JPS62228905A - Distance measuring instrument - Google Patents
Distance measuring instrumentInfo
- Publication number
- JPS62228905A JPS62228905A JP7270486A JP7270486A JPS62228905A JP S62228905 A JPS62228905 A JP S62228905A JP 7270486 A JP7270486 A JP 7270486A JP 7270486 A JP7270486 A JP 7270486A JP S62228905 A JPS62228905 A JP S62228905A
- Authority
- JP
- Japan
- Prior art keywords
- reflected light
- projection
- light
- section
- distance measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003384 imaging method Methods 0.000 claims description 26
- 238000005259 measurement Methods 0.000 abstract description 58
- 230000003287 optical effect Effects 0.000 abstract 2
- 230000002093 peripheral effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 241000219112 Cucumis Species 0.000 description 1
- 235000015510 Cucumis melo subsp melo Nutrition 0.000 description 1
- FJJCIZWZNKZHII-UHFFFAOYSA-N [4,6-bis(cyanoamino)-1,3,5-triazin-2-yl]cyanamide Chemical compound N#CNC1=NC(NC#N)=NC(NC#N)=N1 FJJCIZWZNKZHII-UHFFFAOYSA-N 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
Landscapes
- Optical Radar Systems And Details Thereof (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Measurement Of Optical Distance (AREA)
- Automatic Focus Adjustment (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
この発明は、測定物へ光を照射してその測定物までの距
離を測定する距離測定装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a distance measuring device that measures the distance to a measured object by irradiating light onto the measured object.
(従来の技術)
従来の距離測定装置1は、測定ヘッド3にレーザ光投射
部5および観測部7を有して構成される。観測部7は結
像レンズ9と光検出素子11とを備えて成る。シー11
光投射部5から測定物13へ照射された投射光15は測
定物表面で反射され、その反射光17は結像レンズ9を
通り光検出素子11にて受光される。光検出素子11の
受光面上における受光位置に基づき、三角側rilの原
理によっで測定物13の距離が測定される。(Prior Art) A conventional distance measuring device 1 includes a measuring head 3, a laser beam projection section 5, and an observation section 7. The observation section 7 includes an imaging lens 9 and a photodetector element 11. sea 11
Projection light 15 irradiated onto the measurement object 13 from the light projection section 5 is reflected by the surface of the measurement object, and the reflected light 17 passes through the imaging lens 9 and is received by the photodetection element 11. Based on the light-receiving position on the light-receiving surface of the photodetector 11, the distance to the object 13 is measured according to the triangular ril principle.
(1明が解決しようとする問題点)
ところで、一般に、反射光17の強さく反射光強さ1β
)の大きな反射光を観測部7にて受光するためには、投
射光15を測定物13表面の法線19近傍へ照射し、こ
の法線19近傍からの反射光17を受光することが望ま
しい。しかし、投射光15は、第2図および第3図に示
すように、法線19から大きく外れ測定物13表面との
なす角(投射角α)が小さい位置に照射される場合があ
る。この場合、反射光強さ1βは、第2図の曲線Bで示
すように、測定物13表面とのなす角(反射角β)によ
って大きく異なり、実線で示す反射光17△が最も大き
く、測定物13表面近傍の反射光が最も小さい。したが
って、第3図の結像レンズ9を通過でる反射光17が第
2図に示す測定物13表面近傍の反射光17Bである場
合には、その反射光強さ■ρが非常に小さく、光検出素
子11にて受光位置を正確に検出することができない場
合がある。(Problem that 1 Mei attempts to solve) By the way, in general, the intensity of the reflected light 17 is
) In order to receive the large reflected light of . However, as shown in FIGS. 2 and 3, the projected light 15 may be irradiated to a position that deviates significantly from the normal line 19 and forms a small angle (projection angle α) with the surface of the measurement object 13. In this case, the reflected light intensity 1β varies greatly depending on the angle (reflection angle β) with the surface of the measurement object 13, as shown by curve B in FIG. The reflected light near the surface of the object 13 is the smallest. Therefore, if the reflected light 17 passing through the imaging lens 9 in FIG. 3 is the reflected light 17B near the surface of the measurement object 13 shown in FIG. The detection element 11 may not be able to accurately detect the light receiving position.
ここで、距離測定装置1の観測部7はその位置が固定さ
れているため、投射光15が投射角αの小さな位置から
測定物13へ照射された場合には、vA測部7にて受光
された反射光が反射光強さIβの小さな反射光17Bと
なることがある。したがって、このような場合には、光
検出素子11にて受光位nを正確に検出できず、測定物
13の距離が測定できなくなる恐れがある。Here, since the position of the observation section 7 of the distance measuring device 1 is fixed, when the projected light 15 is irradiated onto the measurement object 13 from a position with a small projection angle α, the light is received by the vA measurement section 7. The reflected light may become reflected light 17B with a small reflected light intensity Iβ. Therefore, in such a case, the photodetecting element 11 may not be able to accurately detect the light receiving position n, and there is a possibility that the distance to the object 13 may not be measured.
また、一般に、反射光強さIβは測定物13の表面状態
に大きく影響されるため、反射光17のうちには測定物
13の表面状態によって干渉しているものがある。この
ように干渉した反射光17を観測部27が受光した場合
も、光検出素子11の受光面で受光位置を正確に検出で
きず、測定物13の距離の測定が困難または不可能にな
る恐れがある。Furthermore, since the reflected light intensity Iβ is generally greatly influenced by the surface condition of the object to be measured 13, some of the reflected light 17 interferes with the surface condition of the object to be measured 13. Even when the observation unit 27 receives the reflected light 17 that has interfered in this way, the light receiving position cannot be accurately detected on the light receiving surface of the photodetecting element 11, and it may be difficult or impossible to measure the distance to the object 13. There is.
さらに、測定物13の距離によっては結像レンズ9のレ
ンズ角度が適正でない場合がある。例え。Furthermore, depending on the distance of the measurement object 13, the lens angle of the imaging lens 9 may not be appropriate. example.
ば、測定物13が第3図の二点鎖線で示す位置にあると
きは、結像レンズ9のレンズ角度が小さく、レンズ表面
が反射光17に直交していないため光検出素子11で受
光する反射光17の反射光強さIβが小さくなることが
ある。その結果、この場合も、光検出素子11にて受光
位置が正確に検出されず、測定物13の距離を精度よく
測定できない恐れがある。For example, when the object to be measured 13 is at the position indicated by the two-dot chain line in FIG. The reflected light intensity Iβ of the reflected light 17 may become small. As a result, in this case as well, the light-receiving position may not be accurately detected by the photodetecting element 11, and the distance to the object 13 may not be accurately measured.
この発明は、上記事実を考慮してなされたものであり、
反射光強さの大きな反射光を受光して、測定物の距離を
高精度に測定することができる距離測定装置を提供する
ことを目的とする。This invention was made in consideration of the above facts,
It is an object of the present invention to provide a distance measuring device that can measure the distance of an object with high precision by receiving reflected light having a large reflected light intensity.
(問題点を解決するための手段)
この発明は、測定物表面へ投射光を照射する投射部と、
上記測定物表面から反射された反射光を結像レンズを通
し光検出素子で受光する観測部とを有し、上記光検出素
子における反射光の受光位置に基づぎ上記測定物の距離
を測定する距離測定装置において、前記投射部の周囲複
数個所に上記観測部が設置可能に設けられて、反射光強
さの大きな位置で上記観測部により反射光が受光され1
!7るように構成されたものである。(Means for Solving the Problems) The present invention includes a projection unit that irradiates a surface of a measurement object with projection light;
an observation section that receives reflected light from the surface of the object to be measured through an imaging lens and a light detection element, and measures the distance of the object based on the receiving position of the reflected light in the light detection element. In the distance measuring device, the observation section is installable at a plurality of locations around the projection section, and the observation section receives the reflected light at a position where the intensity of the reflected light is large.
! 7.
(作用)
したがって、この発明に係る距離測定装置によれば、測
定物表面と投射光とのなす角(投射角)が小さなときで
も、反射光強さの大きな反射光を受光して、光検出素子
にて反射光の受光位置を正確に検出することができる。(Function) Therefore, according to the distance measuring device according to the present invention, even when the angle between the surface of the object to be measured and the projected light (projection angle) is small, the reflected light with a large reflected light intensity is received and the light is detected. The element can accurately detect the receiving position of reflected light.
(実施例) 以下、この発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.
第1図はこの発明に係る距離測定装置の第1実浦例を示
す構成図である。FIG. 1 is a block diagram showing a first example of a distance measuring device according to the present invention.
距離測定装置21の測定ヘッダ23には、投射部25お
よび観測部27が配設される。A projection section 25 and an observation section 27 are arranged in the measurement header 23 of the distance measurement device 21 .
投射部25は、ともに図示しない半導体レーザ素子およ
び投射光レンズを備えて成り、半導体レーデ素子からの
投射光15を投射光レンズを通過させて測定物13へ照
射し得るよう設けられる。The projection section 25 includes a semiconductor laser element and a projection light lens, both not shown, and is provided so that the projection light 15 from the semiconductor laser element passes through the projection light lens and can be irradiated onto the object 13 to be measured.
半導体レーザ素子は、自然光に邪魔されないような波長
のレーデを照射し得る素子であり、これにより測定のS
ignal−Noise比(SN比)が向上する。Semiconductor laser elements are elements that can emit laser beams with wavelengths that are not interfered with by natural light, and this allows the S of measurement to be
The signal-to-noise ratio (SN ratio) is improved.
観測部27は結像レンズ29および光検出素子31を有
して構成される。結像レンズ29は、測定物13で反射
された反射光17の一部を入射する。この結像レンズ2
9には狭帯域フィルタが装着され、自然光をカットして
反射光17のみを通過さ1!得るようになっている。こ
れにより、測定のSN比が向上する。また、光検出素子
31は、結像レンズ29を通過した反射光17をその受
光面で受光する。ぞして、その反射光の受光位置と受光
量(反射光強さIβ)を検出する。The observation section 27 includes an imaging lens 29 and a photodetection element 31. A portion of the reflected light 17 reflected by the measurement object 13 is incident on the imaging lens 29 . This imaging lens 2
9 is equipped with a narrow band filter, which cuts out natural light and allows only reflected light 17 to pass through 1! I'm starting to get it. This improves the S/N ratio of measurement. Further, the photodetecting element 31 receives reflected light 17 that has passed through the imaging lens 29 on its light receiving surface. Then, the light receiving position and amount of the reflected light (reflected light intensity Iβ) are detected.
さて、上記測定ヘッダ23には回転軸33が形成される
。この回転軸33の軸心は、投射部25から照射された
投射光15と一致して設けられる。Now, a rotating shaft 33 is formed in the measurement header 23. The axis of this rotating shaft 33 is provided to coincide with the projection light 15 irradiated from the projection section 25 .
回転軸33にはモータ35が連結され、このモータ35
の駆動により、測定ヘッダ23が回転軸33を介して投
射光15を中心に旋回される。したがって、この測定ヘ
ッダ23の旋回によって、観測部27が投射部25の周
囲複数位置に設置され19ることになる。この測定ヘッ
ダ23の旋回時においても、投射部25と観測部27と
の相対位置は不変である。A motor 35 is connected to the rotating shaft 33.
, the measurement header 23 is rotated around the projection light 15 via the rotation shaft 33 . Therefore, due to this rotation of the measurement header 23, the observation sections 27 are installed at a plurality of positions around the projection section 25. Even when the measurement header 23 rotates, the relative positions of the projection section 25 and observation section 27 remain unchanged.
また、上記光検出素子31は、端子例えばステップ端子
37を介して測定制御装置3つに電気的に接続される。Further, the photodetecting element 31 is electrically connected to three measurement control devices via a terminal, for example, a step terminal 37.
この測定i、IJ tl装置39はモータ35にも同様
に接続される。測定ai制御装置39には、光検出素子
31の受光面上における反射光17の受光位置、および
その受光位置での反射光17の反射光強さ■ρが電気信
号となって入力される。This measurement i, IJ tl device 39 is connected to the motor 35 as well. The measurement ai control device 39 receives the light receiving position of the reflected light 17 on the light receiving surface of the photodetecting element 31 and the reflected light intensity ■ρ of the reflected light 17 at the light receiving position as an electric signal.
この測定制御装置39の機能は、モータ35を駆動させ
て測定ヘッダ23を旋回させ、観測部27へ入射される
反射光のうち反射光強さ■βが最大となる位置にて測定
ヘッダ23を停止させることである。さらに、測定制御
装置39は、この停止位とにおける反射光17の受光位
置から、三角側aの原理に基づき測定物13までの距離
を演算し、その値を外部へ出力する。The function of the measurement control device 39 is to rotate the measurement header 23 by driving the motor 35, and rotate the measurement header 23 at the position where the reflected light intensity ■β of the reflected light incident on the observation section 27 is maximum. It is to stop it. Furthermore, the measurement control device 39 calculates the distance from the light reception position of the reflected light 17 at this stop position to the measurement object 13 based on the principle of the triangular side a, and outputs the value to the outside.
次に、作用を説明する。Next, the effect will be explained.
投射部25から測定物13へ投射光15を照射すると同
時に、モータ35を駆動させて測定ヘッダ23を旋回さ
せる。したがって、例えば、投射部25からの投射光1
5が測定物13の法線19から外れ、投射角αの小さな
位置で測定物13へ照射された場合、観測部27は第2
図に示すように、反射角βがγ〜(2β−γ)の範囲内
の反射光17を受光することができる。反射角が(2β
−γ)の位置における反射光17Bは測定物13の表面
近傍であるため反射光強さが小さいが、反射角がγの位
置における反射光17Gは法線19に近いため反射光強
さが大きい。そこで、測定制御装置39は、観測部27
が反射光17Gを受光する位置(第1図の二点5r1f
jの位置)にて測定へラダ23を停止させる。そして、
測定制御装置39は、この停止位置において光検出素子
31の受光面に受光された反射光17の受光位置から、
測定物13の距離を演算する。At the same time that the projection light 15 is irradiated from the projection section 25 to the measurement object 13, the motor 35 is driven to rotate the measurement header 23. Therefore, for example, the projection light 1 from the projection section 25
5 deviates from the normal line 19 of the measurement object 13 and is irradiated onto the measurement object 13 at a position with a small projection angle α, the observation unit 27
As shown in the figure, reflected light 17 having a reflection angle β within the range of γ to (2β−γ) can be received. The reflection angle is (2β
The reflected light 17B at the position -γ) has a small reflected light intensity because it is near the surface of the measurement object 13, but the reflected light 17G at the position where the reflection angle is γ is close to the normal line 19, so the reflected light intensity is large. . Therefore, the measurement control device 39
receives reflected light 17G (two points 5r1f in Figure 1)
The rudder 23 is stopped for measurement at position j). and,
The measurement control device 39 detects from the light receiving position of the reflected light 17 received by the light receiving surface of the photodetecting element 31 at this stop position.
The distance to the measurement object 13 is calculated.
故に、投射角αが小さなときでも反射光強さIβの大き
な位置で反射光を受光することができるため、光検出素
子31の受光面上における反射光17の受光位置を正確
に検出することができ、その結果、距離の測定粘度を向
上させることができる。Therefore, even when the projection angle α is small, the reflected light can be received at a position where the reflected light intensity Iβ is large, so that the receiving position of the reflected light 17 on the light receiving surface of the photodetecting element 31 can be accurately detected. As a result, the distance measurement viscosity can be improved.
また、測定物13の表面状態に応じて反射光17に干渉
等が生じた場合にも、測定ヘッダ23を旋回させること
により、干渉のない位置で反射光17を受光することが
できる。したがって、測定物13の表面状態に拘らず、
測定物13の距離を高精瓜にて測定することができる。Further, even if interference or the like occurs in the reflected light 17 depending on the surface condition of the measurement object 13, by rotating the measurement header 23, the reflected light 17 can be received at a position where there is no interference. Therefore, regardless of the surface condition of the measurement object 13,
The distance to the measurement object 13 can be measured using a high-precision melon.
以上の効果を有することから、この距離測定装置をロボ
ットの先端に取り付ければ、非接触にて三次元の距離を
測定することができる。Because of the above effects, if this distance measuring device is attached to the tip of a robot, three-dimensional distance can be measured without contact.
次に、第2実施例を説明する。Next, a second embodiment will be explained.
第1実施例では、測定ヘッダ23が旋回して観測部27
が投射部25の周囲複数位置に設置されるものを述べた
が、この第2実施例では、投射部25とi!l測部27
とを分離し、観測部27をテーブル上にスライド自在に
載置する。さらに、モータ35の代りに、W測部27の
駆動装置として二自山度のスキャナを用い、このスキャ
ナにより観測部27をテーブル上に摺動させ、投射部2
5の周囲に観測部27を設置可能に設ける。この場合に
も、スキ1!すは、光検出素子31からの信号を入力す
る測定制御装置39によりコントロールされる。したが
って、この第2実施例の場合にも、観測部27は投射部
25の周囲に設置され得ることから、観測部27が反射
光強度Iβの大きな反射光17を受光することができ、
距離測定精度を向上させることができる。In the first embodiment, the measurement header 23 rotates and the observation section 27
are installed at multiple positions around the projection section 25, but in this second embodiment, the projection section 25 and the i! l measurement section 27
The observation unit 27 is placed on a table so as to be slidable. Furthermore, instead of the motor 35, a two-dimensional scanner is used as a driving device for the W measurement section 27, and the observation section 27 is slid on the table by this scanner, and the projection section 27 is moved by the scanner.
An observation section 27 is installably provided around 5. In this case as well, like 1! The measurement control device 39 is controlled by a measurement control device 39 that inputs a signal from the photodetector element 31. Therefore, also in the case of the second embodiment, since the observation section 27 can be installed around the projection section 25, the observation section 27 can receive the reflected light 17 with a large reflected light intensity Iβ.
Distance measurement accuracy can be improved.
第3実施例は1.単一の観測部27が投射部25の周囲
に移動し得るものではなく、投射部25の周囲に複数個
の観測部27を固定して設置したものである。この場合
、観測部27の位置を投射部25から等距離に設置する
場合と不等距離に設置する場合とがある。このような第
3実施例においては、複数の観測部27によって受光さ
れた反射光17のうち、反射光強さの大きな反射光15
を受光したl測部27から測定υ制御装置39へ信号を
入力し、この信号に基づき測定制御装置39にて測定物
13までの距離を演算することから、この場合も高精度
にて距離を測定することができる。The third embodiment is 1. A single observation section 27 is not movable around the projection section 25, but a plurality of observation sections 27 are fixedly installed around the projection section 25. In this case, the observation section 27 may be installed at an equal distance from the projection section 25, or at an unequal distance. In such a third embodiment, among the reflected lights 17 received by the plurality of observation units 27, the reflected lights 15 with a large reflected light intensity are
A signal is input from the l measurement section 27 that receives the light to the measurement υ control device 39, and the distance to the measurement object 13 is calculated by the measurement control device 39 based on this signal. can be measured.
特に、複数の観測部27が投射部25と不等距離に設置
された場合には、反射光強さ■βの大きな反射光17を
受光する範囲が拡大され、その分一層距離の測定精度を
向上させることができる。In particular, when a plurality of observation sections 27 are installed at unequal distances from the projection section 25, the range in which the reflected light 17 with a large reflected light intensity ■β is received is expanded, which further improves distance measurement accuracy. can be improved.
なお、前記第1ないし第3実施例では、結像レンズ29
が固定式のものを説明したが、この結象レンズ29が第
1図の矢印Aに示すように回動して、レンズ角度が変化
し得るように設けられたものでもよい。この結像レンズ
29の回動は例えばサーボモータ等を駆動しでなされ、
結像レンズ29のレンズ面が反射光17に直交する位置
で結像レンズの回動を停止させる。具体的には、結像レ
ンズ29の回動中に、光検出素子31にて受光された反
射光17の反射光強度Iβが最大になった位置で、測定
制御装置39がサーボモータ等へ停止信号を出力させ、
結像レンズ29の回動を停止さゼる。このように結像レ
ンズ29を回動させれば、測定物13が遠距離または近
距離のいずれにある場合でも、結像レンズ29にて反射
光17を効率よく入射することができ、距Il!測定装
置の距離測定範囲を拡大させることができる。In addition, in the first to third embodiments, the imaging lens 29
Although a fixed type lens has been described, it may be provided so that the imaging lens 29 can be rotated as shown by arrow A in FIG. 1 to change the lens angle. This rotation of the imaging lens 29 is achieved by driving a servo motor or the like, for example.
The rotation of the imaging lens is stopped at a position where the lens surface of the imaging lens 29 is perpendicular to the reflected light 17. Specifically, while the imaging lens 29 is rotating, the measurement control device 39 causes the servo motor etc. to stop at the position where the reflected light intensity Iβ of the reflected light 17 received by the photodetecting element 31 becomes maximum. output a signal,
The rotation of the imaging lens 29 is stopped. By rotating the imaging lens 29 in this way, the reflected light 17 can be efficiently incident on the imaging lens 29 even when the measurement object 13 is located at a long distance or a short distance, and the distance Il ! The distance measuring range of the measuring device can be expanded.
また、結像レンズ29を回動さゼず、レンズ角度の異な
った複数の結像レンズ29を設置してもよい。このとき
、光検出素子31は各レンズに対応させて複数枚設ける
か、あるいは1枚の光検出素子31をスライド可能に構
成する。この複数の結像レンズ2つを用いる場合にも、
結像レンズ29のレンズ角度が可変な場合と同様に、距
離測定装置の距離測定範囲を拡大させることができる。Alternatively, the imaging lens 29 may not be rotated, but a plurality of imaging lenses 29 having different lens angles may be installed. At this time, a plurality of photodetecting elements 31 are provided corresponding to each lens, or one photodetecting element 31 is configured to be slidable. Even when using two of these multiple imaging lenses,
Similarly to the case where the lens angle of the imaging lens 29 is variable, the distance measuring range of the distance measuring device can be expanded.
以上のように、この発明に係る距離測定装置によれば、
投射光を照射する投射部の周囲複数個所に反射光を受光
する観測部が設置可能に設けられ、反射光強さの大きな
位置で観測部により反射光を受光し得るよう構成された
ことから、測定物、表面と投射光とのなす角(投射角)
が小さなとぎでも反射光強さの大きな反射光を受光して
、光検出素子にて反射光の受光位置を正確に検出するこ
とができ、測定物の距離を高精度に測定することができ
るという効果を奏する。As described above, according to the distance measuring device according to the present invention,
Observation sections that receive reflected light can be installed at multiple locations around the projection section that irradiates the projection light, and the observation section is configured so that the reflected light can be received at positions where the intensity of the reflected light is large. The angle between the measured object or surface and the projected light (projection angle)
Even if the blade is small, it can receive reflected light with a large reflected light intensity, and the photodetector can accurately detect the receiving position of the reflected light, making it possible to measure the distance of the object with high precision. be effective.
第1図はこの発明に係る距離測定装置の一実施例を示す
構成図、第2図は投射光と反射光との関係を示す図、第
3図は従来の距離測定装置を示す構成図である。
13・・・測定物、15・・・投射光、17・・・反射
光、21・・・距離測定装置、25・・・投射部、27
・・・11す測部、29−・・結像レンズ、31・・・
光検出素子、33・・・回転軸、35・・・モータ、3
9・・・測定制御装置、1、G・・・反射光強さ。FIG. 1 is a block diagram showing an embodiment of a distance measuring device according to the present invention, FIG. 2 is a diagram showing the relationship between projected light and reflected light, and FIG. 3 is a block diagram showing a conventional distance measuring device. be. 13... Measurement object, 15... Projection light, 17... Reflected light, 21... Distance measuring device, 25... Projection unit, 27
...11 measurement section, 29-...imaging lens, 31...
Photodetection element, 33... Rotating shaft, 35... Motor, 3
9...Measurement control device, 1, G...Reflected light intensity.
Claims (1)
物表面から反射された反射光を結像レンズを通し光検出
素子で受光する観測部とを有し、上記光検出素子におけ
る反射光の受光位置に基づき上記測定物の距離を測定す
る距離測定装置において、前記投射部の周囲複数個所に
上記観測部が設置可能に設けられて、反射光強さの大き
な位置で上記観測部により反射光が受光され得るよう構
成されたことを特徴とする距離測定装置。 2、観測部は、投射部周囲に旋回可能に設けられた特許
請求の範囲第1項記載の距離測定装置。 3、観測部は、投射部周囲に複数個設置された特許請求
の範囲第1項記載の距離測定装置。 4、観測部の結像レンズは、レンズ角度が可変に構成さ
れた特許請求の範囲第1項ないし第3項いずれか記載の
距離測定装置。 5、観測部には、レンズ角度の異なった複数の結像レン
ズが設けられた特許請求の範囲第1項ないし第3項いず
れか記載の距離測定装置。[Claims] 1. A projection unit that irradiates the surface of the object to be measured with projected light, and an observation unit that receives the reflected light from the surface of the object through an imaging lens and a photodetector, In the distance measuring device that measures the distance of the object based on the receiving position of the reflected light in the photodetecting element, the observation section is installably installed at a plurality of locations around the projection section, and the observation section is installed at a plurality of locations around the projection section. A distance measuring device characterized in that the distance measuring device is configured such that reflected light can be received by the observation section at a certain position. 2. The distance measuring device according to claim 1, wherein the observation section is rotatably provided around the projection section. 3. The distance measuring device according to claim 1, wherein a plurality of observation sections are installed around the projection section. 4. The distance measuring device according to any one of claims 1 to 3, wherein the imaging lens of the observation section is configured to have a variable lens angle. 5. The distance measuring device according to any one of claims 1 to 3, wherein the observation section is provided with a plurality of imaging lenses having different lens angles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7270486A JPS62228905A (en) | 1986-03-31 | 1986-03-31 | Distance measuring instrument |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7270486A JPS62228905A (en) | 1986-03-31 | 1986-03-31 | Distance measuring instrument |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62228905A true JPS62228905A (en) | 1987-10-07 |
Family
ID=13497004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7270486A Pending JPS62228905A (en) | 1986-03-31 | 1986-03-31 | Distance measuring instrument |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62228905A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01123183A (en) * | 1987-11-09 | 1989-05-16 | Chinon Ind Inc | Reflection type photoelectric switch |
-
1986
- 1986-03-31 JP JP7270486A patent/JPS62228905A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01123183A (en) * | 1987-11-09 | 1989-05-16 | Chinon Ind Inc | Reflection type photoelectric switch |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1039263B1 (en) | Surveying system | |
CN107607056B (en) | Laser morphology detector | |
JP2002168625A (en) | Run-out detecting device, rotating laser device having the same and position-measuring/setting system having the same | |
US5038032A (en) | Encoder incorporating a displaceable diffraction grating | |
JPS62228905A (en) | Distance measuring instrument | |
JPS6161070B2 (en) | ||
JPS62257077A (en) | Measuring apparatus | |
JPH0462003B2 (en) | ||
JP2003097924A (en) | Shape measuring system and method using the same | |
JP2000121388A (en) | Optical encoder | |
JPH03111707A (en) | Detecting method of shape of object | |
JPH045142B2 (en) | ||
SU1479821A2 (en) | Apparatus for monitoring linear dimensions | |
SU862096A2 (en) | Optical polarization device for probing atmosphere | |
JPS61130816A (en) | Linear encoder | |
JPH0228518A (en) | Displacement measuring instrument | |
CN114894124A (en) | Interferometric angle measuring system and measuring method | |
JPH01250778A (en) | Optical apparatus for detection | |
RU1783300C (en) | Method and device for measuring belt thickness | |
JP3309537B2 (en) | Fourier transform spectrophotometer | |
JPH07120217A (en) | Distance measurement method and device | |
JPH074935A (en) | Angle-of-rotation detection apparatus | |
JPH0663846B2 (en) | Optical pickup device | |
JPH08320240A (en) | Displacement measuring device with zero point position detecting means | |
JPH1114306A (en) | Eccentricity measuring device, eccentricity measuring method and cutting device |