, the magnetic flux passing through the inside of the iron core is perpendicular to the plane of the electromagnetic steel sheet or at a certain angle, so magnetic resistance occurs. However, this method has disadvantages such as a decrease in efficiency and the fact that it cannot be used for a long period of time due to the occurrence of generation.

即ち、第1図に示すものは従来普通に組立てら
れる4極磁化ヨークの鉄心1であつて該鉄心1は
図から明らかなように状及びI状の電磁鋼板
1′を使用し、これら全ての電磁鋼板1′はその平
面方向が同じ方向に向けて重ね合わせる構造であ
る。
That is, what is shown in FIG. 1 is an iron core 1 of a four-pole magnetized yoke that is normally assembled in the past.As is clear from the figure, the iron core 1 uses electromagnetic steel sheets 1' having a shape and an I shape. The electromagnetic steel sheets 1' have a structure in which their planar directions are stacked one on top of the other.

そして鉄心1にコイル2a,2b,2c,2d
を巻き、第5図で示す結線図(該図は本考案の結
線図として画いたが該結線は従来のものと変わり
はない。)のように結線し、それぞれのコイル2
a,2b,2c,2dに120゜ずれた移相をもつ
交流又は半波整流された直流を流す。これにより
回転磁界が発生する。このようにコイル2a,2
b,2c,2dに電流を流すと、上記鉄心1にも
第2図に示すように磁束Φaが発生する。この場
合磁束Φa′部分は電磁鋼板1′,1′の平面に対し
垂直となるので熱が発生し易く、効率が低下する
ものであつた。これを防止するために第3図A,
Bに示すように磁路を分離する鉄心1aとする
か、或いは巻鉄心1bを使用して内部に発生する
回転磁束を電磁鋼板の平面方向に通す方法があつ
た。しかし前者の鉄心1aは交差する部分だけよ
けいに鉄心が必要になり、また後者の鉄心1bを
使用した場合には製作上等の点から割高になる等
の欠点を有するものであつた。
And coils 2a, 2b, 2c, 2d on iron core 1
, and connect them as shown in the wiring diagram shown in Fig. 5 (this diagram is drawn as a wiring diagram of the present invention, but the wiring is the same as the conventional one), and connect each coil 2.
A, 2b, 2c, and 2d are supplied with alternating current or half-wave rectified direct current with a phase shift of 120°. This generates a rotating magnetic field. In this way, the coils 2a, 2
When a current is passed through b, 2c, and 2d, a magnetic flux Φa is generated in the iron core 1 as well, as shown in FIG. In this case, since the magnetic flux Φa' portion is perpendicular to the plane of the electromagnetic steel plates 1', 1', heat is likely to be generated, resulting in a decrease in efficiency. To prevent this, Figure 3A,
There is a method of using an iron core 1a that separates the magnetic paths as shown in B, or using a wound iron core 1b to pass the rotating magnetic flux generated inside in the plane direction of the electromagnetic steel sheet. However, the former iron core 1a requires an additional iron core for the intersecting portions, and the latter iron core 1b has drawbacks such as being relatively expensive due to manufacturing considerations.

考案が解決しようとする問題点 本考案の課題は、電磁鋼板の組合せの一部を変
更するのみの構造で上記欠点を解消した多極磁化
鉄心を提供することにある。
Problems to be Solved by the Invention An object of the invention is to provide a multipolar magnetized core that eliminates the above-mentioned drawbacks by only changing a part of the combination of electromagnetic steel plates.

問題点を解決するための手段 本考案の手段は(イ)I状の電磁鋼板10′aを水
平状に配置して重ね合せて鉄心10aを形成し、
(ロ)前記鉄心10aの両側又は両端に鉄心10b,
10bを一体に配置して組立て、(ハ)鉄心10aの
両側又は両端部の鉄心10b,10bは鉄心内部
を通る磁束が電磁鋼板の平面方向になるように構
成したことである。
Means for solving the problems The means of the present invention is (a) I-shaped electromagnetic steel plates 10'a are arranged horizontally and overlapped to form the iron core 10a,
(b) Iron core 10b on both sides or both ends of the iron core 10a,
(c) The iron cores 10b, 10b on both sides or both ends of the iron core 10a are constructed so that the magnetic flux passing through the inside of the iron core is in the plane direction of the electromagnetic steel sheet.

実施例 本考案の鉄心10は第4図に示すように長・短
2種のI状の電磁鋼板10′a及び10′bを図示
のように組合せて構成したものである。即ち比較
的長い方の電磁鋼板10′aを水平状に配置して
重ね合わせて形成した鉄心10aの両側に電磁鋼
板10′b,10′bを垂直状に配置して重ね合わ
せて形成した鉄心10b,10bを渦流防止絶縁
板11を介して一体に組合せて鉄心10を形成
し、それぞれの鉄心10b,10bにコイル12
a,12b,12c,12dを巻き、第5図に示
すように結線する。なお結線の方法及び電流の流
し方については従来の方法と何ら変わるものでな
い。
Embodiment As shown in FIG. 4, the iron core 10 of the present invention is constructed by combining two long and short I-shaped electromagnetic steel plates 10'a and 10'b as shown. That is, an iron core is formed by arranging relatively long electromagnetic steel plates 10'a horizontally and overlapping each other, and an iron core 10a formed by arranging electromagnetic steel plates 10'b and 10'b vertically and overlapping each other on both sides of the iron core 10a. 10b, 10b are integrally combined via an eddy current prevention insulating plate 11 to form an iron core 10, and a coil 12 is attached to each iron core 10b, 10b.
Wrap wires a, 12b, 12c, and 12d and connect them as shown in FIG. Note that the method of wiring and the method of flowing current are no different from conventional methods.

なおまた、第7図に示すものは本考案の他の実
施例の鉄心10′を示すもので、I状の電磁鋼板
を水平状に配置して重ね合わせて形成した鉄心1
0aの両端に弧状の鉄心10aの両端に弧状の鉄
心10b,10bを渦流防止絶縁板11を介して
一体に組み合わせてなるものである。そして該鉄
心10b,10bのそれぞれの両端に上記コイル
と同様にコイルを巻き付けるものである(コイル
は図示しない)。
Furthermore, what is shown in FIG. 7 shows an iron core 10' according to another embodiment of the present invention, in which the iron core 1 is formed by stacking I-shaped electromagnetic steel sheets horizontally arranged.
It is formed by integrally combining an arc-shaped iron core 10a at both ends of 0a and arc-shaped iron cores 10b, 10b at both ends with an eddy current prevention insulating plate 11 interposed therebetween. A coil is wound around both ends of each of the iron cores 10b, 10b in the same manner as the above coil (the coil is not shown).

上記のように構成したコイル12a,12b,
12c,12dに電流を流すと第2図において示
す従来例と同様磁束Φbが第6図に示すように鉄
心10a,10bに流れる。この場合全ての磁束
Φbは電磁鋼板10′a,10′bの平面方向に流
れるのでロスはほとんどなく、発熱もしない。な
お第7図に示す鉄心10′に対しても同様に磁束
Φcが電磁鋼板の平面方向に流れる。
Coils 12a, 12b configured as above,
When a current is passed through the iron cores 12c and 12d, magnetic flux Φb flows through the iron cores 10a and 10b as shown in FIG. 6, similar to the conventional example shown in FIG. In this case, all the magnetic flux Φb flows in the plane direction of the electromagnetic steel plates 10'a and 10'b, so there is almost no loss and no heat is generated. Note that magnetic flux Φc similarly flows in the plane direction of the electromagnetic steel sheet with respect to the iron core 10' shown in FIG.

考案の効果 本考案は上述の如きものであり、鉄心が交差す
ることもなく、かつ捲鉄心を使用するものでない
上に、発熱、ロス等の発生を確実に防止するもの
であるから、この種の多極磁化鉄心としてその実
用性価値はきわめて大なるものであり、今後広く
利用されるのである。
Effects of the invention The present invention is as described above, and since the iron cores do not cross and do not use a wound core, it reliably prevents the occurrence of heat generation, loss, etc. Its practical value as a multipolar magnetized iron core is extremely great, and it will be widely used in the future.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の多極磁化鉄心の例を示す斜視
図、第2図は第1図の鉄心に磁束が流れた状態を
示す平面図、第3図は従来の他の鉄心の例を示す
斜視図、第4図は本考案の多極磁化鉄心の実施例
を示す斜視図、第5図はコイルの配線状態を示す
結線図、第6図は第4図の鉄心に磁束が流れた状
態を示す平面図、第7図は本考案の鉄心の他の実
施例を示す斜視図である。 10a,10b……鉄心、10′……電磁鋼
板。
Figure 1 is a perspective view showing an example of a conventional multi-pole magnetized core, Figure 2 is a plan view showing a state in which magnetic flux flows through the core in Figure 1, and Figure 3 is an example of another conventional core. 4 is a perspective view showing an embodiment of the multi-polar magnetized core of the present invention, FIG. 5 is a wiring diagram showing the wiring state of the coil, and FIG. 6 is a state in which magnetic flux flows through the core shown in FIG. 4. FIG. 7 is a perspective view showing another embodiment of the iron core of the present invention. 10a, 10b...iron core, 10'...magnetic steel plate.

Claims (1)

【実用新案登録請求の範囲】 下記3要素の結合から成る多極磁化鉄心の構
造。 (イ) I状の電磁鋼板10′aを水平状に配置して
重ね合せて鉄心10aを形成したこと。 (ロ) 前記鉄心10aの両側又は両端に鉄心10
b,10bを一体に配置して組立てたこと。 (ハ) 鉄心10aの両側又は両端部の鉄心10b,
10bは鉄心内部を通る磁束が電磁鋼板の平面
方向になるように構成したこと。
[Utility Model Claims] A multi-pole magnetized core structure consisting of the combination of the following three elements: (a) I-shaped electromagnetic steel sheets 10'a are arranged horizontally and stacked to form the core 10a; (b) The core 10 is provided on both sides or both ends of the core 10a.
(c) The iron cores 10b on both sides or both ends of the iron core 10a,
10b is configured so that the magnetic flux passing through the inside of the iron core is in the plane direction of the electromagnetic steel sheet.
JP7134581U 1981-05-19 1981-05-19 Expired JPS6223059Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7134581U JPS6223059Y2 (en) 1981-05-19 1981-05-19

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7134581U JPS6223059Y2 (en) 1981-05-19 1981-05-19

Publications (2)

Publication Number Publication Date
JPS57183706U JPS57183706U (en) 1982-11-20
JPS6223059Y2 true JPS6223059Y2 (en) 1987-06-12

Family

ID=29867138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7134581U Expired JPS6223059Y2 (en) 1981-05-19 1981-05-19

Country Status (1)

Country Link
JP (1) JPS6223059Y2 (en)

Also Published As

Publication number Publication date
JPS57183706U (en) 1982-11-20

Similar Documents

Publication Publication Date Title
JP3230647B2 (en) DC reactor
US3878495A (en) Magnetic core for electrical inductive apparatus
JPS6223059Y2 (en)
JP3585769B2 (en) Zero-phase current transformer
US9985430B2 (en) Fault current limiter
JP2005124309A (en) Reluctance motor, rotor core of motor and method for manufacturing rotor core of motor
JP2975659B2 (en) Bidirectional linear motor
JP3314908B2 (en) DC reactor
JP2001238349A (en) Current limiter
JPH0138898Y2 (en)
JPH097862A (en) Power consumption device taking advantage of property of vector
JP3127239B2 (en) Method and apparatus for magnetizing a metal magnet
JP3812701B2 (en) Zero phase current transformer
JPH0423297Y2 (en)
JPS5831377Y2 (en) 3-phase butting type deformed wound core
JP2001358025A (en) Three-phase current limiter
JPH0140184Y2 (en)
JP4517379B2 (en) Split-type current transformer
JPS6318847B2 (en)
JP2001230134A (en) Outer core reactor and assembly method of outer core reactor
JPH0534901B2 (en)
JP2803783B2 (en) Polarized electromagnet
JPS60134737A (en) Magnetic flux controller
JPS5869454A (en) Permanent magnet type rotary electric machine
JPH1140434A (en) Iron core for reactor