JPS62228519A - Pit wall compression-preboring work and excavator therefor - Google Patents

Pit wall compression-preboring work and excavator therefor

Info

Publication number
JPS62228519A
JPS62228519A JP7222186A JP7222186A JPS62228519A JP S62228519 A JPS62228519 A JP S62228519A JP 7222186 A JP7222186 A JP 7222186A JP 7222186 A JP7222186 A JP 7222186A JP S62228519 A JPS62228519 A JP S62228519A
Authority
JP
Japan
Prior art keywords
ground
excavation
blade
pressurized
excavated soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7222186A
Other languages
Japanese (ja)
Inventor
Yukio Matsumoto
松元 幸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP7222186A priority Critical patent/JPS62228519A/en
Publication of JPS62228519A publication Critical patent/JPS62228519A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the bearing strength of the side of a foundation pile to be set thereafter by a method in which a warped compressive excavating blade is attached to the lower disc of a steel tube in relation to the normal rotation direction of the rotary shaft and excavated soil is pressed into the surrounding natural ground. CONSTITUTION:A backwardly warped compressive excavating blade 5 is attached to the lower disc 2 of a steel tube 9 in relation to the normal rotation direction of a rotary shaft 1. The ground is excavated by normally turning a central blade 3 and the blade 5, and compressed air or a fluid or water containing cement is jetted from a nozzle 4. The free rise of the excavated soil is suppressed by the tube 9, and in a compressible ground, most of excavated soil is pressed into the surrounding ground by the radial pressures of the blade 5. Also, in a less-compressible ground, the excavated soil is partly pressed into the surrounding ground in the same way. The bearing strength of the side of the foundation pile to be set thereafter can thus be increased.

Description

【発明の詳細な説明】 この発明は、基礎杭を設置する位置にあらかじめ地下孔
を造成するプレボーリング工法に関し、基礎杭の周りに
圧縮穴壁を造り、のちに設置する基礎杭の側面支持力を
増大させることをその、目的とする。
[Detailed Description of the Invention] The present invention relates to a pre-boring method in which an underground hole is created in advance at the location where a foundation pile is to be installed. Its purpose is to increase.

回転軸に一体連結した円板の下面に、回転軸の正転方向
に対した後方にそり返った加圧掘削翼を一体に取付け、
回転軸を正転させると、刃先金具で地盤が掘り起され、
この掘削土砂は加圧掘削翼の外縁部の後方にそり返った
特殊構造によつて外側に押し出される放射圧力を受ける
A pressurized drilling blade that is curved backwards in the normal rotation direction of the rotating shaft is integrally attached to the lower surface of the disc that is integrally connected to the rotating shaft.
When the rotating shaft rotates in the normal direction, the ground is dug up with the cutting edge metal fitting,
This excavated earth and sand is subjected to radiation pressure that is pushed outward by a special structure curved back at the outer edge of the pressurized excavation blade.

このようにして原地盤内に押し出されるが、そのうち大
部分の掘削土砂は円板の周面に沿つて上昇し、円板の上
方に移行する。この場合、加圧掘削翼の加圧機能は働く
ものの、土砂の上方への移行を自由にしたため、加圧機
能が生かされないこととなり、この手段によつては地下
孔の孔壁に圧縮層を造成することは出来ない。
In this way, the excavated soil is pushed out into the original ground, but most of the excavated soil rises along the circumferential surface of the disk and moves above the disk. In this case, although the pressurizing function of the pressurized excavation blade works, the pressurizing function is not utilized because the soil is allowed to move upwards, and this method does not allow the formation of a compressed layer on the wall of the underground hole. It cannot be created.

この発明は、加圧掘削翼の加圧機能を生かし、原地盤の
もつ圧縮性の程度に応じて掘削土砂を周りの原地盤内に
圧入し、地下孔の孔壁に圧縮層を造成しうる施行法であ
る。以下に図面に示す実施例に従って本発明を説明する
。回転軸1の下端部は、一体に連結した円板2を貫き、
その先端に中央刃3を突設、その側面に一対のノズル4
を装備する。一対の加圧掘削翼5は、矢印の正転方向に
対してその外側手部が後方に湾曲してそり返った形状に
構成され、円板2及び回転軸1に連結される。この加圧
掘削翼5の下端部前面の湾曲部の曲率半径は、加圧掘削
翼5の上端部前面の湾曲部の曲率半径より大きく、従つ
て湾曲部の前面は下端部より上端部が外側に張り出して
加圧斜面6を形成する。この一対の加圧掘削翼5には刃
先金具7を取付けるが、第1図の左側の加圧掘削翼5で
は加圧斜面6を明示するため刃先金具を省略してある。
This invention utilizes the pressurizing function of the pressurized excavation blade to inject excavated soil into the surrounding original ground according to the degree of compressibility of the original ground, thereby creating a compressed layer on the wall of the underground hole. This is the enforcement law. The present invention will be explained below according to embodiments shown in the drawings. The lower end of the rotating shaft 1 pierces the integrally connected disc 2,
A central blade 3 is protruded from its tip, and a pair of nozzles 4 are installed on its sides.
be equipped with. The pair of pressurized excavation blades 5 are configured such that their outer arms are curved backward in the normal rotation direction of the arrow, and are connected to the disk 2 and the rotating shaft 1. The radius of curvature of the curved portion on the front surface of the lower end of the pressurized drilling blade 5 is larger than the radius of curvature of the curved portion on the front surface of the upper end of the pressurized drilling blade 5, and therefore, the front surface of the curved portion has an upper end outward from the lower end. The pressure slope 6 is formed by overhanging the pressure slope 6. A cutting edge fitting 7 is attached to the pair of pressurizing excavating blades 5, but the cutting edge fitting is omitted in the left pressurizing excavating blade 5 in FIG. 1 in order to clearly show the pressurizing slope 6.

この刃先金具7は、第3図に示すとおり板厚の厚い加圧
掘削翼5の先端勾配面に溶接連結される。符号8は超硬
度チップである。また円板2の上方には円板2の直径と
同直径の鋼管9が連結され、この鋼管9の上端は閉じら
れる。更に、この鋼管9の上方の回転軸1には鋼管9と
ほぼ同直径のスパイラル10が装備される。なお公知の
ため地上の装置は図示しないが、回転軸1を作動させる
モータを収容したケース上にはウエイトが載荷され、掘
造装置には下向きの力が作用する。以上の掘進装置を正
転させると、刃先金具7で堀り上げた掘削土砂は、加圧
掘削翼5前面に沿つて外側に向つて流動するとともに、
加圧掘削翼5の上半部に当面する先行土砂は、加圧掘削
翼5に設けた加圧斜面6の作用によつて、加圧掘削翼5
の下半部に当面する後続土砂から順次押し上げられ、周
りの原地盤内に押し出される大きな放射圧力を受ける。
As shown in FIG. 3, this cutting edge metal fitting 7 is welded and connected to the tip inclined surface of the thick pressurized excavation blade 5. Reference numeral 8 is a super hard tip. Moreover, a steel pipe 9 having the same diameter as the diameter of the disc 2 is connected above the disc 2, and the upper end of this steel pipe 9 is closed. Further, the rotating shaft 1 above the steel pipe 9 is equipped with a spiral 10 having approximately the same diameter as the steel pipe 9. Although the device on the ground is not shown because it is well known, a weight is loaded on a case housing a motor that operates the rotary shaft 1, and a downward force acts on the excavation device. When the above excavation device is rotated in the normal direction, the excavated earth and sand excavated by the cutting edge metal fitting 7 flows outward along the front surface of the pressurized excavation blade 5, and
The preceding earth and sand that comes into contact with the upper half of the pressure excavation blade 5 is removed by the action of the pressure slope 6 provided on the pressure excavation blade 5.
The lower half of the area is sequentially pushed up by the succeeding earth and sand, and is subjected to large radiation pressure that pushes it into the surrounding ground.

掘削深度の地盤がN値20以下の砂質土、又はこれに相
当する堅さの粘性土の場合は、放射圧力を受けた掘削土
砂は渋滞なく周りの原地盤内に圧入される。
If the ground at the excavation depth is sandy soil with an N value of 20 or less, or viscous soil with an equivalent hardness, the excavated soil subjected to radiation pressure is injected into the surrounding original ground without congestion.

もし、円板2の上方に鋼管9が連結されていなければ、
掘削土砂は円板2の外側を経て簡単に円板2の上方に押
出されるが、この掘進装置では、円板2に連結した鋼管
9の長さを5メートルとしたので、掘削土砂はこの長尺
の鋼管9に沿って上昇する抵抗より、周りの原地盤に移
行する方が抵抗力が少ないことから、移行抵抗力の差違
に従っておのずから周りの原地盤内に圧入されるものと
解釈される。またこの掘進時、回転軸1に連通するノズ
ル4から圧縮空気を噴射すると、空気の通過によって回
転する鋼管9の外面に対する孔壁11の粘着力又は摩擦
力が減少して荷重の作用力が掘進先端部に強く作用する
とともに、掘削土砂及び周りの現地盤に圧縮空気の噴射
連動による微振動が作用し、周りの原地盤への掘削土砂
の圧入が助長される成果が得られる。
If the steel pipe 9 is not connected above the disc 2,
The excavated soil is easily pushed out above the disc 2 through the outside of the disc 2, but in this excavation device, the length of the steel pipe 9 connected to the disc 2 is 5 meters, so the excavated soil is pushed out above the disc 2. Since the resistance force migrating to the surrounding raw ground is lower than the resistance rising along the long steel pipe 9, it is interpreted that the pipe is naturally forced into the surrounding raw ground according to the difference in the migrating resistance force. . Furthermore, when compressed air is injected from the nozzle 4 communicating with the rotating shaft 1 during this excavation, the adhesion or frictional force of the hole wall 11 against the outer surface of the rotating steel pipe 9 decreases due to the passage of air, and the acting force of the load is reduced. In addition to strongly acting on the tip, slight vibrations caused by the injection of compressed air act on the excavated soil and the surrounding local ground, and the result is that the press-in of the excavated soil into the surrounding local ground is facilitated.

実験に用いたモータは45kw、ウエイトの重量は10
トン、その他装置の重量は約5トン、地下孔12の直径
は60■であるが、モータの力及びウエイトの重量を上
位のものに換えると、更に■実な砂質土、更に堅い粘性
土の地盤に掘削土砂を圧入し得ることが期待される。し
かしながら、原地盤内への全掘削土砂の圧入には限界が
あろう。実施例の装置では、圧縮性に乏しいN値25以
下の砂質地盤に掘進装置が到達すると、掘進装置の掘進
が停止する。このとき講じた有効な1手段は、圧縮空気
の送気に換え、ノズル4から吐き出し圧力30■/■■
の高圧でセメントミルクを噴出したことである。この手
段によると、掘削土砂はセメントミルクと混合されて流
動性の高いソイルセメントとなり、その一部は原地盤内
に圧入され孔壁11をセメント粒子を含む強化層とし、
一部のソイルセメントは上部装置の荷重を受けて回転す
る鋼管9の周面に沿つて上昇し、鋼管9の外面の孔壁1
1をソイルセメント化するとともに、余剰分はスパイラ
ル10上に収容される。この行程では掘進速度を低速に
制御し、ソイルセメントの練り返しを充分行う。以上の
ように、地下孔12の孔壁11を常に圧縮しながら所要
の硬質支持層に掘進装置を到達させる。以上のセメント
ミルクは水の噴射に換え得る。
The motor used in the experiment was 45kw, and the weight of the weight was 10
The weight of the other equipment is approximately 5 tons, and the diameter of the underground hole 12 is 60 mm, but if the power of the motor and the weight of the weight are changed to higher-level ones, even more solid sandy soil and even harder cohesive soil can be obtained. It is expected that excavated soil can be injected into the ground. However, there is a limit to the ability to inject all excavated soil into the original ground. In the apparatus of the embodiment, when the excavation apparatus reaches sandy ground with an N value of 25 or less, which is poor in compressibility, the excavation of the excavation apparatus is stopped. One effective measure taken at this time was to replace the supply of compressed air with a pressure of 30■/■■ discharged from the nozzle 4.
Cement milk was squirted out under high pressure. According to this method, the excavated soil is mixed with cement milk to become highly fluid soil cement, and a part of it is injected into the original ground to form a reinforcement layer containing cement particles in the hole wall 11,
Some of the soil cement rises along the circumferential surface of the steel pipe 9 that rotates under the load of the upper device, and rises along the pore wall 1 on the outer surface of the steel pipe 9.
1 is turned into soil cement, and the surplus is stored on the spiral 10. In this process, the excavation speed is controlled to a low speed and the soil cement is sufficiently mixed. As described above, the excavation device is made to reach the required hard support layer while constantly compressing the hole wall 11 of the underground hole 12. The above cement milk can be replaced with a water jet.

この支持層の孔底部では、地上の操作クレーンを用いて
掘進装置の掘進を制御し、モータケース上からウエイト
を離し、この状態でグラウンドポンプの吐出圧力を10
■/■程度に低下させ、ノズル4から比較的底圧のセメ
ントミルクを射出しながら、回転軸1を正転させると、
軽量となった掘進装置はセメントミルクの液体圧によつ
て徐徐に上昇する。所定位置でセメントミルクを水に替
えて掘進装置を地上に回収する。以上の回収行程におい
て地下孔12の孔壁11は流体圧力を受けた更に圧縮さ
れる。所要の位置までセメントミルクを満たしたこの地
下孔12に、既成のコンクリート杭又は鋼管杭を沈降さ
せると、これらの基礎杭はセメントミルクを介して地下
孔12の圧縮された孔壁11と一体化し、側面支持力の
大きい基礎杭となる。最終工程では杭頭に軽打を加える
ことも先端支持力増大の一手段である。実施例で用いた
セメントミルクには膨張性のあるセメントを用いたが、
セメントミルクに替えてモルタルを用いてよい。
At the bottom of the hole in this support layer, a ground operating crane is used to control the excavation of the excavation device, the weight is released from the top of the motor case, and in this state the discharge pressure of the ground pump is increased to 10
When the rotation shaft 1 is rotated in the forward direction while injecting cement milk at a relatively low pressure from the nozzle 4,
The lightweight excavation equipment is gradually raised by the liquid pressure of the cement milk. At the designated location, replace the cement milk with water and recover the excavation equipment to the ground. In the recovery process described above, the hole wall 11 of the underground hole 12 is further compressed by fluid pressure. When ready-made concrete piles or steel pipe piles are lowered into this underground hole 12 filled with cement milk to the required position, these foundation piles become integrated with the compressed hole wall 11 of the underground hole 12 through the cement milk. , resulting in foundation piles with large lateral bearing capacity. In the final process, adding light hammering to the pile cap is also a means of increasing the tip bearing capacity. Expandable cement was used for the cement milk used in the examples, but
Mortar may be used instead of cement milk.

次に、以上に述べた本工法は場所打鉄筋コンクリート杭
の地下孔造成に用いて有効な効果が得られる。第4図は
、特に大型の場所打杭を造成する場合の掘進装置を示す
。円筒状のウエイト13の下面に、実施例に示したと同
様な加圧掘削翼5を数個取付ける。このウエイト13は
、回転軸1に連結金具14によって剛強に連結され、ウ
エイト13の内周側の下端部に先掘り鋼管15を一体に
突説する。回転軸1の内部には逆流パイプ16が内蔵さ
れ、回転軸1の先端には中央刃3を取付け、その上方に
複数の段堀ビツト17を取付ける。刃先金具は図面上省
略してある。また、回転軸1からは分岐パイプ18が枝
分かれし、その先端のノズル4からは圧縮空気又はセメ
ントミルクが各自の加圧掘削翼5の前方に噴射されるよ
うに構成する。すなわち、リバースサーキュレイション
工法における地下孔12の孔壁11を本工法の装置を用
いて圧縮強化する複合施行法である。地下孔12の中央
部の地盤は中央刃3及び段堀ビツト17で掘削し、外縁
部の地盤は加圧掘削翼5で掘削し、掘削土砂を圧縮性の
ある原地盤内に圧入し、孔壁11に圧縮層を造成するこ
とは実施例と同様で、硬質地盤の掘進工程時、その掘削
土砂と噴射したセメントミルクとを混合したソイルセメ
ントの一部は原地盤内に圧入され、他の一部はウエイト
13の周面を上昇し、ウエイト13の外側にソイルセメ
ント層を造り、余剰分はウエイト13の中空部を経て中
央部の掘削土砂とともに逆流パイプ16によって地上に
吸い上げられる。直径3メートルの地上孔を造成する場
合でも、外縁部の厚さ20■内外の掘削土砂を加圧処理
すればよく、その所要トルクは過大とはならない。先掘
り鋼管15は中央部と外縁部とを隔離するもので、外縁
部の圧縮空気及びセメントミルクの噴射影響は中央部と
作用せず、この先堀り鋼管15の先端にはのこぎり状刃
先19を設ける。この施行法では孔壁11の全長が圧縮
強化されるので孔壁の崩壊がなく、被圧水のある深度で
は掘進速度を低速にし急結性セメントミルクなど急速固
結材を噴射して孔壁11を局部的に固化する特殊手段を
用いることができる。
Next, the above-described method can be used to create underground holes for cast-in-place reinforced concrete piles, and an effective effect can be obtained. FIG. 4 shows an excavation device particularly used when creating large-sized cast-in-place piles. Several pressurized excavation blades 5 similar to those shown in the embodiment are attached to the lower surface of the cylindrical weight 13. This weight 13 is rigidly connected to the rotating shaft 1 by a connecting fitting 14, and a pre-drilled steel pipe 15 is integrally protruded at the lower end of the inner peripheral side of the weight 13. A backflow pipe 16 is built inside the rotating shaft 1, a central blade 3 is attached to the tip of the rotating shaft 1, and a plurality of stepped bits 17 are attached above the central blade 3. The cutting edge metal fittings are omitted in the drawing. Further, a branch pipe 18 branches from the rotary shaft 1, and compressed air or cement milk is injected in front of each pressurized excavation blade 5 from a nozzle 4 at the tip thereof. That is, this is a combined construction method in which the hole wall 11 of the underground hole 12 in the reverse circulation construction method is compressed and strengthened using the equipment of this construction method. The ground in the center of the underground hole 12 is excavated with the central blade 3 and the step trench bit 17, and the ground at the outer edge is excavated with the pressurized excavation blade 5. The creation of a compressed layer on the wall 11 is the same as in the example, and during the process of excavating hard ground, a part of the soil cement mixed with the excavated earth and the injected cement milk is press-fitted into the original ground, and the other part is pressed into the original ground. A part of it rises on the circumferential surface of the weight 13 to form a soil cement layer on the outside of the weight 13, and the surplus passes through the hollow part of the weight 13 and is sucked up to the ground by the backflow pipe 16 along with the excavated earth and sand in the central part. Even when creating an above-ground hole with a diameter of 3 meters, it is sufficient to pressurize the excavated soil inside and outside the outer edge with a thickness of 20 cm, and the required torque is not excessive. The pre-drilled steel pipe 15 isolates the central part from the outer edge, so that the jetting influence of compressed air and cement milk on the outer edge does not interact with the central part. establish. In this construction method, the entire length of the hole wall 11 is compressed and strengthened, so there is no collapse of the hole wall, and at depths where there is pressurized water, the excavation speed is slowed down and a quick-setting material such as quick-setting cement milk is injected into the hole wall. Special means can be used to locally solidify 11.

また、直径が1.5メートル以内の中型の地下孔造成の
場合は、第4図のウエイト13及び先掘り鋼管15の内
部に、スパイラルオーガを装備した回転軸1を一体に取
付け、ウエイト13の上方でスパイラルの直径を大きく
して地下孔の直径とほぼ同等にし、外縁部の地盤は加圧
掘削翼5で加圧処理するように構成すれば、実施例と同
様に地下孔の孔壁に圧縮層を造成することができる。こ
の場合も第4図に示す前例と同様に、回転軸1にスパイ
ラルオーが用の射出パイプを内蔵し、ノズル4から射出
される流体とは異なる液体をスパイラルオーガの先端か
ら射出できるように構成する。
In addition, in the case of creating a medium-sized underground hole with a diameter of 1.5 meters or less, the rotating shaft 1 equipped with a spiral auger is integrally installed inside the weight 13 and pre-drilled steel pipe 15 as shown in Fig. 4. If the diameter of the spiral is increased in the upper part so that it is almost equal to the diameter of the underground hole, and the ground at the outer edge is pressurized by the pressurized excavation blades 5, the diameter of the spiral will be increased to the hole wall of the underground hole as in the embodiment. A compressed layer can be created. In this case as well, as in the example shown in FIG. 4, an injection pipe for the spiral auger is built into the rotating shaft 1, and the structure is such that a liquid different from the fluid injected from the nozzle 4 can be injected from the tip of the spiral auger. do.

従来の場所打ち杭の施行法では、どの工法を用いるにせ
よ地下孔の孔壁は掘削されたままの弱められた状態にあ
り、本公法のごとく孔壁に圧縮層は造成されず、原地盤
が本来保有する摩擦力または粘着力は弱められた状態で
場所打杭の側面に作用するものと考えられる。以上に反
し、本工法においては地下孔の孔壁に圧縮層を造成する
ので、原地盤が本来保有する摩擦力又は粘着力以上の抵
抗力が場所打杭の側面に作用することとなり、更に孔壁
の粗面効果も加わり、場所打杭の側面支持力は旧来の打
撃工法における杭の側面支持力以上に増大することが期
待される。
In the conventional construction method of cast-in-place piles, no matter which construction method is used, the wall of the underground hole is in a weakened state as it was excavated, and a compressed layer is not created on the hole wall as in this public law, and the original ground is It is thought that the frictional force or adhesion force originally possessed by piles acts on the sides of cast-in-place piles in a weakened state. Contrary to the above, in this method, a compressed layer is created on the wall of the underground hole, so a resistance force greater than the frictional force or adhesive force originally possessed by the original ground acts on the side of the cast-in-place pile. With the addition of the wall roughening effect, it is expected that the lateral bearing capacity of cast-in-place piles will be greater than the lateral bearing capacity of piles in the conventional hammering method.

なお、掘削能率を高める手段として加圧掘削翼5の掘削
直径を第2図の鋼管9又は第4図のウエイト13の外径
より20mmないし30mm程度大きくして地盤を掘削
してもよい。本発明では鋼管9及びウエイト13を円柱
体と総称するが、上記の場合円柱体と掘削孔壁との間に
は、はじめ10mmないし15mmの組織のまばらなす
き間ができ、掘削土砂の一部は長尺の円柱体の側面に沿
って上昇する。しかしながら、円柱体の長尺効果によつ
てこのわずかなすき間を上昇する掘削土砂の自由な上昇
は抑制され、円柱体の外側には上部になるほど密実な圧
縮層が造成される。通常地盤では常に圧縮空気を噴射す
るので、特に崩壊性のある地下孔12内に水を渇した場
合でも水は掘進先端部には流下せず、大部分の掘削土砂
は原地盤内に圧入される。また硬質地盤では大半のソイ
ルセメントがこの円柱体の外側を上昇し孔壁11にソイ
ルセメント層を造るが、この手段によるときは、硬質地
盤の掘進速度が速められる効果が得られる。本発明では
、円柱体と加圧掘削翼とのわずかな直径差を含めて、こ
の両者の寸法をほぼ同等と見なすものと定義する。
As a means of increasing excavation efficiency, the ground may be excavated by making the excavation diameter of the pressurized excavation blade 5 approximately 20 mm to 30 mm larger than the outer diameter of the steel pipe 9 in FIG. 2 or the weight 13 in FIG. 4. In the present invention, the steel pipe 9 and the weight 13 are collectively referred to as a cylindrical body, but in the above case, a sparsely textured gap of 10 mm to 15 mm is initially created between the cylindrical body and the wall of the excavated hole, and a portion of the excavated earth and sand is It rises along the side of a long cylindrical body. However, due to the elongated length of the cylinder, the free rise of the excavated soil through this small gap is suppressed, and a compacted layer is formed on the outside of the cylinder, which becomes denser toward the top. Since compressed air is always injected into the ground, even if the underground hole 12, which is especially prone to collapsing, runs out of water, the water will not flow down to the tip of the excavation, and most of the excavated soil will be injected into the original ground. Ru. In addition, in hard ground, most of the soil cement rises on the outside of this cylindrical body and forms a soil cement layer on the hole wall 11, but when using this method, the effect of accelerating the excavation speed in hard ground can be obtained. In the present invention, it is defined that the dimensions of the cylindrical body and the pressurized drilling blade are considered to be approximately equal, including a slight difference in diameter.

次に本工法の掘進装置の特殊機構を説明する。Next, the special mechanism of the excavation equipment of this method will be explained.

第2図に示す円板2と鋼管9とを固定して連結せず、第
5図に示すように鋼管9を上方から抑える抑えリング2
0を回転軸1に連結し、抑えリングに突説した手動金具
21が鋼管9の上面に突設した正転受動金具22を押し
て回転軸1の正転回転力を鋼管9に伝達する構造とする
The disc 2 shown in FIG. 2 and the steel pipe 9 are not fixedly connected, but the restraining ring 2 holds down the steel pipe 9 from above as shown in FIG.
0 is connected to the rotating shaft 1, and a manual fitting 21 protruding from a restraining ring pushes a forward rotating passive fitting 22 protruding from the upper surface of the steel pipe 9, thereby transmitting the forward rotating force of the rotating shaft 1 to the steel pipe 9. do.

一方、第1図の点線で示される円形の穴23を回転軸1
に一体に取付けた円板2に設け、鋼管9の内部に2本の
パイプに4を通し、回転軸1を逆転し手動金具21が逆
転受動金具25にあたつたとき、円板2の穴23と、鋼
管9内に固定連結されたパイプ24との位置が係合する
ように構成すれば、回転軸1の逆転時、円板2の下面か
ら鋼管9の上面に通ずる通路ができる。
On the other hand, insert the circular hole 23 shown by the dotted line in FIG.
4 is inserted into the two pipes inside the steel pipe 9, and when the rotating shaft 1 is reversed and the manual fitting 21 hits the reversing passive fitting 25, the hole in the disk 2 is 23 and a pipe 24 fixedly connected within the steel pipe 9 are configured so that they engage with each other, a passage is created from the lower surface of the disc 2 to the upper surface of the steel pipe 9 when the rotating shaft 1 is reversed.

上記パイプ24は鋼管9の上部端板26及び下部端板の
所定位置に設けた穴の位置に連結される。この装置の場
合、回転軸1を逆転しながら掘進装置を引き上げても、
孔底部に真空作用は生ぜず装置の回収作業が容易となる
。また、逆転時拡翼する拡大刃を円板2に取付けると、
支持層の孔底部に拡底根を造成することができる。
The pipe 24 is connected to holes provided at predetermined positions in an upper end plate 26 and a lower end plate of the steel pipe 9. In the case of this device, even if the excavation device is pulled up while reversing the rotating shaft 1,
No vacuum is generated at the bottom of the hole, making it easier to recover the device. Also, if an expanding blade that expands when reversing is attached to the disk 2,
Expanded roots can be created at the bottom of the hole in the supporting layer.

更に、加圧掘削翼の背面に逆転用の刃先金具を取付ける
と、特に硬質な地盤では刃先金具で掘り起した掘削土砂
をパイプ24を通じ鋼管9の上方に排土させる手段を講
ずる。また前記拡底根造成時、セメントミルクを噴射し
て掘削土砂と混合し、拡底根をソイルセメントで満す方
法もあるが、同工程時水を噴射し、拡底根の掘削土砂を
水とともにパイプ24を通じ鋼管9の上方に排土し、最
後に掘進装置を孔底部におろしノズル4から圧縮空気を
噴射すると、空気は拡底根の上方にたまり、水を下方に
押す空気圧が生じ、回転噴射によって舞い上る土砂を含
む水はパイプ24を通じて噴き上り、孔底部の堀りくず
はすべて一掃される。こののち回転軸1を正転に戻して
パイプ24の下端部を閉じ、ノズル4から濃度の高いセ
メントミルク又はモルタルを射出すると、この拡底根は
純粋なセメントミルク又はモルタルで満たされる。以上
のように回転軸1を逆転して硬質地盤及び拡底根を掘削
する場合は、その掘削土砂はパイプ24を経て排土され
るので、その土砂を収容するため第2図に示されたスパ
イラル10は図面とは反対の向きに取りつけるものとす
る。
Furthermore, when a reversing cutting edge fitting is attached to the back of the pressurized excavation blade, a means is provided for discharging the excavated soil excavated by the cutting edge fitting above the steel pipe 9 through the pipe 24, especially in hard ground. Also, when creating the expanded root, there is a method of injecting cement milk and mixing it with the excavated soil to fill the expanded root with soil cement.However, during the same process, water is injected and the excavated soil of the expanded root is mixed with water into the pipe 24. The soil is removed above the steel pipe 9 through the hole, and finally, when the excavation device is lowered to the bottom of the hole and compressed air is injected from the nozzle 4, the air accumulates above the expanded root, creating air pressure that pushes the water downward, and the water is blown up by the rotary jet. The water containing the rising earth and sand blows up through the pipe 24, and all the excavation debris at the bottom of the hole is swept away. Thereafter, the rotary shaft 1 is returned to normal rotation, the lower end of the pipe 24 is closed, and highly concentrated cement milk or mortar is injected from the nozzle 4, so that the expanded root is filled with pure cement milk or mortar. When the rotating shaft 1 is reversed to excavate hard ground and expanded roots as described above, the excavated earth and sand are discharged through the pipe 24, so the spiral shown in Fig. 2 is used to accommodate the earth and sand. 10 shall be installed in the opposite direction to that shown in the drawing.

以上に述べた逆転掘削を行うように特殊に構成した掘進
装置では、回転軸を逆転して硬質地盤を掘進するときは
、電磁切替ソレノイドの可動鉄心の延長軸が、円板2に
設けた小孔を経て円板2の下面から突出し、これが拡大
刃のストッパーとなって拡大刃の拡翼をおさえ、拡底根
の造成時には、ソレノイドに電流を送つて電磁力を発生
させて可動鉄心を上方に吸引し、ストッパーの上下運動
は小形油圧機器によっても作動でき、これらの操作機器
は鋼管9の下部に配備され所定の角度移行できるように
し、鋼管9の下部端板にはストッパーが所定の角度移行
し得る長さの溝を設ける。これらの遠隔操作機構につい
ては、機械機器の分野に属する技術者には容易に理解さ
れることであつて、本掘進装置への前記ソレノイドなど
の配備組込みは設計どおりに行われる。すなわち、これ
らの操作機器の組込みによつて、回転軸を逆転して硬質
地盤を掘進する工程では拡大刃は開くことがなく、孔底
部で拡底根を造成するときだけ拡大刃が自由に拡翼し、
拡底根を造成しうる望ましい機器を持つ掘進装置が得ら
れる。なお鋼管9内にパイプ24を内蔵しない掘進装置
の場合は、円板2の下面に突設した軸の周りを回転する
拡大刃を地下孔の孔底部で、回転軸の逆転によつて拡翼
させ、この状態でセメントミルクを射出しながら掘進装
置を押し上げてゆくと、所定の高さをもつソイルセメン
トを渇した拡底根が得られる。
In the excavation device specially configured to perform reverse excavation as described above, when digging in hard ground by reversing the rotating shaft, the extension shaft of the movable core of the electromagnetic switching solenoid is It protrudes from the lower surface of the disk 2 through the hole, and serves as a stopper for the expanding blade to suppress the expansion of the expanding blade. When creating an expanded root, current is sent to the solenoid to generate electromagnetic force and move the movable core upward. The suction and the vertical movement of the stopper can also be operated by small hydraulic equipment, and these operating devices are installed at the bottom of the steel pipe 9 so that it can move at a predetermined angle. Provide a groove as long as possible. These remote control mechanisms are easily understood by engineers in the field of mechanical equipment, and the solenoids and the like are installed in the excavation device as designed. In other words, by incorporating these operating devices, the expanding blade does not open during the process of reversing the rotation axis and digging into hard ground, and the expanding blade freely expands only when creating an expanded root at the bottom of the hole. death,
An excavation device with desirable equipment capable of creating expanded roots is obtained. In the case of an excavation device that does not have the pipe 24 built into the steel pipe 9, the expanding blade, which rotates around a shaft protruding from the lower surface of the disc 2, is expanded at the bottom of the underground hole by reversing the rotating shaft. In this state, if the excavation device is pushed up while injecting cement milk, an expanded root that is dry of soil cement and has a predetermined height can be obtained.

従つてこの工法では外径30cm内外の極く小形の地下
孔においても、その孔底部に拡底根を造成することがで
きる。上記した本工法を実施する掘進装置は、本発明の
基本思想を逸脱しない範囲内で種種の設計変更を行い得
る。例えば、第4図のウエイト13と円板2とを固定し
て連結せず、円板2がウエイト13に対して所定の角度
回転し得るように構成すると、回転軸1の逆転によって
円板に設けた穴23と、ウエイト13に内蔵したパイプ
24との位置を一致させる構造とすることができる。従
つてこのときは、硬質地盤の掘進時及び拡底根の造成時
、その掘削土砂をパイプ24を通じてウエイト13の上
方に排土し、この土砂を逆流パイプ16で吸い上げる排
土処理を行うことができ、施工能率が向上する効果が得
られる。
Therefore, with this construction method, it is possible to create an expanded root at the bottom of an extremely small underground hole with an outer diameter of 30 cm or less. The excavation equipment that implements the present construction method described above may undergo various design changes without departing from the basic idea of the present invention. For example, if the weight 13 and the disc 2 shown in FIG. The structure can be such that the provided hole 23 and the pipe 24 built into the weight 13 are aligned. Therefore, in this case, when excavating hard ground and creating an expanded root, the excavated soil can be discharged above the weight 13 through the pipe 24, and this soil can be sucked up by the backflow pipe 16. , the effect of improving construction efficiency can be obtained.

以上に説明した本発明の孔壁圧縮プレボーリング工法の
最大の特長は、地下孔の孔壁が加圧掘削翼の放射圧力を
受けて圧縮層が造成され、基礎杭の側面支持力が特に増
大する点にある。
The biggest feature of the hole wall compression pre-boring method of the present invention explained above is that the hole wall of the underground hole receives radiation pressure from the pressurized drilling blade, creating a compressed layer, which particularly increases the lateral bearing capacity of the foundation pile. It is in the point of doing.

また回転軸の逆転によつて拡底根を造成する手段を加用
すれば先端支持力の大きい基礎杭が得られる。次にこの
工法に付随する効果としては、この工法によれば地下孔
の孔壁が圧縮強化し、スパイラルで孔壁にコテ塗り圧縮
を加える手段、又は清水を満すだけで孔壁が崩れずベン
トナイト泥水を必要としない点、また直径80cm内外
までの地下孔造成時には、第2図に示す掘進装置を■用
い得るので、掘進装置の回収時地上に排土される掘削土
砂が特に減少する点、従つて残土処理費及び泥水処理費
が節減される点、この装置の加圧掘削翼は当接する対象
部を外側に押出す機能を持ち、且つ上方の円柱体の位置
確保力が大きいので、玉石又は小型の転石などの障害物
を外側に押出す能力がある点、この工法は既成杭及び場
所打杭の造成の両方に用いられ、且つ小径のものから大
径の地下孔まで実施でき、通用範囲が広い点などが挙げ
られる。
Furthermore, by adding a means of creating an expanded root by reversing the rotation axis, a foundation pile with a large tip-bearing capacity can be obtained. Next, as an effect accompanying this construction method, according to this construction method, the walls of the underground hole are compressed and strengthened, and the hole wall does not collapse by applying compression by applying troweling to the hole wall with a spiral, or by simply filling it with fresh water. Bentonite mud water is not required, and the excavation device shown in Figure 2 can be used when creating underground holes up to 80 cm in diameter, so the amount of excavated soil discharged to the surface when the excavation device is recovered is particularly reduced. Therefore, the cost of treating residual soil and muddy water is reduced.The pressurized excavation blade of this device has the function of pushing the object part it comes into contact with outward, and the positioning force of the upper cylindrical body is large. This construction method has the ability to push out obstacles such as boulders or small boulders, and can be used to create both pre-cast piles and cast-in-place piles, and can be implemented from small to large diameter underground holes. Among other things, it has a wide range of applicability.

すなわち、この工法はこれまでに得られたことのない基
礎杭の側面支持力を増大させるプレボーリング工法であ
つて、このプレボーリング内に設置される基礎杭の支持
力は、従来のプレボーリング内に設置される基礎杭に比
較して顕著に増大する特長が得られ、且つ多面的な経済
価値をもたらし得る有用性の高い基礎杭のプレボーリン
グ工法である。
In other words, this method is a pre-boring method that increases the lateral bearing capacity of foundation piles, which has never been achieved before. This is a highly useful pre-boring construction method for foundation piles that provides significantly increased features compared to foundation piles installed in the area, and can bring multifaceted economic value.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明プレボーリング工法の掘進装置およびその
実施の態様を示すもので、第1図は実施例に用いた掘進
装置の下面図、第2図は地中を掘進する実施例の掘進装
置の態様図、第3図は加圧掘削翼に取付けた刃先金具の
側面図、第4図は大形掘進装置の一部縦断面図、第5図
は掘進装置の鋼管の上方の一部を切断し内部装置を示す
とともに、鋼管上面の装置を示す構造図である。 図面中、符号1・・・回転軸、2・・・円板、3・・・
中央刃、4・・・ノズル、5・・・加圧掘削翼、6・・
・加圧斜面、7・・・刃先金具、9・・・鋼管、10・
・・スパイラル、11・・・地下孔の孔壁、12・・・
地下孔、13・・・ウエイト、14・・・連結金具、1
5・・・先堀り鋼管、16・・・逆流パイプ、17・・
・段掘りビツト、18・・・分岐パイプ、20・・・抑
之リング、21・・・主動金具、22・・・正転受動金
具、23・・・円板に設ける穴、24・・・パイプ、2
5・・・逆転受動金具、26・・・上部端板。
The drawings show an excavation device for the pre-boring method of the present invention and an embodiment thereof. Fig. 1 is a bottom view of the excavation device used in the embodiment, and Fig. 2 is a diagram of the excavation device of the embodiment used for digging underground. Fig. 3 is a side view of the cutting edge metal fitting attached to the pressurized excavation blade, Fig. 4 is a partial vertical cross-sectional view of the large excavation device, and Fig. 5 is a section of the upper part of the steel pipe of the excavation device. FIG. 2 is a structural diagram showing the internal device and the device on the top surface of the steel pipe. In the drawings, reference numerals 1...rotating shaft, 2...disc, 3...
Central blade, 4... Nozzle, 5... Pressurized drilling blade, 6...
・Pressure slope, 7... Cutting edge metal fitting, 9... Steel pipe, 10.
...Spiral, 11...Underground hole wall, 12...
Underground hole, 13... Weight, 14... Connecting fitting, 1
5... Pre-drilled steel pipe, 16... Backflow pipe, 17...
・Step digging bit, 18... Branch pipe, 20... Suppressing ring, 21... Main drive fitting, 22... Normal rotation passive fitting, 23... Hole provided in disk, 24... pipe, 2
5... Reverse passive fitting, 26... Upper end plate.

Claims (2)

【特許請求の範囲】[Claims] (1)回転軸の作動によって回転する円柱体の下方の円
板に、回転軸の正転方向に対して後方にそり返った加圧
掘削翼を取付け、この加圧掘削翼を正転させて地盤を掘
削するとともに、地盤の硬軟に応じ回転軸に通ずるノズ
ルから圧縮空気またはセメントを含む流動体ないし水を
噴射し、掘削直径とほぼ同等の外径をもつ前記円柱体に
よって、掘削土砂の自由な上昇を抑制し、圧縮性のある
地盤では掘削土砂の大部分、圧縮性に乏しい地盤では掘
削土砂の一部を加圧掘削翼のもつ放射圧力によって周り
の原地盤に圧入することを特徴とする孔壁圧縮プレボー
リング工法。
(1) A pressurized excavator blade that is curved backwards with respect to the forward rotation direction of the rotary shaft is attached to the lower disk of the cylindrical body that rotates by the operation of the rotary shaft, and this pressurized excavator blade is rotated in the normal rotation direction. While excavating the ground, compressed air, a fluid containing cement, or water is injected from a nozzle leading to the rotating shaft depending on the hardness of the ground, and the cylindrical body, which has an outer diameter approximately equal to the excavation diameter, frees the excavated soil. The feature is that most of the excavated soil in compressible ground and a part of the excavated soil in less compressible ground are injected into the surrounding raw ground by the radiation pressure of the pressurized excavation blade. The hole wall compression pre-boring method.
(2)回転軸の正転方向に対して後方にそり返った加圧
掘削翼に刃先金具を取付け、この加圧掘削翼の前方に流
体を噴射するノズルを設け、この加圧掘削翼を、この加
圧掘削翼の掘削直径とほぼ同等の直径をもつ円柱体の下
方の円板に連結し、回転軸の作動によって回転し得るよ
うにしてなる掘進装置。
(2) A cutting edge metal fitting is attached to the pressurized excavation blade that is curved backwards with respect to the normal rotation direction of the rotation axis, and a nozzle that injects fluid is provided in front of this pressurized excavation blade, and this pressurized excavation blade is An excavation device that is connected to a lower disk of a cylindrical body having a diameter approximately equal to the excavation diameter of the pressurized excavation blade, and is rotatable by the operation of a rotating shaft.
JP7222186A 1986-03-29 1986-03-29 Pit wall compression-preboring work and excavator therefor Pending JPS62228519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7222186A JPS62228519A (en) 1986-03-29 1986-03-29 Pit wall compression-preboring work and excavator therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7222186A JPS62228519A (en) 1986-03-29 1986-03-29 Pit wall compression-preboring work and excavator therefor

Publications (1)

Publication Number Publication Date
JPS62228519A true JPS62228519A (en) 1987-10-07

Family

ID=13482974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7222186A Pending JPS62228519A (en) 1986-03-29 1986-03-29 Pit wall compression-preboring work and excavator therefor

Country Status (1)

Country Link
JP (1) JPS62228519A (en)

Similar Documents

Publication Publication Date Title
US6402432B1 (en) Method for installing load bearing piles utilizing a tool with blade means
KR102151009B1 (en) Soil cohesion stake suitable for slopes
CN107023026A (en) A kind of sealing bottom type caisson wall and construction method
CN113431490B (en) Large-diameter tubular pile construction equipment and method for karst area
JP3468724B2 (en) Method and device for placing concrete pile and enlarged head
JP4626655B2 (en) Construction method of foundation pile
JPS5985028A (en) Steel pipe pile and laying work thereof
KR102287362B1 (en) Reinforcement method fot tip of PHC pile using loe fluidity mortar
KR102464394B1 (en) Driving rod for forming reinforced part of piles
AU2015349623A1 (en) Construction screw pile
JP2822687B2 (en) Excavation method
JP4872561B2 (en) Construction method of ready-made piles
JPS62228519A (en) Pit wall compression-preboring work and excavator therefor
KR101794112B1 (en) Rrotating-press type pile construction device by using tip-enlarged pile
JP4197074B2 (en) Embedded pile construction equipment
JPS60126423A (en) Pile driving method
JP4179949B2 (en) Pile rotation method
KR20140014739A (en) Pile with non-closed channel shape of plural non-flat in the end of pile and method of construction of pile by using the same
JPS6013118A (en) Pile erection work and excavation head for forming consolidated perforated wall therefor
JP2005240395A (en) Rotary embedding method for pile
JP4481662B2 (en) Pile setting method and blade plate
KR20140008974A (en) Pile with non-closed channel shape of plural non-flat in the end of pile and method of construction of pile by using the same
KR102117392B1 (en) Method for constructing earth retaining wall
JPS63233190A (en) Method of special intermediate excavation construction of existing pile and device thereof
JPH01244016A (en) Reflux spiral foundation work