JPH0228518A - Displacement measuring instrument - Google Patents

Displacement measuring instrument

Info

Publication number
JPH0228518A
JPH0228518A JP18002288A JP18002288A JPH0228518A JP H0228518 A JPH0228518 A JP H0228518A JP 18002288 A JP18002288 A JP 18002288A JP 18002288 A JP18002288 A JP 18002288A JP H0228518 A JPH0228518 A JP H0228518A
Authority
JP
Japan
Prior art keywords
light
laser beam
laser
diffraction grating
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18002288A
Other languages
Japanese (ja)
Other versions
JPH076811B2 (en
Inventor
Satoru Ishii
哲 石井
Tetsuji Nishimura
西村 哲治
Masaaki Tsukiji
築地 正彰
Akira Ishizuka
公 石塚
Yoichi Kubota
洋一 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63180022A priority Critical patent/JPH076811B2/en
Priority to US07/347,397 priority patent/US5066130A/en
Publication of JPH0228518A publication Critical patent/JPH0228518A/en
Publication of JPH076811B2 publication Critical patent/JPH076811B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Transform (AREA)

Abstract

PURPOSE:To prevent a leakage of a laser beam from a read-out head by controlling an irradiation of the laser beam in the manner of providing detection means to detect the relation of a position between an entering position of the laser beam to a movable substrate and an optical scale. CONSTITUTION:The laser beam from a semiconductor laser 1 is divided to a transmitting luminous flux and a reflecting luminous flux through a collimator lens 2 and a polarizing BS(beam splitter) 9. The reflected flux and the transmitted flux from the BS9 are entered to a reflection film 12 respectively through plates 51, 52 with 1/4 wavelength, reflection mirrors 101, 102, diffraction grating 3 and optical component 11. Next, the diffracted light beams reflected on the film 12 are turned back on the previous optical path, and two diffracted light beams are overlapped on the BS9 then entered to photodetectors 81, 82 through the BS31, plane 53 with 1/4 wavelength, BS6 and polarizing plates 71, 72. At this time, whether the grating 3 is irradiated with the laser beam or not, is detected by a detection system consisting of a light emitting element 33 and a photodetector 34. Therefore when a signal intensity of the element 34 is less than the threshold, a driving to the laser 1 is stopped, thereby the leakage of the laser beam to the outside from the read-out head can be prevented.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、光学式リニアエンコーダや光学式ロータリー
エンコーダ等の、変位測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a displacement measuring device such as an optical linear encoder or an optical rotary encoder.

〔従来技術〕[Prior art]

従来、例えばU、S、Pat、No、4,629,88
6やU、S、Pat、No、4,676.645に示さ
れる様に、リニアスケールにレーザ光を照射し、リニア
スケールからの光を光検出器で検出することにより、リ
ニアスケールが取付けられた被検物体の変位を測定する
装置が知られている。
Conventionally, for example, U, S, Pat, No. 4,629,88
6 and U, S, Pat, No. 4,676.645, the linear scale is installed by irradiating the linear scale with laser light and detecting the light from the linear scale with a photodetector. A device for measuring the displacement of a test object is known.

上記のU、S、Patentsが示す変位測定装置は、
スケールを回折格子で形成し、レーザ光の照射によりス
ケールから射出する回折光で干渉縞を形成し、この干渉
縞を光電変換して得られる信号に基づいて被検物体若し
くはスケールの変位を測定するものであり、極めて分解
能の高い測定が可能である。しかしながら、被検物体の
移動に伴ないリニアスケールが有効長以上移動してしま
ったり、或いは、リニアスケールが変位の方向に対しで
ある程度以上傾いていたり、変位方向と直交する方向に
ずれている場合、レーザ光が読取りヘッドから外部に漏
れてしまう危険性があった。
The displacement measuring device indicated by the above U, S, Patents is:
The scale is formed of a diffraction grating, and the diffracted light emitted from the scale by laser beam irradiation forms interference fringes, and the displacement of the object or scale is measured based on the signal obtained by photoelectrically converting the interference fringes. It is possible to perform measurements with extremely high resolution. However, if the linear scale moves beyond its effective length due to the movement of the object to be tested, or if the linear scale is tilted more than a certain degree with respect to the direction of displacement, or if it is deviated in a direction perpendicular to the direction of displacement. , there was a risk that the laser light would leak out from the read head.

〔発明の概要〕[Summary of the invention]

本発明は上記従来の問題点に鑑みてなされたものであり
、レーザ光の読取りヘッドからの漏れを防止することが
可能な変位測定装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional problems, and it is an object of the present invention to provide a displacement measuring device capable of preventing leakage of laser light from a reading head.

上記目的を達成する為に、本発明の変位測定装置は、光
学式スケールを形成した可動基板にレーザ光を照射し、
前記光学式スケールからの光を光検出器で検出すること
により前記可動基板の変位を測定する変位測定装置にお
いて、前記レーザ光の前記可動基板への入射位置と前記
光学式スケールの位置関係を検出する検出手段を有し、
該検出手段からの出力信号に基づいて前記レーザ光の照
射を制御することを特徴としている。
In order to achieve the above object, the displacement measuring device of the present invention irradiates a movable substrate on which an optical scale is formed with a laser beam,
In a displacement measuring device that measures displacement of the movable substrate by detecting light from the optical scale with a photodetector, detecting a positional relationship between the incident position of the laser beam on the movable substrate and the optical scale. has a detection means to
It is characterized in that the irradiation of the laser beam is controlled based on the output signal from the detection means.

又、本発明の他の形態の変位測定装置は、光学式スケー
ルを形成した可動基板にレーザ光を照射し、前記光学式
スケールからの光を光検出器で検出することにより前記
可動基板の変位を測定する変位測定装置において、前記
レーザ光の前記可動基板への照射位置と前記光学式スケ
ールの位置関係を検出する検出手段を有し、該検出手段
からの出力信号に基づいて前記レーザ光を供給する光源
と前記光検出器とを含む読取りヘッドと前記可動基板の
位置関係を調整することを特徴としている。
Further, in a displacement measuring device according to another aspect of the present invention, a movable substrate on which an optical scale is formed is irradiated with a laser beam, and the light from the optical scale is detected by a photodetector, thereby measuring the displacement of the movable substrate. The displacement measuring device for measuring the displacement of the movable substrate includes a detection means for detecting the positional relationship between the irradiation position of the laser beam on the movable substrate and the optical scale, The present invention is characterized in that the positional relationship between the movable substrate and a reading head including a light source to be supplied and the photodetector is adjusted.

本発明の更なる特徴と具体的な形態は後述する実施例に
記載されている。
Further features and specific embodiments of the present invention are described in the Examples below.

〔実施例〕〔Example〕

第1図は本発明の変位測定装置の一実施例を示す光学系
概略図を示す。
FIG. 1 shows a schematic diagram of an optical system showing an embodiment of the displacement measuring device of the present invention.

第1図において、半導体レーザ1からの可干渉性を有す
るレーザ光をコリメーターレンズ2によって略平行光束
とし、偏光ビームスプリッタ−9に入射させ、偏光ビー
ムスプリッタ−9で互いに偏光方向が直交するP偏光の
透過光束とS偏光の反射光束の2つの光束に分割してい
る。このときレーザーlの出射光束の偏光方向が偏光ビ
ームスプリッタ−9の偏光面の偏光方位に対して45度
となるようにレーザーlの取付位置を調整している。こ
れにより偏光ビームスプリッタ−9からの透過光束と反
射光束の強度比が略l:lとなるようにしている。
In FIG. 1, a coherent laser beam from a semiconductor laser 1 is made into a substantially parallel beam by a collimator lens 2, and is incident on a polarizing beam splitter 9. It is divided into two light beams: a transmitted light beam of polarized light and a reflected light beam of S-polarized light. At this time, the mounting position of the laser l is adjusted so that the polarization direction of the emitted light beam of the laser l is 45 degrees with respect to the polarization direction of the polarization plane of the polarizing beam splitter 9. As a result, the intensity ratio between the transmitted light beam and the reflected light beam from the polarizing beam splitter 9 is approximately 1:1.

そして偏光ビームスプリッタ−9からの反射光束と透過
光束を夫々1/4波長板51,5□を介して円偏光とし
、又、゛反、射鏡10.,102で反射させて、光学式
スケールを成す回折格子3に入射させた時、対象とする
回折格子3からのm次回舌先が回折格子3から略垂直に
反射するように入射させている。
The reflected light beam and the transmitted light beam from the polarizing beam splitter 9 are made into circularly polarized light through quarter-wave plates 51 and 5□, respectively, and the reflection mirror 10. , 102 and incident on the diffraction grating 3 forming an optical scale, the m-th order tongue tip from the target diffraction grating 3 is reflected from the diffraction grating 3 substantially perpendicularly.

即ち、回折格子3の格子ピッチをP1可干渉性光束の波
長をλ、mを整数とし、可干渉性光束の回折格子3への
入射角度をθ□としたとき0m  5in−’(mλ/
P)         (1)となるように入射させて
いる。
That is, when the grating pitch of the diffraction grating 3 is P1, the wavelength of the coherent light beam is λ, m is an integer, and the angle of incidence of the coherent light beam on the diffraction grating 3 is θ□, 0 m 5in-' (mλ/
P) (1).

回折格子3は本測定装置の光学式スケールとなる部材で
あり、又、回折格子3は振幅型又は位相型の格子として
可動基板100上に形成されている。そして、基板10
0がX方向に移動することにより回折格子3もX方向に
変位する。
The diffraction grating 3 is a member serving as an optical scale of this measuring device, and is formed on the movable substrate 100 as an amplitude type or phase type grating. And the board 10
0 moves in the X direction, the diffraction grating 3 is also displaced in the X direction.

回折格子3から略垂直に射出した2つのm次回舌先は光
学部材llに入射する。光学部材11の焦点面近傍には
反射膜12が施されているので、入射した光束は、反射
膜12で反射した後、元の光路を戻り光学部材11から
射出し、再度回折格子3に入射する。
The two m-th order tongue tips emitted substantially perpendicularly from the diffraction grating 3 enter the optical member ll. Since a reflective film 12 is provided near the focal plane of the optical member 11, the incident light beam is reflected by the reflective film 12, returns to the original optical path, exits from the optical member 11, and enters the diffraction grating 3 again. do.

そして回折格子3で再度回折されたm次の反射回折光は
元の光路を戻り、反射鏡10..102で反射し、1/
4波長板51,5□を透過し偏光ビームスプリッタ−9
に再入射する。
Then, the m-th order reflected diffracted light that is diffracted again by the diffraction grating 3 returns to the original optical path and returns to the reflecting mirror 10. .. Reflected at 102, 1/
The polarizing beam splitter 9 passes through the 4-wavelength plates 51 and 5□.
to be re-injected.

このとき再回折光は1/4波長板5I、5□を往復して
いる為、偏光ビームスプリッタ−9で最初反射した光束
は再入射するときは偏光ビームスプリッタ−9に対して
偏光方位が90度異なり、偏光ビームスプリッタ−9を
透過するようになる。逆に偏光ビームスプリッタ−9で
最初透過した光束は偏光ビームスプリッタ−9に再入射
したとき反射されるようになる。
At this time, the re-diffracted light goes back and forth between the quarter-wave plates 5I and 5□, so when the light beam first reflected by the polarizing beam splitter 9 enters again, the polarization direction is 90 with respect to the polarizing beam splitter 9. The polarizing beam splitter 9 is transmitted through the polarizing beam splitter 9 at different degrees. Conversely, the light beam that first passes through the polarizing beam splitter 9 is reflected when it enters the polarizing beam splitter 9 again.

こうして偏光ビームスプリッタ−9で2つの回折光を重
なり合わせ、ビームスプリッタ−31とl/4波長板5
3を介した後、円偏光とし、ビームスプリッタ−6で2
つの光束に分割し、各々偏光板71゜7□を介した後、
直線偏光とし受光素子8□、8゜に各々入射させている
In this way, the two diffracted lights are overlapped by the polarizing beam splitter 9, and the beam splitter 31 and the l/4 wavelength plate 5
After passing through the beam splitter 6, it becomes circularly polarized light, and the beam splitter 6
After splitting into two light beams and passing through a polarizing plate 71°7□,
The light is linearly polarized and incident on the light receiving elements 8□ and 8°, respectively.

尚、(1)式の角度θ□は回折光が集光系2oに入射し
、再度回折格子、3に入射出来る程度の範囲内であれば
良いことを示している。
Note that the angle θ□ in equation (1) indicates that it is sufficient if it is within a range that allows the diffracted light to enter the condensing system 2o and then enter the diffraction grating 3 again.

本実施例においてm次の回折光の位相は回折格子が1ピ
ツ・チ移動すると2mπだけ変化する。従って受光素子
88,8□からは正と負のm次の回折を2回ずつ受けた
光束の干渉を受光している為、回折格子が格子の1ピッ
チ分移動すると4m個の正弦波信号が得られる。
In this embodiment, the phase of the m-th order diffracted light changes by 2mπ when the diffraction grating moves one pitch. Therefore, since the light receiving elements 88, 8□ receive the interference of the light beams that have undergone positive and negative m-order diffraction twice, when the diffraction grating moves one pitch of the grating, 4m sine wave signals are generated. can get.

例えば回折格子3のピッチ3.2μm1回折光として1
次(m = 1 )を利用したとすれば回折格子3が3
.2μm移動したとき受光素子81,8□からは4個の
正弦波信号が得られる。即ち正弦波1個当りの分解能と
して回折格子3のピッチの1/4、即ち3.2/4 =
 0.8μmが得られる。
For example, the pitch of the diffraction grating 3 is 3.2 μm, and 1 diffracted light is 1
If we use the order (m = 1), the diffraction grating 3 becomes 3
.. When moving by 2 μm, four sine wave signals are obtained from the light receiving elements 81, 8□. In other words, the resolution per sine wave is 1/4 of the pitch of the diffraction grating 3, that is, 3.2/4 =
0.8 μm is obtained.

又、1/4波長板58,5□、53及び偏光板7□、7
□の組み合わせによって受光素子81e8□からの出力
信号間に90度の位相差をつけ、回折格子3の移動方向
も判別出来るようにしている。
Also, quarter wavelength plates 58, 5□, 53 and polarizing plates 7□, 7
The combination of □ creates a phase difference of 90 degrees between the output signals from the light receiving elements 81e8□, so that the moving direction of the diffraction grating 3 can also be determined.

尚、単に移動量のみを測定するのであれば受光素子は1
つでも良(、又、1/4波長板53、ビームスプリッタ
−6は不要である。
In addition, if only the amount of movement is to be measured, the number of light receiving elements is 1.
(Also, the quarter-wave plate 53 and beam splitter 6 are not necessary.

尚、第1図において、回折格子3の変位を測定する為の
読取りヘッドを符号Rで示している。
In FIG. 1, a reading head for measuring the displacement of the diffraction grating 3 is designated by the symbol R.

本実施例において、基板100上には回折格子3と共に
所定の反射部が形成されている。この様子を第2図に示
す。
In this embodiment, a predetermined reflective portion is formed on the substrate 100 together with the diffraction grating 3. This situation is shown in FIG.

第2図中、符番35で示す部分が反射部であり、回折格
子3の格子配列方向(X方向)に長(延びた線状パター
ンが回折格子3に隣接して形成されている。この反射部
35は、レーザ光の基板100に対する入射位置と回折
格子3との位置関係を検出する為に設けられており、第
1図、に示す発光素子33と受光素子34の組から成る
反射部検出系Mと協力して、レーザ光が回折格子3に入
射する位置に基板lOOがあるか否かをモニターする。
In FIG. 2, the part indicated by reference numeral 35 is a reflective part, and a linear pattern extending in the grating arrangement direction (X direction) of the diffraction grating 3 is formed adjacent to the diffraction grating 3. The reflecting section 35 is provided to detect the positional relationship between the incident position of the laser beam on the substrate 100 and the diffraction grating 3, and is composed of a set of a light emitting element 33 and a light receiving element 34 shown in FIG. In cooperation with the detection system M, it is monitored whether or not the substrate lOO is located at the position where the laser beam is incident on the diffraction grating 3.

第1図の発光素子33は、レーザとは異なり、人体に影
響のない光を放射する素子であり、本実施例ではLED
を使用している。発光素子33からの光は反射部35を
照射し、反射部35からの反射光が受光素子34で受光
される。
The light emitting element 33 in FIG. 1 is an element that emits light that does not affect the human body, unlike a laser, and in this embodiment, it is an LED.
are using. The light from the light emitting element 33 illuminates the reflecting section 35, and the reflected light from the reflecting section 35 is received by the light receiving element 34.

又、発光素子33と受光素子34とから成る反射部検出
系Mと前述の第1図で示す変位測定用光学系とは同一の
読取りヘッドRに格納されている。
Further, the reflecting portion detection system M consisting of the light emitting element 33 and the light receiving element 34 and the displacement measuring optical system shown in FIG. 1 described above are housed in the same reading head R.

ここでは、レーザ光の照射位置が回折格子3からはずれ
る場合に若しくはずれる手前で受光素子34で受光され
る反射光の強度が所定のしきい値以下になる様、レーザ
光の照射位置と発光素子33からの光の照射位置及び回
折格子3と反射部35の配置を決めている。
Here, the irradiation position of the laser beam and the light emitting element are set so that the intensity of the reflected light received by the light receiving element 34 becomes below a predetermined threshold when or before the irradiation position of the laser beam deviates from the diffraction grating 3. The irradiation position of the light from 33 and the arrangement of the diffraction grating 3 and the reflection section 35 are determined.

従って、レーザ光が回折格子3を照射しているか否かが
、発光素子33と受光素子34の組から成る検出系の出
力信号、即ち、受光素子34による光電変換信号に基づ
いて検出できる。この為、受光素子34からの信号の強
度変化をモニターし、この強度がしきい値以下となった
場合、例えばレーザ1の駆動を停止することにより、読
取りヘッドから外部ヘレーザ光が漏れるのを防ぐことが
できる。
Therefore, whether or not the laser beam is irradiating the diffraction grating 3 can be detected based on the output signal of the detection system consisting of the light emitting element 33 and the light receiving element 34, that is, the photoelectric conversion signal by the light receiving element 34. For this reason, the change in the intensity of the signal from the light receiving element 34 is monitored, and if this intensity becomes below the threshold, for example, the drive of the laser 1 is stopped to prevent external laser light from leaking from the reading head. be able to.

第1図に戻り、ビームスプリッタ−31は偏光ビームス
プリッタ−9からの光束の一部を反射し、この一部の光
を受光素子32に向ける。偏光ビームスプリッタ−9か
らの光束は、互いに偏光方向が直交する回折光が重なり
合った光である為、回折格子3が移動しても強度の変化
は生じない。従って、受光素子32は回折格子3の移動
に関係なく、単に回折光の強度をモニターすることが可
能であり、レーザlの出力変動や、回折格子3と入射レ
ーザ光の相対的位置関係に依存する回折光の強度変化が
検出できる。
Returning to FIG. 1, the beam splitter 31 reflects a part of the light beam from the polarizing beam splitter 9 and directs this part of the light to the light receiving element 32. Since the light beam from the polarizing beam splitter 9 is a combination of overlapping diffracted lights whose polarization directions are orthogonal to each other, no change in intensity occurs even if the diffraction grating 3 moves. Therefore, the light receiving element 32 can simply monitor the intensity of the diffracted light, regardless of the movement of the diffraction grating 3, and it is possible to simply monitor the intensity of the diffracted light, which is dependent on the output fluctuation of the laser l and the relative positional relationship between the diffraction grating 3 and the incident laser light. Changes in the intensity of the diffracted light can be detected.

この受光素子32と前述の受光素子34からの出力信号
は、例えば第3図に示す回路により処理される。第3図
において、41と42は増幅器、43と44は比較器、
45と46と49と50は抵抗、47と48は基準電圧
電源、51と52はLEDなどから成る表示用発光素子
を示す。又、53. 54は比較器43゜44からの“
HIGH”又は“LOW″の信号を後段の制御回路(不
図示)へ入力する為の端子であり、例えば図示する様に
、比較器44からの信号は、レーザ1の駆動回路を制御
する為に使用される。
The output signals from this light receiving element 32 and the above-mentioned light receiving element 34 are processed by, for example, a circuit shown in FIG. In FIG. 3, 41 and 42 are amplifiers, 43 and 44 are comparators,
45, 46, 49, and 50 are resistors, 47 and 48 are reference voltage power supplies, and 51 and 52 are display light emitting elements such as LEDs. Also, 53. 54 is " from the comparators 43 and 44.
This is a terminal for inputting a "HIGH" or "LOW" signal to a subsequent control circuit (not shown). For example, as shown in the figure, the signal from the comparator 44 is used to control the drive circuit of the laser 1. used.

受光素子32.34で発生する光強度に応じた電流は、
増幅器41.42および抵抗45.46により光強度に
応じた電圧に変換される。これを各々所定の基準電圧(
しきい値)47.48と比較器43゜44で比較し、強
度が所定の値より大きいとき出力端子53.54をLO
W電圧とし、LED51.52を点灯させる。強度が所
定の値より小さいときは出力端子53.54はHIGH
電圧となりLEDは消灯する。これにより、各受光素子
32.34が受光した光の強度を知ることができる。発
光素子33からの光束は径が大きく、しかも指向性がな
いので、受光素子34に入射する光の強度の変化は基板
100が本来の位置に対し多少Y方向に変位しても小さ
くなる。これに対し、受光素子32に入射するレーザ光
の強度は、ビーム径が小さいこと、はぼ平行光であるこ
と、光路が長いことなどから、基板100のY方向の変
位に対して大きく変化するので基板100へのレーザ光
入射位置の最適な範囲がせま(なる。従つて、まず、受
光素子34に入射する光の強度をモニタしながら、基板
100即ち回折格子3の位置の粗調整を行い、次に受光
素子32に入射する光の強度をモニタしながら回折格子
3の位置の微調整を行うようにすれば、調整が非常に行
いやすく、容易に最適位置に基板1OO1即ち回折格子
3を追い込み、レーザ光を回折格子3に入射させること
ができる。
The current generated in the light receiving elements 32 and 34 according to the light intensity is
It is converted into a voltage according to the light intensity by amplifiers 41, 42 and resistors 45, 46. Each of these is set to a predetermined reference voltage (
Threshold value) 47.48 is compared with the comparator 43.44, and when the intensity is greater than a predetermined value, the output terminal 53.54 is set to LO.
The voltage is set to W, and LEDs 51 and 52 are turned on. When the intensity is less than a predetermined value, the output terminals 53 and 54 are HIGH.
voltage and the LED turns off. This allows the intensity of the light received by each light receiving element 32, 34 to be known. Since the luminous flux from the light emitting element 33 has a large diameter and has no directivity, the change in the intensity of the light incident on the light receiving element 34 becomes small even if the substrate 100 is slightly displaced from its original position in the Y direction. On the other hand, the intensity of the laser light incident on the light receiving element 32 changes greatly with respect to the displacement of the substrate 100 in the Y direction because the beam diameter is small, the beam is almost parallel, and the optical path is long. Therefore, the optimum range of the laser beam incident position on the substrate 100 is narrowed. Therefore, first, while monitoring the intensity of the light incident on the light receiving element 34, the position of the substrate 100, that is, the diffraction grating 3, is roughly adjusted. Next, by making fine adjustments to the position of the diffraction grating 3 while monitoring the intensity of the light incident on the light receiving element 32, the adjustment is very easy and the substrate 1OO1, that is, the diffraction grating 3 can be easily positioned at the optimum position. It is possible to make the laser beam incident on the diffraction grating 3.

また、先に述べた様に受光素子34に入射する光の強度
がある所定の値に達しないときはレーザlの動作を停止
させ、ある所定の値に達したときにレーザ1を駆動する
ようにしておけば、回折格子3がレーザ光の入射位置に
ない状態のまま不用意に電源を投入したり、或いは変位
測定中に回折格子3がその有効長以上移動したりしても
レーザー光が射出されない。従って、安全である。
Further, as mentioned earlier, when the intensity of the light incident on the light receiving element 34 does not reach a certain predetermined value, the operation of the laser 1 is stopped, and when the intensity of the light incident on the light receiving element 34 reaches a certain predetermined value, the operation of the laser 1 is started. By doing so, even if the power is inadvertently turned on while the diffraction grating 3 is not at the laser beam incident position, or if the diffraction grating 3 moves beyond its effective length during displacement measurement, the laser beam will not be transmitted. Not ejected. Therefore, it is safe.

この制御は端子54の出力をレーザ1の駆動回路に作用
させ、端子54の出力がHIGH電圧のときレーザlの
発光を停止させ、端子54の出力がLOW電圧のときレ
ーザ1を駆動するようにする。これにより、回折格子3
がレーザ光の入射位置にないときに、不用意に、レーザ
lからレーザー光が発せられることがなくなる。
This control causes the output of the terminal 54 to act on the drive circuit of the laser 1, so that when the output of the terminal 54 is a HIGH voltage, the emission of the laser I is stopped, and when the output of the terminal 54 is a LOW voltage, the laser 1 is driven. do. As a result, the diffraction grating 3
This prevents the laser l from inadvertently emitting laser light when the laser l is not at the laser light incident position.

又、各光強度の変化は増幅器41.42の出力電圧を直
接モニタしてもよいことはいうまでもない。
It goes without saying that the output voltages of the amplifiers 41 and 42 may be directly monitored for changes in each light intensity.

以上説明した動作をまとめると、次の表1の様になる。The operations described above can be summarized as shown in Table 1 below.

表 発光素子33から基板100の反射部35へ照射する光
束の入射角度は特に限定されず、第4図(A)の様にほ
ぼ垂直方向から入射させてもよい。又、検出系は、第4
図(B)に示す様に発光・受光容素子がペアでパッケー
ジに入れられたものでもよい。また、発光素子33は、
LED以外にも、安全性の高いものであれば何でもよい
し、受光素子34もフォトダイオード、フォトトランジ
スタ等特に限定されない。
The angle of incidence of the light beam irradiated from the front light emitting element 33 to the reflecting portion 35 of the substrate 100 is not particularly limited, and the light beam may be incident from a substantially perpendicular direction as shown in FIG. 4(A). In addition, the detection system is the fourth
As shown in Figure (B), a pair of light-emitting and light-receiving elements may be packaged. Further, the light emitting element 33 is
In addition to LEDs, anything can be used as long as it is highly safe, and the light receiving element 34 is not particularly limited, such as a photodiode or a phototransistor.

また、第3図で示した回路で得られる2つの信号の表示
は、エンコーダの読取りヘッドで表、示させたり、読取
りヘッドから得られる信号を処理するインターフェイス
ユニット内に表示させたりすることができるが、どこで
表示しても本発明の趣旨から外れるものではない。
The representation of the two signals obtained by the circuit shown in Figure 3 can also be displayed in the read head of the encoder or in an interface unit that processes the signals obtained from the read head. However, it does not depart from the spirit of the present invention no matter where it is displayed.

また、第1図において、ビームスプリッタ31の配置は
この位置に限定されず、たとえば1/4波長板53とビ
ームスプリッタ6との間にありてもよい。
Furthermore, in FIG. 1, the arrangement of the beam splitter 31 is not limited to this position, and may be placed, for example, between the 1/4 wavelength plate 53 and the beam splitter 6.

〔発明の効果〕〔Effect of the invention〕

以上、本発明によれば、レーザ光の可動基板への入射位
置と可動基板に、形成された回折格子等の光学式スケー
ルとの位置関係を検出する検出手段を設け、この検出手
段からの出力信号に基づいてレーザ光の照射を制御する
ことにより、読取りヘッドからレーザ光が漏れることの
ない、安全性の高い変位測定装置とすることができる。
As described above, according to the present invention, a detection means is provided for detecting the positional relationship between the incident position of the laser beam on the movable substrate and an optical scale such as a diffraction grating formed on the movable substrate, and the output from the detection means is provided. By controlling the irradiation of laser light based on the signal, a highly safe displacement measuring device can be obtained in which the laser light does not leak from the reading head.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の変位測定装置の一実施例を示す光学
系概略図。 第2図は基板上の回折格子と反射部を示す上面図。 第3図は2つの受光素子からの出力信号を処理する処理
回路を示す回路図。 第4図(A)、(B)は反射部検出系の変形例を示す図
FIG. 1 is a schematic diagram of an optical system showing an embodiment of the displacement measuring device of the present invention. FIG. 2 is a top view showing the diffraction grating and reflection section on the substrate. FIG. 3 is a circuit diagram showing a processing circuit that processes output signals from two light receiving elements. FIGS. 4(A) and 4(B) are diagrams showing a modification of the reflective portion detection system.

Claims (1)

【特許請求の範囲】[Claims] 光学式スケールを形成した可動基板にレーザ光を照射し
、前記光学式スケールからの光を光検出器で検出するこ
とにより前記可動基板の変位を測定する変位測定装置に
おいて、前記レーザ光の前記可動基板への入射位置と前
記光学式スケールの位置関係を検出する検出手段を有し
、該検出手段からの出力信号に基づいて前記レーザ光の
照射を制御することを特徴とする変位測定装置。
A displacement measuring device that measures the displacement of the movable substrate by irradiating a movable substrate on which an optical scale is formed with a laser beam and detecting the light from the optical scale with a photodetector. A displacement measuring device comprising: a detection means for detecting a positional relationship between an incident position on a substrate and the optical scale; and controlling irradiation of the laser beam based on an output signal from the detection means.
JP63180022A 1988-05-10 1988-07-18 Displacement measuring device Expired - Fee Related JPH076811B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63180022A JPH076811B2 (en) 1988-07-18 1988-07-18 Displacement measuring device
US07/347,397 US5066130A (en) 1988-05-10 1989-05-04 Displacement measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63180022A JPH076811B2 (en) 1988-07-18 1988-07-18 Displacement measuring device

Publications (2)

Publication Number Publication Date
JPH0228518A true JPH0228518A (en) 1990-01-30
JPH076811B2 JPH076811B2 (en) 1995-01-30

Family

ID=16076095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63180022A Expired - Fee Related JPH076811B2 (en) 1988-05-10 1988-07-18 Displacement measuring device

Country Status (1)

Country Link
JP (1) JPH076811B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001174291A (en) * 1999-12-21 2001-06-29 Olympus Optical Co Ltd Optical encoder
JP2014134520A (en) * 2013-01-11 2014-07-24 Dmg Mori Seiki Co Ltd Position detection device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5434379B2 (en) * 2009-08-28 2014-03-05 株式会社ニコン Scale body, position detection apparatus, stage apparatus, and exposure apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6159632A (en) * 1984-08-30 1986-03-27 Sony Corp Optical pickup device
JPS61262597A (en) * 1985-05-15 1986-11-20 株式会社 タイト− Laser gun game device with safety device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6159632A (en) * 1984-08-30 1986-03-27 Sony Corp Optical pickup device
JPS61262597A (en) * 1985-05-15 1986-11-20 株式会社 タイト− Laser gun game device with safety device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001174291A (en) * 1999-12-21 2001-06-29 Olympus Optical Co Ltd Optical encoder
JP2014134520A (en) * 2013-01-11 2014-07-24 Dmg Mori Seiki Co Ltd Position detection device

Also Published As

Publication number Publication date
JPH076811B2 (en) 1995-01-30

Similar Documents

Publication Publication Date Title
US5066130A (en) Displacement measuring apparatus
EP0762143B1 (en) Chromatic optical ranging sensor
US7855790B2 (en) Dimension measuring apparatus
JPH04270920A (en) Position detector and position detecting method
JP2629948B2 (en) encoder
US7034948B2 (en) Displacement pickup
JP2527965B2 (en) Voltage detector
US4976543A (en) Method and apparatus for optical distance measurement
JPH0228518A (en) Displacement measuring instrument
JPS59762B2 (en) displacement measuring device
WO2022126676A1 (en) Semiconductor detection device and detection method
US6515754B2 (en) Object-displacement detector and object-displacement controller
JPS5483853A (en) Measuring device
US6317200B1 (en) Positional measurement with normalized signal processing
JPS62140418A (en) Position detector of surface
KR100296634B1 (en) Position measuring device and method using optical pickup
JP2715623B2 (en) Encoder
JPH0955051A (en) Method and device for measuring floating characteristic of magnetic head
JPH06167305A (en) Optical displacement sensor
JP2003337007A (en) Interference apparatus
JPS58151509A (en) Optical measuring method of surface roughness
JPH03115911A (en) Thickness measuring instrument for transparent body
JPH0357913A (en) Distance measuring sensor
JP2000321019A (en) Displacement measuring instrument
JPH01203918A (en) Optical distance measurement between measuring apparatus and object

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees