JPH01244016A - Reflux spiral foundation work - Google Patents

Reflux spiral foundation work

Info

Publication number
JPH01244016A
JPH01244016A JP6845988A JP6845988A JPH01244016A JP H01244016 A JPH01244016 A JP H01244016A JP 6845988 A JP6845988 A JP 6845988A JP 6845988 A JP6845988 A JP 6845988A JP H01244016 A JPH01244016 A JP H01244016A
Authority
JP
Japan
Prior art keywords
cylinder
concrete
spiral
route
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6845988A
Other languages
Japanese (ja)
Inventor
Yukio Matsumoto
松元 幸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP6845988A priority Critical patent/JPH01244016A/en
Publication of JPH01244016A publication Critical patent/JPH01244016A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a pile into the poor subsoil by discharging a base material into a hole by a spiral in the inside of a cylinder and pushing soft soil up from the cylinder after softening excavated soil by projecting fluids while excavating the hole by means of a bit on the end of a cylinder shaft. CONSTITUTION:An underground hole larger than an outer diameter of a cylinder 1 is excavated by means of a wing-like bit 10 mounted to the end of the cylinder 1, and at the same time, bentonite muddy water is injected from an injection port 13 to soften excavated soil. When it reaches a required depth, concrete (K) is discharged by a spiral 3 in the inside of the cylinder 1, while pushing soft soil up from the outside of the cylinder 1, the cylinder 1 is drawn up to form a concrete column.

Description

【発明の詳細な説明】 本発明は,基礎を構成する材料を,円筒と逆流スパイラ
ルからなる送り機構を用いて地中に圧送し,地下構造物
を構築する施工法に関し,その主たる目的は,圧送した
コンクリートまたはモルタルなどを材料として非水中打
設の状態で基礎杭または基礎杭の先端要部を圧造し,基
礎杭の総合的強度の向上を図ることにある。
[Detailed Description of the Invention] The present invention relates to a construction method for constructing an underground structure by pumping materials constituting the foundation into the ground using a feeding mechanism consisting of a cylinder and a counterflow spiral, and its main purpose is to The purpose of this method is to improve the overall strength of foundation piles by pressing the foundation piles or the main tip of the foundation piles using pumped concrete or mortar as a material while not being cast underwater.

現行慣用の場所打コンクリート杭の施工法のほとんどす
べてでは,針地盤の土砂を掘り上げ,その地下孔内に泥
水又は清水を満たし,水中コンクリートを打設すること
によって基礎杭が造成される。従ってこの施工法では,
孔底部におけるスライムの残留及びボイリングの発生,
地下孔掘削に基ずく原地盤のゆるみ,地下孔壁の不測の
崩壊などの危険性が常に内在し,且つ泥水管理及び泥土
泥水処理などに問題性がある。
In almost all of the current construction methods for cast-in-place concrete piles, foundation piles are created by digging up the earth and sand in the ground, filling the underground hole with muddy water or fresh water, and placing underwater concrete. Therefore, with this construction method,
Remaining slime and boiling at the bottom of the hole,
There are always inherent dangers such as loosening of the ground and unexpected collapse of underground hole walls due to underground hole excavation, and there are also problems in muddy water management and muddy water treatment.

また現行の既成杭の施工法においては,プレーボーリン
グ工法にしろ,一工程施工法にしろ,杭の周りの原地盤
は掘削によって緩められたままの状態にあって修復され
ない。また杭先端に拡大根を造成するが,そのほとんど
すべては圧送したセメントミルクを主体とする現地土砂
との混合体,すなわちソイルセメントであって,前記場
所打杭のコンクリートにも匹敵し得ず,徐の先端支持力
は到底拡大根の接地面積に比例するものとはなり得ない
Furthermore, in the current construction methods for prefabricated piles, whether using the play boring method or the one-step construction method, the original ground around the pile remains loosened by excavation and cannot be repaired. In addition, expanded roots are created at the tips of the piles, but almost all of them are soil cement, which is a mixture of pumped cement milk and local soil, and cannot be compared to the concrete of the cast-in-place piles. The supporting force at the tip of Xu cannot be proportional to the contact area of the enlarged root.

本発明は,従来慣用の場所打杭及び既成杭の施工法に認
められる上記重要な諸問題点を,本発明の特殊技術を用
いて一挙に解決したものである。以下,図面に示す実施
例1に従って本発明を説明する。第1図,第2図及び第
3図は場所打杭造成時の地中の態様及び装置の構造を示
す。本工法に用いる鋼管製の円筒1の内部には,回転軸
2が通貫され,この回転軸2には逆流スパイラルが突設
される。掘進工程時,円筒1は上方からみて矢印Pの右
回り,回転軸2も矢印Pの右回りに回転する。アースオ
ーガなどに用いるスパイラルは,掘削土砂を上方に上昇
させる方向に各スパイラルが傾いているが、本工法に用
いるスパイラルは,前者とは反対に各スパイラル間に収
容した材料を下降させる方向に傾いて回転操作されるの
で,特にこれを逆流スパイラル3といい,その搬送路を
逆流するスパイラル・ルートという。逆流スパイラル3
の最下段は1回転だけ平らな環状端板4に構成し,その
一部を切欠いて第2図に示す吐出口5を形成する。第1
図に示す地下孔掘進時には,油圧シリンダ6のピストン
ロッド7は内部スプリングのバネ作用によって図示のよ
うに伸び,その上端の閉鎖板8によって環状端板4の吐 出口5を閉じる。
The present invention uses the special technology of the present invention to solve the above-mentioned important problems found in the conventional construction methods of cast-in-place piles and prefabricated piles. The present invention will be described below according to a first embodiment shown in the drawings. Figures 1, 2, and 3 show the underground conditions and the structure of the equipment during the construction of cast-in-place piles. A rotating shaft 2 passes through the inside of the steel pipe cylinder 1 used in this construction method, and a backflow spiral is provided protruding from the rotating shaft 2. During the excavation process, the cylinder 1 rotates clockwise as indicated by the arrow P when viewed from above, and the rotating shaft 2 also rotates clockwise as indicated by the arrow P. The spirals used in earth augers and the like have each spiral tilted in a direction that causes the excavated earth and sand to rise upwards, but the spirals used in this construction method, contrary to the former, tilt in a direction that causes the material stored between each spiral to descend. This is called a backflow spiral 3 because it is rotated by the flow, and its conveyance path is called a backflow spiral route. Backflow spiral 3
The lowermost stage is formed into an annular end plate 4 which is flattened by one rotation, and a part thereof is cut out to form a discharge port 5 shown in FIG. 1st
When excavating the underground hole shown in the figure, the piston rod 7 of the hydraulic cylinder 6 is extended as shown by the action of the internal spring, and the discharge port 5 of the annular end plate 4 is closed by the closing plate 8 at its upper end.

第2図に示すコンクリート柱体の造成時には,遠隔操作
によってオイルを送り,この油圧装置を作動させると,
ピストンロッド7が引込み,閉鎖板8が下降し,スパイ
ラルルートSの吐出口5が開く。この吐出口5の開閉操
作は,機械的レバー操作又はソレノイドなどの電磁装置
に換え得る。円筒1の内面に接する環状板4及び閉鎖板
8の周面には止水ゴム板を接着して,円筒1内への水の
進入を防止してもよいが,第1図の掘進工程時,凝結時
間を半日程度に調節した水セメント比40%内外のコン
クリートをスパイラルルートSに適量収容しておけば,
このコンクリート層が実用上止水層の働きをなすので,
止水ゴム板は必ずしも必要ではない。
When constructing the concrete column shown in Figure 2, oil is sent by remote control and this hydraulic system is activated.
The piston rod 7 is retracted, the closing plate 8 is lowered, and the discharge port 5 of the spiral route S is opened. The opening/closing operation of the discharge port 5 can be replaced with a mechanical lever operation or an electromagnetic device such as a solenoid. Water-stopping rubber plates may be attached to the circumferential surfaces of the annular plate 4 and the closing plate 8 that are in contact with the inner surface of the cylinder 1 to prevent water from entering the cylinder 1, but during the excavation process shown in Fig. 1. , If an appropriate amount of concrete with a water-cement ratio of around 40% with setting time adjusted to about half a day is stored in the spiral route S,
This concrete layer acts as a water stop layer in practical terms, so
A water-stop rubber plate is not necessarily required.

本工法に用いる掘削装置には,先行発明の1例として原
地盤を圧縮できる特性をもつ反り面ビットを活用する。
The excavation equipment used in this construction method utilizes a warped bit, which has the property of compressing the original ground, as an example of a prior invention.

第3図は反り面ビットの下面図であって,その中央基体
9は回転軸2の先端に固着され,その左右に翼状ビット
10を一体に取付ける。符号11は中央ビットであって
,これらビット10,11には地盤を掘り上げるチップ
を取付けるが,図面では省略してある。
FIG. 3 is a bottom view of the warped bit, whose central base 9 is fixed to the tip of the rotating shaft 2, and wing-shaped bits 10 are integrally attached to the left and right sides thereof. Reference numeral 11 is a central bit, and chips for digging up the ground are attached to these bits 10 and 11, but these are omitted in the drawing.

第3図に示すように翼状ビット10の外縁半部は,回転
方向に対して後方に反った形状をなし,その上面にほぼ
扇形の抑え鉄板12を連結する。また,中央基体9には
前記油圧シリンダ6が固走連結されている。この反り面
ビットの特長としては,掘削面積の大半を占める外側半
部の原地盤は翼状ビット10で掘削され,その掘削土砂
は上方に盛り上ろうとするが,抑え鉄板12によって盛
り上りが阻止され,翼状ビット10の湾曲面に沿って移
行し,湾曲面の外側に向う強力な放射圧力を受ける。そ
の反作用によって原地盤の孔壁Tは圧締され,原地盤は
その圧縮性に応じて掘削土砂の一部又は大半を受入れる
As shown in FIG. 3, the outer edge half of the wing-shaped bit 10 is curved backward with respect to the rotating direction, and a substantially fan-shaped restraining iron plate 12 is connected to the upper surface thereof. Further, the hydraulic cylinder 6 is permanently connected to the central base body 9. The feature of this curved surface bit is that the ground in the outer half, which occupies most of the excavation area, is excavated with the wing-shaped bit 10, and the excavated soil tries to heave upward, but the heave is prevented by the restraining iron plate 12. , moves along the curved surface of the wing-shaped bit 10 and is subjected to strong radial pressure toward the outside of the curved surface. The hole wall T of the original ground is compressed by the reaction, and the original ground accepts part or most of the excavated soil depending on its compressibility.

従って以上の掘進によって原地盤の孔壁Tは本来の組織
より密実化し、打撃工法と同様な状態に原地盤が締め固
められる。
Therefore, by the above-mentioned excavation, the hole wall T in the original ground becomes denser than the original structure, and the original ground is compacted to a state similar to that in the impact method.

第1図に示す地下孔の掘進工程時には,射出口13から
少量のセントナイト泥水を射出するのであるが,この泥
水を含む掘削土砂は,円筒1内のスパイラルルートSが
閉鎖板8で閉じられている関係上,円筒1を囲む外周ル
ートRに誘導される。
During the process of excavating an underground hole as shown in FIG. Because of this, it is guided to the outer circumferential route R surrounding the cylinder 1.

実施例では円筒1の下端部外面に数個の撹拌翼14を突
設し,この円筒1を回転軸2と同一方向に回転させ,外
周ルートR内の掘削土砂とベントナイト泥水とを練り合
せる手段を講じたので,外周ルートR内にはベントナイ
トで軟化した流動状の粘性泥土W1が満たされ,施工現
場の土質のいかんにかかわらず円筒1と粘性泥土W1と
の摩擦力は小さく,スパイラルルトSを内蔵する円筒1
は円滑に所要の支持層に到達する。
In the embodiment, several stirring blades 14 are provided protruding from the outer surface of the lower end of the cylinder 1, and the cylinder 1 is rotated in the same direction as the rotating shaft 2 to mix the excavated earth and sand in the outer circumferential route R with the bentonite slurry. As a result, the outer circumferential route R is filled with fluid viscous mud W1 softened by bentonite, and the frictional force between the cylinder 1 and the viscous mud W1 is small regardless of the soil quality at the construction site, and the spiral route S Cylinder 1 containing
smoothly reaches the required support layer.

第2図は,支持層におけるコンクリート柱体造成時の態
様を示す。こ残完統キニ灰甚とんろッド7を引込め,閉
鎖板8を下降させると,逆流するスパイラルルートSの
吐出口が開き,回転軸2をP方向に回転させるので,コ
ンクリートは回転するスパイラル3の斜面で押され,吐
出口5から圧出される。またこのときは,円筒1を矢印
のQ方向に回すので,円筒1の内面と,スパイラルルー
トS内のコンクリートとの摩擦力は,吐出口5からのコ
ンクリートの押出し力を助長する。
Figure 2 shows the state of construction of concrete columns in the supporting layer. When the complete kinihaijin tunnel rod 7 is retracted and the closing plate 8 is lowered, the discharge port of the spiral route S that flows backward opens and the rotating shaft 2 is rotated in the direction P, so that the concrete rotates. It is pushed by the slope of the spiral 3 and is forced out from the discharge port 5. Further, at this time, since the cylinder 1 is rotated in the direction of the arrow Q, the frictional force between the inner surface of the cylinder 1 and the concrete in the spiral route S promotes the extrusion force of the concrete from the discharge port 5.

ベントナイト泥水の射出量を増やした孔底部では,粘性
泥土の比重は特に小さくなり,ここに比重の大きいコン
クリートが押出されるので,このコンクリートKは流動
状の粘性泥土を押しのけて孔底の中央部に沈み,翼状ビ
ット10の回転運動によって外側に向って強制的に広が
る。
At the bottom of the hole where the amount of bentonite mud has been increased, the specific gravity of the viscous mud becomes particularly small, and concrete with a high specific gravity is extruded here, so this concrete K displaces the fluid viscous mud and flows into the center of the hole bottom. , and is forcibly spread outward by the rotational movement of the winged bit 10.

比重の小さい粘性泥土は,吐出されたコンクリートと体
積を入れ替えてコンクリート上に浮上するが,押上げら
れた粘性泥土の移行圧力は,円筒1及びスパイラル3に
作用すると同時に,外周ルートR内の粘性蛸土層W1に
も作用する。もし,全粘性泥土層W1を押上げるに要す
る力が,円筒1及び回転軸2など全装置を押上げるに要
する力より大きい場合は,全装置は逆流スパイラル3の
コンクリート吐出の反力によって,ジェット氣流で浮上
する人工衛星と同様に地下孔内を上昇する。
The viscous mud with low specific gravity replaces the volume with the discharged concrete and floats on top of the concrete. However, the transfer pressure of the pushed up viscous mud acts on the cylinder 1 and the spiral 3, and at the same time, the viscous mud in the outer circumferential route R It also acts on the octopus soil layer W1. If the force required to push up the entire viscous mud layer W1 is larger than the force required to push up all the devices such as the cylinder 1 and the rotating shaft 2, all the devices will be moved by the jet due to the reaction force of the concrete discharge from the backflow spiral 3. It rises inside an underground hole, similar to an artificial satellite that floats up due to air currents.

この場合は,外周ルートR内の粘性泥土層W1はそのま
ま原位置に残り,地下孔の中央部だけにコンクリート柱
体が圧造される。以上の結果は望ましくない。
In this case, the viscous mud layer W1 within the outer circumferential route R remains in its original position, and a concrete column is pressed only in the center of the underground hole. The above results are undesirable.

実施例1では,孔壁Tで囲まれる全地下孔内にコンクリ
ート柱体を圧造することを目的とする。そこで,円筒1
のキャップ上に所要重量の荷重体を載荷し,この荷重体
と回転軸2の動力ケースとをワイヤロープで結び,荷重
体の重量を回転軸2に作用させる体勢とした。従って,
コンクリートKの吐出圧力では全装置(円筒1内の給付
コンクリートの重量を含む。)を押上げ得ず,当然外周
ルートR内の粘性泥土層W1を押し上げることとなる。
In Example 1, the purpose is to forge a concrete column within the entire underground hole surrounded by the hole wall T. Therefore, cylinder 1
A load body of a required weight was loaded on the cap of the cap, and the load body and the power case of the rotating shaft 2 were connected with a wire rope, so that the weight of the load body was applied to the rotating shaft 2. Therefore,
The discharge pressure of the concrete K cannot push up the entire device (including the weight of the delivered concrete in the cylinder 1), and naturally the viscous mud layer W1 in the outer circumferential route R is pushed up.

逆流スパイラル3の回転によって連続してコンクリート
が吐出されるが,このコンクリートは孔底部に充満した
のち行き場を求めて外周ルートRに向い,外周ルートR
内の粘性泥土層W1を押上げる。継続するコンクリート
の吐出に従ってコンクリートKは外周ルートR内を上昇
し,これに従って粘性泥土層W1は地上に排土され,外
周ルートRの上端までコンクリートKが上昇する。この
確認時点で円筒1上の荷重体の載荷を解除するのである
が,このとき円筒1及び逆流スパイラル3系の重量が軽
減し,逆流スパイラル3のコンクリート吐出の反力によ
って,こんどは全装置が浮輝しはじめる。第2図は,こ
の時点の支持層付近おけるコンクリート柱体圧造の初期 状態を示すもので,外周ルートRには既にコンクリート
Kが満たされていて,以上の操作を継続すると,孔壁T
で囲まれる地下孔全体に密実なコンクリート柱体が圧造
される。この圧造工程時にも孔壁Tはたえず翼状ビット
10の押圧を受け,その組織が更に引きしまる。以上の
ようにして所要位置の地下孔内に所定のコンクリート柱
体を圧造して装置全体を回収するのである。
Concrete is continuously discharged by the rotation of the counterflow spiral 3, and after this concrete fills the bottom of the hole, it heads toward the outer route R in search of a place to go.
The inner viscous mud layer W1 is pushed up. As the concrete continues to be discharged, the concrete K rises within the outer circumferential route R, and accordingly, the viscous mud layer W1 is discharged to the ground, and the concrete K rises to the upper end of the outer circumferential route R. At the time of this confirmation, the load on the cylinder 1 is released, but at this time the weight of the cylinder 1 and the backflow spiral 3 system is reduced, and the reaction force of the backflow spiral 3 discharging concrete causes the entire device to shut down. It starts to shine. Figure 2 shows the initial state of concrete column heading near the support layer at this point. The outer route R is already filled with concrete K, and if the above operations are continued, the hole wall T
A solid concrete column will be pressed into the entire underground hole surrounded by. During this forging process, the hole wall T is constantly pressed by the wing-shaped bit 10, and its structure is further tightened. As described above, a predetermined concrete column is forged in an underground hole at a predetermined location, and the entire device is recovered.

実施例1では掘進工程時,掘削土砂を流動軟化させるた
め射出口13からベントナイト泥水を射出したが,土質
によっては清水または粘土水が適用でき,場合によって
は大量のエアを噴氣して外周ルートR内に比重の小さい
エア・ソイル層を満たす手段をとるぎ,この場合は排土
処理が容易となる。
In Example 1, during the excavation process, bentonite slurry was injected from the injection port 13 to fluidize and soften the excavated soil, but depending on the soil quality, fresh water or clay water may be applied, and in some cases, a large amount of air may be blown out to cool the outer circumferential route R. In this case, soil removal will be easier if the soil is filled with a layer of air/soil with low specific gravity.

上記の工法によって圧造したコンクリート柱体A内に,
スペーサを取付けた溶接組立鉄筋かご,組立鉄骨又は鋼
管などを設置するには,これら補強材に強力振動力を作
用させると,補強材の進行途上のコンクリートが流動化
し,補強体は容易に柱体A内の所定位置に沈降し,ここ
に所望の補強コンクリート基礎杭が得られる。
Inside the concrete column A that was forged using the above construction method,
When installing welded rebar cages, assembled steel frames, or steel pipes with spacers attached, applying a strong vibration force to these reinforcements will fluidize the concrete in the middle of the reinforcement, and the reinforcements will easily be attached to the columns. It settles in a predetermined position within A, and the desired reinforced concrete foundation pile is obtained here.

このときの振動力は,補強材及びコンクリートだけに作
用し,公害の対象となる地盤には作用しない。
The vibration force at this time acts only on the reinforcement material and concrete, not on the ground that is subject to pollution.

以上に述べた実施例1の場所打杭の施工法は,これまで
に施工法の一般概念をやぶる新施工法で、現行の場所打
杭の施工法とはその手段方法を異にし,得られる基礎杭
に明白な性能の相違が認められる。以下にその特長を列
記する。
The construction method of cast-in-place piles in Example 1 described above is a new construction method that breaks the general concept of construction methods, and is different from the current construction method of cast-in-place piles. There is an obvious difference in the performance of the foundation piles. Its features are listed below.

(1)本施工法で行うコンクリートの打設は,地下深層
における非水中打設であって,このコンクリートは製造
当初の諸性質がそのまま保持され,劣化の影響を受けな
い。
(1) The concrete that is placed using this construction method is placed deep underground, without water, and this concrete retains its original properties as it was when it was manufactured, and is not affected by deterioration.

(2)柱体造成時,コンクリートは初め粘性泥土,次に
装置全体の重量を押し上げつつ強圧状態で打設されるの
で、その組織が密実となる。且つ砂質地盤では高圧を受
けてコンクリート内のセメント粒子が孔壁に浸透し,柱
体と孔壁との一体度が高められることが期待される。
(2) When constructing the columns, the concrete is first poured into viscous mud and then placed under heavy pressure while pushing up the weight of the entire device, resulting in a dense structure. In addition, in sandy ground, it is expected that the cement particles in the concrete will penetrate into the hole walls under high pressure, increasing the degree of integrity between the columns and the hole walls.

(3)更にこのコンクリート柱体の外側は,反り面ビッ
トで押圧されて,本来の組織より締め固めた原地盤の孔
壁に圧着する。
(3) Furthermore, the outside of this concrete column is pressed with a warped bit, and is pressed against the hole wall of the compacted original ground from its original structure.

(4)本工法では,杭の設置位置の地盤は機械的に堀り
上げが,軟化して流動排土させる。且つ反り面ビットの
原地盤圧縮作用によって,必然的に地上への排土量が減
少する。
(4) In this construction method, the ground at the location where the piles will be installed is mechanically dug up, softened, and then drained in a flowing manner. In addition, the amount of soil discharged to the ground inevitably decreases due to the ground compression effect of the warped bit.

(5)中央部から外縁部に向って吐出コンクリートを運
ぶ反り面ビットの特殊機能,及び粘性泥土と吐出コンク
リートとの比重差に基ずき,孔底部全面の粘性土は吐出
コンクリート上に浮上し,孔底のスライムとはならない
。従って慣行のスライム除去作業は不要となる。
(5) Based on the special function of the warped bit that carries the discharged concrete from the center to the outer edge and the difference in specific gravity between the viscous mud and the discharged concrete, the viscous soil on the entire bottom of the hole floats on top of the discharged concrete. , it does not become slime at the bottom of the hole. Therefore, the customary slime removal work becomes unnecessary.

(6)施工時,孔底部には常に泥土又はコンクリートの
圧力が作用するので,ボイリング現象またはバキューム
現象が生じない。
(6) During construction, the pressure of mud or concrete is always applied to the bottom of the hole, so no boiling or vacuum phenomenon occurs.

(7)地下孔内は常に泥土又はコンクリートで満たされ
るので,孔壁の崩壊は生じない。
(7) Since the inside of the underground hole is always filled with mud or concrete, collapse of the hole wall does not occur.

(8)現行工法におけるベントナイト泥水管理または循
環水管理は不要となる。従って付帯設備は大掛りとなら
ず,何処がも容易に施工できる。
(8) Bentonite mud water management or circulating water management in the current construction method will no longer be necessary. Therefore, the auxiliary equipment is not large-scale and can be easily installed anywhere.

(9)この実施例で用いた掘削装置では,翼状ビットの
外縁部が後方に湾曲していて反り面ビットを構成し,掘
削土砂を圧縮性のある原地盤に圧入する性能がある反面
,支持層となる硬質地盤(特に圧縮性に乏しい地盤)で
は,土砂圧入が渋滞し,掘進速度が急変して低速となる
。このとき確認手段として噴射口からのベントナイト泥
水の射出を停止すると,ビット周辺の掘削土砂が流動性
を失ない,ビットの掘進が急に停止し,この状況は地上
で明白に認識でき,支持層への到達が確認される。この
支持層確認は,杭の先端支持力確保上欠くことのできな
い重要事項である。
(9) In the drilling equipment used in this example, the outer edge of the wing-shaped bit is curved backward to form a warped bit, and while it has the ability to press excavated soil into the compressible source ground, it also supports In hard, layered ground (especially ground with poor compressibility), soil injection becomes congested and the excavation speed suddenly changes and becomes slow. At this time, as a means of confirmation, if the injection of bentonite mud from the injection port is stopped, the excavated soil around the bit will not lose its fluidity, and the bit will suddenly stop digging, and this situation can be clearly recognized on the ground, and the supporting layer The arrival is confirmed. Confirmation of this bearing layer is an important matter indispensable for ensuring the bearing capacity of the pile tip.

以上に実施例1の施工法のもつ優れた特長を列記したが
,実施例の施工法には隨所に反り面ビットを併用した場
合の施工法が示される。すなわち,反り面ビットの併用
によって実施例1の施工法が補完されている。しかしな
がら,図示の反り面ビットは,本発明にとって欠くこと
のできない特定要件とはならない。
The excellent features of the construction method of Example 1 have been listed above, and the construction method of Example shows a construction method in which a warped surface bit is also used at the base. In other words, the construction method of Example 1 is complemented by the combined use of the warped bit. However, the illustrated cambered bit is not a critical requirement of the present invention.

例えば,本施工法にとって好ましい性能をもつ他の掘削
装置を第4図に示す。この装置は,木工用のキリ状をし
たアングルビットで,3枚または4枚の三角形鉄板から
なる鋭角ビット15を放射状に組合わせ,円板ナ6の下
面に一体に連結し,円板16の上面には,内面に雌ネジ
を設けた連結管17が固着される。この連結管17と,
先端に雄ネジを設けた回転軸2とはネジで接続される。
For example, Fig. 4 shows another excavation rig with favorable performance for this construction method. This device is a drill-shaped angle bit for woodworking, in which acute angle bits 15 made of three or four triangular iron plates are combined radially and integrally connected to the lower surface of a disc 16. A connecting pipe 17 having a female thread on the inner surface is fixed to the upper surface. This connecting pipe 17 and
It is connected by a screw to a rotating shaft 2 having a male thread at its tip.

射出口13は円板16下面に開口し,連結管17を経て
回転軸2に連通し,射出口13からは大量のエアを噴氣
させる。掘進工程では,円筒1の先端を円板16上の設
計位置に着座させてスパイラルルートSを閉鎖し,回転
軸2及び円筒1をP方向に同一速度で回転させ,アング
ルビットで掘進した掘削土砂にエアを噴入する。この土
砂は,円板16の外側を経て外周ルートRに収容され,
大量のエアを含む土花は,円筒1の外面に約1メートル
間隔に設けた複数の撹拌翼14でたびたび練り返され,
流動するエア・ソイルの性質を保ちながら円筒1は渋滞
なく支持層に達する。キリ状のアングルビットには,原
地盤を外側に押しわけ圧縮して掘進する特性があり,原
地盤はアングルビットの掘進によって穴明け加工硬化を 受け,原地盤の孔壁Tは本来の組織以上に締め固められ
る。
The injection port 13 opens on the lower surface of the disc 16 and communicates with the rotating shaft 2 through a connecting pipe 17, and a large amount of air is blown out from the injection port 13. In the excavation process, the tip of the cylinder 1 is seated at the designed position on the disk 16 to close the spiral route S, and the rotating shaft 2 and cylinder 1 are rotated at the same speed in the P direction, and the excavated soil excavated with the angle bit is Inject air into. This earth and sand passes through the outside of the disk 16 and is accommodated in the outer circumferential route R.
The clay containing a large amount of air is frequently kneaded by a plurality of stirring blades 14 installed on the outer surface of the cylinder 1 at intervals of approximately 1 meter.
The cylinder 1 reaches the support layer without congestion while maintaining the flowing air-soil properties. The drill-shaped angle bit has the property of pushing and compressing the original ground outward, and the original ground undergoes drilling process hardening due to the digging of the angle bit, and the hole wall T of the original ground becomes harder than its original structure. It will be compacted.

また木工用のキリが木材の堅い組織のフシに達すると,
穴明けが渋滞するように,アングルビットも支持層の硬
質地盤に達すると,掘進速度が急激に低下し且つ使用電
力量が急上昇するので,アングルビットが支持層に達し
たことが地上で確認される。
Also, when the woodworking awl reaches the edge of the hard structure of the wood,
Just as drilling becomes congested, when the angle bit reaches the hard ground of the supporting layer, the digging speed decreases rapidly and the amount of electricity used increases rapidly, so it is confirmed on the ground that the angle bit has reached the supporting layer. Ru.

この時点で円筒1をQ方向(第2図参照)に回転させ,
回転軸2をP方向(第1図参照)に回転させながら,円
筒1を円板16から多少間隔をおいて引き上げると,円
筒1内に満たした厚いコンクリートの層の圧力を背景と
したスパイラルルートSが開放され,逆流スパイラル3
の吐出圧力によって流出するコンクリートが,軽量化し
たエア・ソイルを満たした外周ルートR内にあふれでる
At this point, rotate the cylinder 1 in the Q direction (see Figure 2),
When the cylinder 1 is pulled up from the disk 16 at a certain distance while rotating the rotating shaft 2 in the P direction (see Figure 1), a spiral route is created due to the pressure of the thick layer of concrete filled inside the cylinder 1. S is opened and backflow spiral 3
Concrete flowing out due to the discharge pressure overflows into the outer circumferential route R filled with lightweight air soil.

この場合,円筒1及び回転軸2には荷重体の重量を作用
させておくので、コンクリートの吐出圧力は外周ルート
R内のエア・ソイルに作用し,コンクリート吐出の継続
によってコンクリートが外周ルートR内を上昇し,上層
のエア・ソイルを地上に排出させ,コンクリートは所定
の外周ルートRの上端まで達する。
In this case, since the weight of the load body is applied to the cylinder 1 and the rotating shaft 2, the concrete discharge pressure acts on the air/soil in the outer route R, and as the concrete continues to be discharged, the concrete flows in the outer route R. is raised, the upper layer of air and soil is discharged to the ground, and the concrete reaches the upper end of the predetermined outer circumferential route R.

この確認ののち,円筒1を降下させ,その先端を円板ナ
6上の設計位置に着座させスパイラルルートを閉じる。
After this confirmation, the cylinder 1 is lowered, its tip is seated at the designed position on the disk na 6, and the spiral route is closed.

以上の操作によってコンクリート柱体の外殻部が所要ど
おり外周ルートR内に造成される。次には柱体の中央部
のコンクリートを打設しなければならないが,これに先
だって回転軸2を逆転させてアングルビットとのネジ連
結を外したのち,回転軸2をP方向に回しながら回収す
ると,円筒1内には大量のコンクリートが残留する。次
に厚肉鋼管からなる円筒1に荷重体の軽打を加えるか,
操作クレーンなどの重量を用いた圧入力を感筒1に加え
,円筒先端のアングルビットを支持層内に埋込み,支持
層に岩着させる。こののち円筒1内に不足分のコンクリ
ートを補給し,次に円筒1を掘動させながら引抜くと,
円筒1の内外は流動するコンクリートに接するので、引
抜抵抗力は小さく,支持層の深度が深くても円筒1は渋
滞なく地上に回収される。
Through the above operations, the outer shell of the concrete column is created within the outer circumferential route R as required. Next, concrete must be placed in the center of the column, but before this, the rotating shaft 2 is reversed and the screw connection with the angle bit is removed, and then the rotating shaft 2 is rotated in the P direction and recovered. Then, a large amount of concrete remains inside the cylinder 1. Next, apply a light blow to the cylinder 1 made of thick-walled steel pipe, or
Pressure force using the weight of an operating crane or the like is applied to the sensor cylinder 1, and the angle bit at the tip of the cylinder is embedded in the support layer and attached to the support layer. After this, the insufficient concrete is replenished into the cylinder 1, and then the cylinder 1 is pulled out while being excavated.
Since the inside and outside of the cylinder 1 are in contact with the flowing concrete, the pulling resistance is small, and even if the support layer is deep, the cylinder 1 can be recovered to the ground without any congestion.

以上の施工によって全地下孔内には,支持層に岩着した
アングルビットを先端にもつコンクリート柱体が造成さ
れる。この場合は,アングルビットの掘進による穴明け
加工硬化で地下孔全長の孔壁Tが密実化して杭の周面支
持力が増大し,更にアングルビットの支持層端の固め及
び岩着によって,慣用の締め固めを伴わない拡底根をも
つ場所打杭より先端支持力の大きいコンクリート柱体が
得られる。孔壁Tに穴明け加工硬化を及ぼす効果的なビ
ットとしては,円錐形ビット及び角錐ビットなどがあり
,これらはアングルビットと同等として実用できる。上
記応用例は,実施例1にくらべ,アングルビットを梅め
殺す点に経済上に負担が生ずるが,作業が単純化して施
工時間が大幅に短縮し,且つ杭の先端支持力が確実に増
大する傑出した長所が認められる。またこの応用例では
,アングルビットの円板16が,スパイラルルートSの
開閉板の働きをなすので,実施例Iで示された開閉装置
は不要である。但し吐出口は全開せず,吐出面積を絞る
。コンクリート柱体に配設する補強材の挿入は実施例1
で用いた方法にならう。
Through the above construction, a concrete column with an angle bit attached to the supporting layer at the tip will be created inside the entire underground hole. In this case, the hole wall T along the entire length of the underground hole becomes dense due to the hardening of the hole by drilling with the angle bit, increasing the peripheral surface bearing capacity of the pile, and furthermore, due to the hardening of the end of the support layer of the angle bit and rock attachment. A concrete column with greater tip bearing capacity can be obtained than conventional cast-in-place piles with expanded roots that do not involve compaction. Bits that are effective in hardening the hole wall T during drilling include conical bits and pyramidal bits, which can be practically used as equivalent to angle bits. In the above application example, compared to Example 1, there is an economical burden in that the angle bit is destroyed, but the work is simplified, the construction time is significantly shortened, and the support capacity at the end of the pile is definitely increased. Recognizes the outstanding merits of Furthermore, in this application example, the disc 16 of the angle bit acts as an opening/closing plate for the spiral route S, so the opening/closing device shown in Embodiment I is unnecessary. However, the discharge port is not fully opened, and the discharge area is narrowed down. Insertion of reinforcing material to be placed in the concrete column is shown in Example 1.
Follow the method used in.

なお強て振動力を受ける鉄筋籠の製作では,斜行筋を有
効に使って形状保持に留意する。以上に述べた場所打コ
ンクリート杭の施工法では,地上への排土量が極度に減
少する残土処理費低減の特長があり,基礎工法に新機軸
をひらく施工法となるが,本施工法に用いる補強材料も
,従来慣用の手間のかかる鉄筋籠に替えて,外面にらせ
ん状のリブを突設した薄板鋼管,又は外面が波状に起伏
する薄板鋼管を,施工現場で補強リングを用いて強化成
形させる手段をとると,これらは本工法に好適な補強材
料となる。これら薄板鋼管はひしやげて輸送できるので
,輸送時からばらす大量輸送に適する。
When manufacturing reinforcing bar cages that are subject to strong vibrational forces, care must be taken to maintain the shape by effectively using diagonal reinforcement. The cast-in-place concrete pile construction method described above has the advantage of significantly reducing the amount of soil discharged to the ground, reducing the cost of disposing of the remaining soil, and is a construction method that opens up new innovations in foundation construction methods. The reinforcing material used is a thin steel pipe with spiral ribs protruding from the outside surface, or a thin sheet steel pipe with a corrugated outside surface, which is reinforced using reinforcing rings at the construction site, instead of the conventional and time-consuming reinforcing bar cage. By forming them, they become suitable reinforcing materials for this method. Since these thin steel pipes can be transported crushed, they are suitable for mass transportation where they are taken apart during transportation.

次に本施工法を,既成杭の根固めの手段として応用する
場合を,第5図及び第6図に示す実施例2に従って説明
する。第5図は,先端に拡大根18を一体に設けたブレ
ストレスト高温度コンクリート杭(以下PHC杭という
。)の中空部に逆流スパイラル3を装備した回転軸2を
貫通させ,回転軸2の先端に装着した掘削装置で地盤を
拡大板18の外径より大きく掘削し,射出口13からベ
ントナイトを含むセメントミルクを射出し,掘削土砂と
セメントミルクとを撹拌翼14で練り返して流動するソ
イルセメントW2を造りながら地中にPHC杭Bを貫入
させ、支曾層に到達させた状況を示す。上記掘進工程時
の回転軸2の回転方向はQ方向(第2図参照)とする。
Next, the case where this construction method is applied as a means for root hardening of existing piles will be explained according to Example 2 shown in FIGS. 5 and 6. Fig. 5 shows a rotating shaft 2 equipped with a backflow spiral 3 passed through the hollow part of a breast-rested high-temperature concrete pile (hereinafter referred to as a PHC pile) that is integrally provided with an enlarged root 18 at the tip. The ground is excavated to a size larger than the outside diameter of the expansion plate 18 using an excavator attached to the excavator, and cement milk containing bentonite is injected from the injection port 13, and the excavated earth and sand and cement milk are kneaded by the stirring blades 14 to form flowing soil cement. The situation is shown in which PHC pile B was penetrated into the ground while building W2 and reached the Shizo layer. The direction of rotation of the rotating shaft 2 during the above-mentioned excavation step is the Q direction (see FIG. 2).

このときの掘削装置は,円板ナ6の下面に1枚の平板ビ
ット(従来の掘削装置)を固着し,円板16の中央に,
回転軸2と接続する連結管17を貫通して連結したもの
である。
The drilling equipment used at this time had one flat bit (conventional drilling equipment) fixed to the lower surface of the disc 16, and
It is connected by passing through a connecting pipe 17 that connects to the rotating shaft 2.

また第5図に示す撹拌翼14は,上下2個の軸受金具2
0に差し通した軸21に取付けられ,Q方向に回転軸2
を回したとき,撹拌翼14が図示のとおり拡翼し,支持
板22によって拡翼状態が維持され,回転軸2をP方向
に回転させると,この撹拌翼14は回転軸2の周りに縮
翼して撹拌機能を失う。この症翼縮翼する撹拌翼14は
公知の構造で明細は省略する。スパイラルルートSの開
閉機構は実施例1と同一機構とする。以上の掘進工程で
は,スパイラルルートSの吐出口を閉鎖板8で閉じて掘
進するので,ソイルセメントW2はPHC杭Bの周りの
外周ルートR内に収容される。
In addition, the stirring blade 14 shown in FIG. 5 has two upper and lower bearing fittings 2.
It is attached to the shaft 21 inserted through the
When the rotating shaft 2 is rotated, the stirring blades 14 expand as shown in the figure, and the expanded state is maintained by the support plate 22. When the rotating shaft 2 is rotated in the direction P, the stirring blades 14 contract around the rotating shaft 2. wings and loses its stirring function. The agitating blade 14 having a contracted blade has a known structure, and the details thereof will be omitted. The opening/closing mechanism of the spiral route S is the same as that in the first embodiment. In the above excavation process, the discharge port of the spiral route S is closed with the closing plate 8 and the soil cement W2 is accommodated in the outer circumferential route R around the PHC pile B.

支持層では実施例1と同様に油圧操作によってスパイラ
ルルートSの吐出口5(第2図参照)を開き,回転軸2
をP方向に回転させながら逆流スパイラルS上のコンク
リートを吐出させる。
In the support layer, the discharge port 5 of the spiral route S (see Fig. 2) is opened by hydraulic operation as in Example 1, and the rotation shaft 2 is opened.
The concrete on the backflow spiral S is discharged while rotating in the P direction.

このPHC杭Bの頭には荷重体を載荷し,且つこの荷重
体の重量が回転軸2に作用するように構成し,外径1メ
ートルの大形杭などでは,操作クレーンの重量を荷重体
に作用させる。またスパイラルルートSには,所要量の
コンクリートの上方に,所要量の厚い砂の層を給付し,
更に水を満たす。このかなり厚い砂の層は,回転軸2の
P方向回転作動に従って下降するスパイラル上の加圧栓
となって先行するコンクリートを地下孔内に押し出す。
A load body is loaded on the head of this PHC pile B, and the structure is such that the weight of this load body acts on the rotating shaft 2. For large piles with an outer diameter of 1 meter, etc., the weight of the operating crane is loaded on the load body. to act on. In addition, for the spiral route S, a thick layer of sand is applied to the required amount of concrete above the required amount of concrete.
Fill with more water. This fairly thick layer of sand acts as a spiral pressure plug that descends as the rotating shaft 2 rotates in the P direction, pushing out the preceding concrete into the underground hole.

すなわち,逆流スパイラル3上の加圧栓となる砂の層は
,油圧シリンダ内の可圧栓となるピストンと同様な働き
をする重要な副資材である。
That is, the sand layer on the backflow spiral 3, which acts as a pressurizing plug, is an important auxiliary material that functions in the same way as a piston, which acts as a pressurizing plug in a hydraulic cylinder.

このコンクリートの吐出工程では,回転軸2をP方向に
回すので,撹拌翼14は縮翼状態となって,吐出される
コンクリートKと孔底部のソイルセメントW2とは練り
返されない。従って比重の大きい吐出コンクリートKは
,セメントミルクを多分に含んで比重を小さくしたサイ
ルセメントW2を押しのけて孔底部に沈み,コンクリー
ト吐出を継続すると吐出コンクリートKは孔底部部に充
満し,その分量にみあう孔底部のソイルセメントW2が
外周ルートR内に押し出され,押し出されたソイルセメ
ントW2は外周ルートR内の先行ソイルセメントW2を
更に押し上げることとなる。上記の吐出作業を継続する
と,杭の拡大根18の周りの外周ルートR内には所望の
吐出コンクリートKが満たさせる。この状態は,外周ル
ート内のソイルセメントの上端が,吐出コンクリートK
の吐出量にみあう程度押し上げられるので,地上でこれ
を確認できるが,外周ルートRの直径誤差などを考慮し
,実際に給付するコンクリートの量は,理論計算量の1
.5倍以上とする。
In this concrete discharging process, since the rotating shaft 2 is rotated in the direction P, the stirring blades 14 are in a contracted state, and the discharged concrete K and the soil cement W2 at the bottom of the hole are not mixed together. Therefore, the discharged concrete K, which has a large specific gravity, sinks to the bottom of the hole, pushing aside the sile cement W2, which contains a large amount of cement milk and has a low specific gravity, and as concrete continues to be discharged, the discharged concrete K fills the bottom of the hole, and its volume increases. The soil cement W2 at the bottom of the matching hole is pushed out into the outer circumferential route R, and the pushed out soil cement W2 further pushes up the preceding soil cement W2 in the outer circumferential route R. When the above-mentioned discharge operation is continued, the outer peripheral route R around the enlarged root 18 of the pile is filled with the desired discharge concrete K. In this state, the upper end of the soil cement in the outer circumferential route is connected to the discharged concrete K.
This can be confirmed on the ground because it is pushed up to the extent that it corresponds to the discharge volume of
.. 5 times or more.

上記の時点では撹拌翼14は縮翼しているので,PHC
杭を第5図の状態から下降させる。すると,PHC杭B
の拡大根ナ8の先端は,円板16上に突接した数個のガ
イド片23の案内作用によって円板16の設計位置に正
しく着座する。また,このとき回転軸2と連結管17と
はネジ連結が解け,回転軸2の先端に突設したホゾが連
結管17と係合してそれぞれ中心位置が保たれるが,こ
のホゾを抜き,回転軸2をP方向に回転させながら地上
に回収する。以上の操作によって,第6図に示すように
,PHC杭Bの中空部にコンクリートK及び砂の層24
が残留し,拡大根18の周りは吐出コンクリーKで囲ま
れ,杭本体の周りはソイルセメントで囲まれた状態とな
る。上記の状態で杭頭の荷重体による軽打,又は操作ク
レーンによる圧入力をPHC杭Bに加え,掘削装置を原
地盤内に押込むと,円板ナ6が直接原地盤に圧接する。
At the above point, the stirring blades 14 are compressed, so the PHC
Lower the pile from the state shown in Figure 5. Then, PHC pile B
The tip of the enlarged root pin 8 is correctly seated at the designed position on the disc 16 by the guiding action of several guide pieces 23 that are in contact with the disc 16. Also, at this time, the screw connection between the rotating shaft 2 and the connecting pipe 17 is released, and the tenon protruding from the tip of the rotating shaft 2 engages with the connecting pipe 17 to maintain their central positions, but this tenon is removed. , while rotating the rotating shaft 2 in the P direction. By the above operations, as shown in Figure 6, a layer of concrete K and sand is formed in the hollow part of PHC pile B.
remains, the expanded roots 18 are surrounded by discharged concrete K, and the pile body is surrounded by soil cement. In the above state, when the PHC pile B is lightly hammered by the load of the pile head or pressed by the operating crane and the excavation equipment is pushed into the original ground, the disc platen 6 comes into direct pressure contact with the original ground.

一方,拡大根18の外面には数条のフシ25を突設した
ので,地上での設計強度をそのまま保持した吐出コンク
リートKと拡大根18が一体となり,且つ実施例2では
コンクリートに膨張セメントを用いたので,吐出コンク
リートKは支持層の孔壁Tの全面に圧着する。
On the other hand, since several bars 25 are protruded from the outer surface of the expanded root 18, the discharged concrete K, which maintains the design strength on the ground, and the expanded root 18 are integrated, and in Example 2, expanded cement is applied to the concrete. As a result, the discharged concrete K is pressed onto the entire surface of the hole wall T of the support layer.

例えば,本体の外径50cmのPHC杭では,拡大根の
外径を60cm,地下孔の直径を70cmとするので,
吐出コンクリートKを含む拡大根の軸方向接地面積は,
杭本体の中空部を含む全面積の約2倍,周面接地面積は
約1.4倍となる。
For example, in a PHC pile with an outer diameter of 50 cm, the outer diameter of the expanded root is 60 cm and the diameter of the underground hole is 70 cm.
The axial ground contact area of the expanded root including the discharged concrete K is:
The total area including the hollow part of the pile body is approximately twice as large, and the circumferential ground area is approximately 1.4 times.

且つこの吐出コンクリートKは,ソイルセメント押上げ
時に加圧,且つ上層にあるソイルセメントの重圧下で硬
化するので,この高圧吐出コンクリートKは,地上の1
氣圧下で硬化した通常のコンクリートよりもむしろその
強度が大きく,拡大根18を代行し得,支持層には高強
度超拡大根が形成されることとなり,この高強度超拡大
根に対する支持層の先端支持力は特に強大となる。もち
ろん,拡本体の周面にはソイルセメントを介し,原地盤
の孔壁Tの支持力が作用するので,杭本体の周面支持力
も前記超拡大根の先端支持力に加わり,PHC杭Bの全
支持力は増大し,地震時の軸力の激増に際しても,杭先
端の眞の最大沈下量が極く微少となることが期待される
。更に実施例2の掘削装置を,第4図に示すアングルビ
ットなどに替えると,地下孔の全長の孔壁がビットによ
る穴明け加工硬化を受けて強化するので,実施例以上の
支持力が得られることは明らかである。なお,地盤沈下
地帯の施工時には,圧密の恐れある地層の掘進時,吐出
口13からはベントナイト泥水を射出してその地層の杭
の周面支持力を減少させる手段をとる。
Moreover, this discharged concrete K is pressurized when the soil cement is pushed up and hardens under the heavy pressure of the soil cement in the upper layer, so this high-pressure discharged concrete K is
Its strength is higher than that of ordinary concrete hardened under air pressure, and it can act as an expanded root 18, resulting in the formation of high-strength super-expanded roots in the supporting layer. The tip supporting force becomes particularly strong. Of course, since the supporting force of the hole wall T in the original ground acts on the circumferential surface of the expanded body through the soil cement, the circumferential supporting force of the pile body also adds to the tip supporting force of the super-expanded roots, and the PHC pile B The total bearing capacity is increased, and even when the axial force increases dramatically during an earthquake, it is expected that the maximum amount of settlement at the tip of the pile will be extremely small. Furthermore, if the drilling equipment of Example 2 is replaced with an angle bit or the like shown in Fig. 4, the hole wall along the entire length of the underground hole will be hardened by drilling with the bit, and thus a supporting force greater than that of the example will be obtained. It is clear that In addition, during construction in areas with ground subsidence, when excavating a stratum that is at risk of consolidation, measures are taken to inject bentonite slurry from the outlet 13 to reduce the peripheral surface bearing capacity of the piles in that stratum.

ここで,実施例及び応用例にみられる有用な効果をもた
らした逆流スパイラル3の特性について述べる。慣用の
アースオーガ(順流スパイラル)では,50メートル以
上の地下深層からでも土砂を上昇させ得るが,この場合
順流スパイラル上の土砂は,スパイラルの斜面に沿って
滑り下りる重力の力を受けながら,この重力に杭し,土
砂の下面のスパイラル斜面の回転すくい上げの力によっ
て他動的に上昇する。従って土砂自体には運動エネルギ
ィはなく,スパイラル上の土砂は通常過疎な状態で昇る
Here, the characteristics of the backflow spiral 3 that brought about the useful effects seen in the examples and application examples will be described. With a conventional earth auger (downward spiral), it is possible to raise earth and sand even from a depth of 50 meters or more underground, but in this case, the earth and sand on the downflow spiral are subjected to the force of gravity as they slide down the slope of the spiral. It is piled up by gravity and passively raised by the force of the rotating spiral slope beneath the earth and sand. Therefore, the sediment itself has no kinetic energy, and the spiral sediment usually rises in a sparse state.

一方逆流スパイラルでは,スパイラル上の土砂がスパイ
ラルの斜面に沿って滑り下りる重力の作用を助長する方
向に回転するので,土砂のもつ位置のエネルギィは刻刻
下降運動のエネルギィに変換する。すなわち,土砂自体
が運動エネルギィをもつので,各スパイラルのビッチ間
の土砂は密となり,この能動的な土砂は100メートル
の地下深層にも容易に達し得る。更にこの土砂には,順
流スパイラルにはない他の力が作用する。それは,各ピ
ッチ間の密な土砂の上面に作用するスパイラル裏面の回
転圧力である。この力は,土砂の各粒子を例外なく下方
に押し下げる連続強制下降圧力となる。すなわち,逆流
スパイラル上の土砂のもつポテンシヤルは,前記重力の
作用と上記連続強制下降圧力との合成された力の畜積で
あって,逆流スパイラルの下段になるほど土砂のもつ潜
在能力は大きい。
On the other hand, in a counterflow spiral, the earth and sand on the spiral rotate in a direction that promotes the action of gravity sliding down the slope of the spiral, so the positional energy of the earth and sand is converted into the energy of the gradual downward motion. In other words, since the earth and sand itself has kinetic energy, the earth and sand between the pitches of each spiral become dense, and this active earth and sand can easily reach 100 meters deep underground. Furthermore, other forces act on this sediment that are not present in the downward spiral. This is the rotational pressure on the back side of the spiral that acts on the top surface of the dense earth and sand between each pitch. This force results in a continuous forced downward pressure that pushes each particle of earth and sand downward without exception. In other words, the potential of the earth and sand on the backflow spiral is the accumulation of the combined forces of the gravitational force and the continuous forced downward pressure, and the lower the position of the backflow spiral, the greater the potential of the earth and sand.

本工法は,以上述べた逆流スパイラルの高度の搬送能力
の特性に着目し,この逆流スパイラルを流動性をもつコ
ンクリート其の他の材料の送り装置の主動体として活用
したものであって,この逆流するスパイラルルートを開
放し,回転作動したとき,コンクリートに潜在した吐出
圧力が一氣に顕現するのである。特に支持層の深度が深
い場合は,最下段のコンクリートに重圧が作用するので
,吐出口を開閉する油圧シリンダは復動シリンダに旦え
てコンクリートの重圧に対処する。なお実施例2では、
掘進工程時回転軸2をQ方向に回すので,スパイラルは
噴流スパイラルとなり,施工当初にコンクリート及び砂
を給付すると,これらはスパイラル上を上昇するので,
適切な位置の上下のスパイラル間に縦壁板を取付けて戻
り止め板とするか,又は支持層に到達したのち回転軸2
をP方向に回転させてコンクリート及び砂を給付する手
段をとる。
This method focuses on the above-mentioned characteristic of the high-level conveying ability of the backflow spiral, and utilizes this backflow spiral as the main body of a feeding device for concrete and other materials with fluidity. When the spiral route is opened and rotated, the latent discharge pressure in the concrete is suddenly revealed. Particularly when the depth of the supporting layer is deep, heavy pressure acts on the concrete at the bottom, so the hydraulic cylinder that opens and closes the discharge port handles the heavy pressure of the concrete in addition to the double-acting cylinder. In addition, in Example 2,
During the excavation process, the rotating shaft 2 is rotated in the Q direction, so the spiral becomes a jet spiral, and when concrete and sand are applied at the beginning of construction, they rise on the spiral.
Install a vertical wall plate between the upper and lower spirals at an appropriate position to act as a detent plate, or attach the rotating shaft 2 after reaching the support layer.
The method is to rotate the concrete and sand in the P direction to deliver concrete and sand.

なお本工法の見逃せない長所として,重力の作用をたく
みに利用するこの逆流スパイラルでは,重力に抗して材
料を上昇させる順流スパイラルより,材料搬送に要する
動力が顕著に低減し,外径2メートル程度の場所打コン
クリート杭を造設するに要する大形逆流スパイラルを実
用に供し得る公算が高い。
An advantage of this method that cannot be overlooked is that the counterflow spiral, which skillfully utilizes the effect of gravity, requires significantly less power to transport the material than the forward flow spiral, which lifts the material against gravity. It is highly likely that the large-scale backflow spiral required for constructing cast-in-place concrete piles of approximately 100% can be put to practical use.

以上に述べた実施例1及び2並びに応用例の説明によっ
て明白なとおり,地下孔の掘進工程で円筒内の逆流する
スパイラルルートを閉じ,円筒を取巻く外周ルートに軟
化させた掘削土砂を誘導し,円筒と逆流スパイラルから
なる送り装置を所要深度に到達させ,こののち円筒内の
スパイラルルートを開き,逆流スパイラルの回転下降圧
力でスパイラルルート上の基礎材料を地下孔内に吐出さ
せ,この加圧基礎材料で外周ルート内の先行軟化土砂を
押し上げ,この先行軟化土砂と体積を入れ替えて外周ル
ート内に加圧基礎材料を送り込む,この互に関連して展
開する一連の工程が本発明の要旨となすもので,この延
長上にある基礎造成の各種手段及び本発明に要する各種
付隨装置については,種種設計の改変を講じ得るもので
ある。
As is clear from the explanation of Examples 1 and 2 and application examples described above, in the process of excavating an underground hole, the spiral route that flows backward in the cylinder is closed, and the softened excavated soil is guided to the outer circumferential route surrounding the cylinder. A feeding device consisting of a cylinder and a counterflow spiral is made to reach the required depth, and then the spiral route inside the cylinder is opened, and the base material on the spiral route is discharged into the underground hole by the rotating downward pressure of the counterflow spiral, and this pressurized foundation is The gist of the present invention is a series of interconnected processes in which the material pushes up the previously softened soil in the outer route, replaces the volume with the previously softened soil, and feeds the pressurized foundation material into the outer route. As an extension of this, it is possible to make various modifications to the designs of the various means of foundation construction and the various attachment devices required for the present invention.

また,以上の実施例及び応用例に述べた掘進工程及び基
礎材料の吐出工程では,それぞれ異なる手段並びに異な
る装置を用いたが,これらは多少の設計の改変によって
,装置及び操作手段の相互交換を行い得るものである。
In addition, although different means and different devices were used in the excavation process and the discharging process of the basic material described in the above embodiments and application examples, it is possible to interchange the devices and operating means by making some changes in the design. It can be done.

例えば,実施例1の掘削装置の左右の翼状ビット10を
,中央基体9に固定連結せず,中央基体9と翼状ビット
10とをピンで連結し,左右の翼状ビット10をピンの
周りを回転して縮翼できるように構成すれば,応用例と
同様に外周ルートRにコンクリートを押上げたのち回転
軸をP方向に回しながら回収すると,縮翼した掘削装置
も同時に回収され,且つ円筒1の内部には多量のコンク
リートが残留し,応用例に類した施工法が実施できる。
For example, the left and right wing-shaped bits 10 of the drilling equipment of Example 1 are not fixedly connected to the central base 9, but the central base 9 and the wing-shaped bit 10 are connected with a pin, and the left and right wing-shaped bits 10 are rotated around the pin. If the structure is configured so that the blades can be compressed, as in the application example, when concrete is pushed up to the outer circumferential route R and then recovered while rotating the rotating shaft in the direction P, the excavator with the blades compressed will also be recovered at the same time, and the cylinder 1 will be recovered at the same time. A large amount of concrete remains inside, and construction methods similar to those in the applied example can be implemented.

また,実施例2のPHC杭の拡大根18の外面に数個の
撹拌翼を一体に突設し,掘進工程狽,拡大根18の先端
を掘削装置の円板16上に着座させ,適宜の係合金具を
用いて掘削装置に連動して拡大根18も回転し得るよう
に設計変更すれば,掘進工程時この先端閉鎖体勢で応用
例と同様にして掘進し得,且つ支持層においては応用例
と全く同様に操作して拡大根の周りにコンクリートを押
し上げ,高強度超拡大根を造成することができる。
In addition, several stirring blades were integrally protruded from the outer surface of the enlarged root 18 of the PHC pile of Example 2, and during the excavation process, the tip of the enlarged root 18 was seated on the disc 16 of the excavation equipment, and an appropriate If the design is changed so that the enlarged root 18 can also rotate in conjunction with the excavation equipment using an engaging metal tool, it is possible to excavate in the same manner as in the application example with this tip closed during the excavation process, and in addition, in the support layer, it is possible to It is possible to create a high-strength super-expanded root by pushing up concrete around the expanded root by operating exactly the same way as in the example.

上記方法を用いるときは,回転軸に設けた撹拌翼14及
び油圧開閉装置6,7,8は不用となり,超拡大根造成
の各種操作が単純化される。
When the above method is used, the stirring blade 14 and the hydraulic opening/closing devices 6, 7, and 8 provided on the rotating shaft are unnecessary, and various operations for super-expanded root creation are simplified.

また,実施例1系の場所打杭の施工法でも,簡単に拡大
根は造成しうる。すなわち,円筒1の下端部外面の表裏
の対称位置に,縦方向に1列にならんだ数個の軸受金具
20を突設し,この軸受金具20に刺し通したピン21
に,下辺が広く上辺が狭い縦長の曲面状四辺形をなす1
対の拡大ビットを回転可能にして取付け,円筒1をP方
向に回すときは,拡大ビットの曲面が円筒1の周面に沿
って縮翼し,円筒1をQ方向に回せば土圧が作用し拡大
ビットが拡翼する構造とするが,縮翼拡翼する機構は第
5図に示した撹拌翼14の機構と同一である。
Furthermore, expanded roots can be easily created using the cast-in-place pile construction method of Example 1. That is, several bearing fittings 20 are protruded in a line in the vertical direction at symmetrical positions on the front and back sides of the outer surface of the lower end of the cylinder 1, and pins 21 are inserted through the bearing fittings 20.
1, which forms a vertically long curved quadrilateral with a wide bottom side and a narrow top side.
When the pair of enlarged bits are rotatably installed and the cylinder 1 is turned in the P direction, the curved surface of the enlarged bit compresses along the circumferential surface of the cylinder 1, and when the cylinder 1 is turned in the Q direction, earth pressure is applied. However, the mechanism for contracting and expanding the blades is the same as that of the stirring blade 14 shown in FIG. 5.

拡大根の造成は,円筒1が支持層に到達してのち円筒1
の回転方向をQ方向に変えて作動させると,拡大ビット
は土圧によって開きはじめ,最初拡大ビットの下辺の外
角が孔壁Tをえぐり,拡大ビットは次第に拡翼し最大拡
翼に至るが,この最大拡翼は適宜に突設した支持板22
に圧接して支持され,支持層には底面積の広い載頭円錐
形状の拡大孔壁が造成される。この工程時,射出口13
からはベントナイト泥水を射出するので,掘削土砂は比
重の小さい軟化泥土となる。
The expansion root is created after cylinder 1 reaches the supporting layer.
When the rotating direction of the bit is changed to the Q direction and the bit is operated, the expanding bit begins to open due to earth pressure, and at first the outer corner of the lower side of the expanding bit gouges the hole wall T, and the expanding bit gradually expands until it reaches the maximum expanded blade. This maximum wing expansion is achieved by the support plate 22 protruding as appropriate.
The support layer is supported in pressure contact with the support layer, and an enlarged hole wall in the shape of a truncated cone with a wide base area is created in the support layer. During this process, the injection port 13
Since bentonite mud is injected from the excavated soil, it becomes soft mud with a low specific gravity.

拡大ビットによる拡大孔壁の掘削完了は,使用電力量が
ピークを過ぎて低下する時点で確認される。この確認後
,回転軸2をP方向に回し,逆流スパイラル3の吐出口
5を開いてコンクリートを押し出すのであるが,比重の
大きい吐出コンクリートは,翼状ビット10及び拡大ビ
ットの回転に従って載頭円錐状の広い底面に広がり,順
次孔底の拡大孔壁内に充満し,比重の小さい軟化泥土W
1は外周ルートR内に押し上げられ,ここに所望の場所
打コンクリート杭の拡大根が造成される。もちろんこの
場合は,円筒の回収時には円筒1をP方向に回しながら
引き抜く。
Completion of drilling the enlarged hole wall with the enlarged bit is confirmed when the amount of electricity used has passed its peak and decreased. After this confirmation, the rotating shaft 2 is turned in the P direction, the discharge port 5 of the counterflow spiral 3 is opened, and the concrete is extruded.However, the discharged concrete with a large specific gravity is shaped into a truncated conical shape as the winged bit 10 and the enlarged bit rotate. Soft mud W with a small specific gravity spreads over the wide bottom surface of the hole and gradually fills the enlarged hole wall at the bottom of the hole.
1 is pushed up into the outer circumferential route R, and the expanded root of the desired cast-in-place concrete pile is created here. Of course, in this case, when recovering the cylinder, the cylinder 1 is pulled out while being rotated in the P direction.

以上に述べた有用な作用効果をもたらす本工法を施工す
る装置は,独特の構造をなすが,この装置のもつ材料圧
送の力は,機械力と重力との合成力からなる。すなわち
,装置の本体はコンクリートなどの基礎材料を重力の作
用方向に沿って直下に圧送する逆流スパイラルポンプで
あって,ポンプの機械力が重力によって加力される。こ
のポンプは外殻となる円筒と,この円筒内に収容される
逆流スパイラルを装備した回転軸からなる。材料圧送の
原動力となる逆流スパイラルの特殊機能,その特殊圧送
能力及びその操作方法については前に詳述したので,重
複して説明しないが,ポンプの外殻となる鋼管製又はコ
ンクリート製の円筒は,実施例1に示すとおり回転作動
させる場合と,実施例2に示すとおり回転作動を要しな
い場合とがある。この円筒の回転作動の要,不要は別と
して,この逆流スパイラルポンプには,材料圧送機能の
ほかに,次に列記する構造及び機能が必要条件として要
求される。
The equipment used to carry out this method, which produces the useful effects described above, has a unique structure, and the material-pumping force of this equipment is a combination of mechanical force and gravity. That is, the main body of the device is a counterflow spiral pump that pumps basic materials such as concrete directly downward along the direction of gravity, and the mechanical force of the pump is applied by gravity. This pump consists of a cylinder serving as an outer shell and a rotating shaft equipped with a counterflow spiral housed within the cylinder. The special functions of the backflow spiral, which is the driving force for material pumping, its special pumping capacity, and its operation method have been previously detailed, so I will not repeat them again. , as shown in Embodiment 1, there is a case where rotational operation is required, and as shown in Embodiment 2, there is a case where rotational operation is not required. Regardless of whether or not this rotational operation of the cylinder is necessary, this counterflow spiral pump is required to have the following structure and functions in addition to the material pumping function.

(1)このポンプのスパイラル・ルートは,その先端を
開閉できる構造とする。
(1) The spiral route of this pump has a structure that allows its tip to be opened and closed.

(2)回転軸又は円筒の先端に取付けた掘削ビットで,
原地盤を円筒の外径より大きく掘削し得る構造とする。
(2) A drilling bit attached to the tip of a rotating shaft or cylinder,
The structure is such that the original ground can be excavated to a size larger than the outside diameter of the cylinder.

(3)回転軸を通じ所要の流体を地下孔底部に射出する
機能をもつこと。
(3) It must have the function of injecting the required fluid into the bottom of the underground hole through the rotating shaft.

(4)ビットで掘削した土砂と,射出した流体とを混合
する装置を円筒又は回転軸に設けること。
(4) A device that mixes the earth and sand excavated with a bit and the ejected fluid is installed on a cylinder or rotating shaft.

上記の条件は,ポンプ総体に要求される必要条件で,円
筒がその条件を満たし得ない場合は,回転軸がその条件
を満たせばよい。
The above conditions are required for the pump as a whole, and if the cylinder cannot satisfy the conditions, the rotating shaft may satisfy the conditions.

なお,本工法に用いる上部装置は,動力装置,加圧装置
,材料給付装置その他の付隨設備からなるが,これらは
慣用の機械・装置を使用に供するので,これらは投用の
機械・装置を使用に供するので,当分野に属する技術者
には公知の事項に属し,説明を省略する。
The upper equipment used in this construction method consists of a power unit, a pressurizing equipment, a material feeding equipment, and other attached equipment, but since these are provided with conventional machinery and equipment, these are not ordinary machinery or equipment. Since this is a matter well known to those skilled in the art, the explanation thereof will be omitted.

以上を要約すれば,本基礎工法は,上記4項の必要条件
を具備した特徴ある逆流スパイラルポンプの作動によっ
て所望どおり施工されるもので,本基礎工法及び本主体
装置はともに従来の基礎工法に類例をみず,且つ本工法
によって,現時点の水準を超えた高度の支持力をもつ基
礎杭が得られる。
To summarize the above, this foundation construction method is constructed as desired by the operation of a characteristic backflow spiral pump that meets the requirements in item 4 above. Unprecedented in similar cases, this construction method allows foundation piles to be obtained that have a high degree of bearing capacity that exceeds current standards.

なお実施例1では,円筒1の下端部外面に数個の撹拌翼
を取付け,掘削土砂と吐出流体との混合装置としたが,
長大な円筒の場合は,円筒を作動させる回転動力が過大
となる。この場合の対応穏緯を次に述べる。まず円筒1
の下端部先端に,円筒1の外径よりわずかに大きい内径
をもつ鋼管製のカラーをはめ込み,このカラーが円筒1
の周りを自由に回り得るように取付け,長さ1メートル
ないし2メートルのこのカラーの外面に多数の撹拌翼1
4を突設するとともに,このカラーの下端部外面の対象
位置に1対の受動金具を突設し,以上のカラーが円筒1
の回収時ずり落ちないように,円筒1の最先端部の外面
に,カラーの板厚より薄く且つ幅の狭いリングを固定連
結し,更にカラーが上方にずり上らないように円筒1に
ねじ込んだボルト群でカラーを抑える。一方第4図又は
第5図に示す掘削装置の円板16の上面外縁部の対称位
置に1対の主動金具を突設する。
In Example 1, several stirring blades were attached to the outer surface of the lower end of the cylinder 1 to create a mixing device for the excavated earth and sand and the discharge fluid.
In the case of a long cylinder, the rotational power required to operate the cylinder will be excessive. The following is a discussion of how to deal with this situation. First, cylinder 1
A steel pipe collar with an inner diameter slightly larger than the outer diameter of cylinder 1 is fitted into the tip of the lower end of cylinder 1.
A large number of stirring blades 1 are mounted on the outer surface of this collar, which is 1 meter to 2 meters long, so that it can rotate freely around the collar.
4 protrudingly provided, and a pair of passive metal fittings protrudingly provided at targeted positions on the outer surface of the lower end of this collar, so that the above collars are connected to the cylinder 1.
A ring that is thinner and narrower than the plate thickness of the collar is fixedly connected to the outer surface of the tip end of the cylinder 1 to prevent it from sliding down when recovering the collar, and is further screwed into the cylinder 1 to prevent the collar from sliding upward. The color is suppressed by the bolt group. On the other hand, a pair of main drive fittings are provided projecting at symmetrical positions on the outer edge of the upper surface of the disc 16 of the excavating device shown in FIG. 4 or 5.

以上の装置の場合,場所打杭の掘進工程時には,円筒1
の先端を前記円板16に着座させ,スパイラル・ルート
Sを閉じて掘進させる。このとき,P方向に回る円板1
6上に変設した1対の主動金具が,カラー上に突設した
1対の受動金具を押してカラーをP方向に回転させる。
In the case of the above equipment, during the process of digging cast-in-place piles, the cylinder
The tip of the screw is seated on the disk 16, and the spiral root S is closed and excavated. At this time, the disk 1 rotating in the P direction
A pair of active metal fittings modified on 6 push a pair of passive metal fittings protruding from the collar to rotate the collar in the P direction.

この掘進工程時には射出口13からベントナイト泥水を
射出するので,ビットで掘削された土砂とベントナイト
泥水とは外周ルートR内に収容され,回転するカラー上
の多数の撹拌翼14で練り返され2流動する軟化泥土と
なる。
During this excavation process, bentonite mud is injected from the injection port 13, so the earth and sand excavated by the bit and bentonite mud are accommodated in the outer circumferential route R, and are kneaded by a large number of stirring blades 14 on the rotating collar, resulting in two fluids. The soil becomes soft and muddy.

すなわち,長大な円筒を回転させると同一の混合効果が
カラーだけの回転動作によって得られ,円筒1の回転に
要する動力が不要となり,且つ全作業が単純化される。
That is, the same mixing effect as when rotating a long cylinder can be obtained by the rotational movement of only the collar, eliminating the need for the power required to rotate the cylinder 1 and simplifying the entire operation.

以上の例では,上部の回転動力が単一となることから,
小径の場所打徐に適用して好結果が得られる。
In the above example, since the rotational power of the upper part is single,
Good results can be obtained when applied to small diameter locations.

また場所打杭の先端に拡大根を造るには,カラーを更に
長くし,これに1対の拡大ビット(30ページ記載)を
取付ければ,前記と同様にして所望の拡大根が得られる
To create an enlarged root at the tip of a cast-in-place pile, make the collar longer and attach a pair of enlargement bits (described on page 30) to it, and the desired enlarged root can be obtained in the same manner as described above.

更に,第14ページの第2行ないし第19ペジの第1行
に記載した応用例の施工法は,下記のとおり改造できる
。応用例では円筒に多数の撹拌翼を設けたが,この改造
例では円筒1を回転軸2とは反対のQ方向に回転させ,
この円筒1に連続または断続する順流スパイラルを装備
する。掘進工程時には,スパイラルルートSは円板16
で閉じているので,エアを噴入して軟化した掘削土砂は
外周ルートに入り,円筒の順流スパイラルに乗る。
Furthermore, the construction methods of the application examples described in the second line of page 14 to the first line of page 19 can be modified as follows. In the application example, a large number of stirring blades were installed on the cylinder, but in this modified example, the cylinder 1 was rotated in the Q direction opposite to the rotation axis 2,
This cylinder 1 is equipped with a continuous or intermittent forward flow spiral. During the excavation process, the spiral root S
Since it is closed, the excavated soil that has been softened by injecting air enters the outer route and rides in the downward spiral of the cylinder.

支持層では円筒を多少引上げてスパイラルルートを開き
,コンクリートを吐出する。このコンクリートは外周ル
ートにあふれでて円筒の順流スパイラルに乗り,先行土
砂に後続して外周ルート内を上昇し,所定の位置に達し
たとき,コンクリートの吐出工程を終了すればよい。な
お,円筒1を特に低速回転するときは,円筒1をP方向
に回し,P方向に対して順流となる連続または断続する
スパイラルを円筒1に装備すれば,上記と同様な施工が
実施できる。
At the support layer, the cylinder is pulled up a little to open the spiral route and the concrete is discharged. This concrete overflows into the outer circumferential route, rides the cylindrical downward spiral, follows the preceding earth and sand, and rises within the outer circumferential route, and when it reaches a predetermined position, the concrete discharging process is completed. When the cylinder 1 is rotated at a particularly low speed, the same construction as described above can be carried out by rotating the cylinder 1 in the P direction and equipping the cylinder 1 with a continuous or intermittent spiral that flows downstream in the P direction.

最後に,第29ページの第8行ないし第20行に,既成
杭の先端に超拡大根を造成する方法を説明したが,ここ
では超拡大根を造成する別の簡易工法を述べる。第7図
は,拡大根18(図面上撹拌翼は省略)の下端部付近を
縦断し,回転軸2に配設した特殊プレス機構の載断面を
示す。図面では省略したが,第6図に示すとおり,拡大
根の先端は掘削装置の円板16上に着座し,円板ナ6の
外縁部に突設した1対の主動金具が,拡大根の下端部外
面に突設した1対の受動金具を押し,回転軸2の力が円
板16を介して拡大根18を回転させる。掘進工程時と
は拡大根18の先端を円板16で閉じ,ビットで掘削し
た土砂にセメントミルクを射出し,拡大根に突設した多
数の撹拌翼でこれらを練り返し,外周ルートR内にソイ
ルセメントを満たすことは前例に示すとおりである。
Finally, on page 29, lines 8 to 20, we explained the method for creating super-expanded roots at the tips of existing piles, but here we will describe another simple method for creating super-expanded roots. FIG. 7 shows a cross section of the special press mechanism disposed on the rotating shaft 2, which cuts longitudinally near the lower end of the enlarged root 18 (stirring blades are omitted in the drawing). Although omitted in the drawing, as shown in Fig. 6, the tip of the expanded root is seated on the disc 16 of the excavation device, and a pair of driving metal fittings protruding from the outer edge of the disc 6 are used to move the expanded root. A pair of passive fittings protruding from the outer surface of the lower end are pressed, and the force of the rotating shaft 2 rotates the enlarged root 18 via the disk 16. During the excavation process, the tip of the expanded root 18 is closed with the disk 16, cement milk is injected into the earth and sand excavated with a bit, and the mixture is kneaded with a large number of stirring blades protruding from the expanded root to form the inside of the outer circumferential route R. Filling the soil cement is as shown in the previous example.

一方,回転軸の先端付近に,おのおの中心角120度に
なるように配設した3本のアーム26を突設し,その上
面に可動リング27を乗せる。
On the other hand, three arms 26 are protruded near the tip of the rotating shaft, each arranged at a center angle of 120 degrees, and a movable ring 27 is placed on the upper surface of the arms 26.

ドーナツ状の可動リング27の上部は,外周縁が高く,
内周縁が低く,図示のとおりその上面が凹面をなし,こ
の可動リング27の外面に中ぐらいの硬度のゴムバンド
28を固着させ,このゴムバンド28が杭の内壁に接面
する。この可動リング27の常設位置から多少はなれた
上方に,上下の面がソロバン玉のように凸面をなす固定
リング29を回転軸2に一体に突設するが,この固定リ
ング29の下方の凸面と,前記可動リング27の上方の
凹面とは係合する形状に構成する。PHC杭の下杭Bの
中空部30には,救校程にさきだって高強度に設計した
コンクリートを,理論設計量の約1.5倍ぐらい給付し
ておく。粗骨材の最大寸法を適宜の小径にしたこのコン
クリートは,固定リング29の外側と杭Bの内壁とのす
き間,及び可動リング27の内側と回転軸2とのすき間
をくぐって,拡大根18を着座させた円板16上に達す
る。
The upper part of the donut-shaped movable ring 27 has a high outer peripheral edge.
The inner peripheral edge is low, and the upper surface is concave as shown in the figure. A rubber band 28 of medium hardness is fixed to the outer surface of this movable ring 27, and this rubber band 28 is in contact with the inner wall of the pile. A fixed ring 29 whose upper and lower surfaces are convex like a Soroban bead is provided above the movable ring 27 at a distance from its permanent position, and integrally protrudes from the rotating shaft 2. , is configured to engage with the upper concave surface of the movable ring 27. The hollow part 30 of the lower pile B of the PHC pile is filled with concrete designed to have high strength in advance of the school rescue project, approximately 1.5 times the theoretically designed amount. This concrete with the maximum size of the coarse aggregate reduced to an appropriate small diameter passes through the gap between the outside of the fixed ring 29 and the inner wall of the pile B, and the gap between the inside of the movable ring 27 and the rotating shaft 2, and forms the expanded root 18. It reaches the top of the disk 16 on which is seated.

拡大根18が支持層の所定深度に達したら,回転軸2を
逆転し,回転軸2と掘削装置とを切り離し,回転軸2を
徐徐に引き上げ,給付したコンクリートの上面から可動
リングが抜け上った位置で回転軸を停止させる。この回
転軸2の引上げ工程時,中空部30内のコンクリートは
固定リング29の上方傾斜面,及び可動リング27の上
方傾斜面の上昇運動を受けるが,両リング29,27の
斜面構成によって円滑にすべり,コンクリートは回転軸
2に従って共上りしない。
When the expanded roots 18 reach a predetermined depth in the supporting layer, the rotating shaft 2 is reversed, the rotating shaft 2 and the excavation equipment are separated, and the rotating shaft 2 is gradually pulled up, allowing the movable ring to escape from the upper surface of the applied concrete. Stop the rotating shaft at the correct position. During this process of pulling up the rotary shaft 2, the concrete in the hollow part 30 is subjected to upward movement of the upwardly inclined surface of the fixed ring 29 and the upwardly inclined surface of the movable ring 27, but the structure of the inclined surfaces of both rings 29 and 27 allows the concrete to move smoothly. The concrete does not slide up along the axis of rotation 2.

次に,杭Bを5cm内外わずかに引上げて円板16と杭
先端との間にすき間を造るとともに,回転軸2の上端の
動力ケースに,操作クレーンの重量を反力とした圧入装
置の力を加えて,回転軸2を下降させる。すると,可動
リング27はコンクリートの抵抗と,ゴムバンド28の
杭内壁に対する摩擦抵抗を受け2回転軸2とは同行せず
,降下する固定リング29と相互の傾斜面で係合圧接(
第7図の点線で示す。)することとなり,徐の中空部3
0は上記固定リング29と可動リング27との接面構成
によって閉鎖され,コンクリートは下降する回転軸2の
閉鎖圧力を受ける。以上の回転軸2の下降圧力によって
コンクリートは,杭先端と円板16との狭いすき間から
外周ルート内に吐出される。この強力な吐出圧力をもつ
コンクリートは,外周ルートRに収容されたソイルセメ
ントW2を押し上げて拡大根18と孔壁Tとの間の外周
ルートR内を上昇する。回転軸2の下降運動は,回転軸
先端が円板16に近接した時点で停止させ,そののち杭
Bを下降させ,杭の先端を円板16上に着座させるので
あるが,このとき拡大根18の周りの外周ルートRには
吐出コンクリートKが満たされ,第6図に示した状態と なり,PHC杭Bの先端には超拡大根が造成される。回
転軸2の回収時には可動リング27は前記アーム26上
に戻り,特殊プレス機構が解消し中空部30には吸引現
象は生じない。
Next, the pile B is slightly pulled up and out by 5 cm to create a gap between the disc 16 and the tip of the pile, and the force of the press-fitting device using the weight of the operating crane as a reaction force is applied to the power case at the upper end of the rotating shaft 2. is applied to lower the rotating shaft 2. Then, due to the resistance of the concrete and the frictional resistance of the rubber band 28 against the inner wall of the pile, the movable ring 27 does not move along with the rotating shaft 2, but engages and presses the descending fixed ring 29 on their mutual slopes (
This is shown by the dotted line in FIG. ), and the hollow part 3 of Xu
0 is closed by the contact surface structure of the fixed ring 29 and the movable ring 27, and the concrete receives the closing pressure of the rotating shaft 2 that descends. The concrete is discharged into the outer circumferential route through the narrow gap between the tip of the pile and the disc 16 due to the above downward pressure of the rotating shaft 2. This concrete with strong discharge pressure pushes up the soil cement W2 accommodated in the outer circumferential route R and rises within the outer circumferential route R between the enlarged root 18 and the hole wall T. The downward movement of the rotating shaft 2 is stopped when the tip of the rotating shaft approaches the disk 16, and then the pile B is lowered to seat the tip of the pile on the disk 16. At this time, the expanded root The outer circumferential route R around 18 is filled with discharged concrete K, resulting in the state shown in Fig. 6, and a super-expanded root is created at the tip of the PHC pile B. When the rotary shaft 2 is recovered, the movable ring 27 returns to the arm 26, the special press mechanism is released, and no suction phenomenon occurs in the hollow portion 30.

上記の工程中,コンクリートに本発明の特殊プレス機構
の閉鎖圧力を作用させ得るか否かは,可動リング27に
取付けたゴムバンド28が,可動リング27と常に一体
に挙動するか否かにかかっている。実施例ではゴムバン
ド28の内面中央に1条の突条31を設け,この突条3
1を,可動リング27の外面に設けた1条の凹条にはめ
込み,更にゴムバンド28と可動リング27との接面を
一体に接着する手段を講じたが,このゴムバンド28の
波状に凹凸させた外面が,杭の内壁との運動摩擦で消耗
し,廃棄されるまで,このゴムバンド28は可動リング
27と一体に挙動し,離脱不能の状態を維持することが
示された。大形杭では可動リング27の材高を高くし,
ゴムバンド28の内面に複数の突条を設け,この突条3
1を,可動リング27の外面に設けた複数の凹条にはめ
込む手段が望ましい。また,上記のゴムバンド28のか
わりに,複数の布入り太径のOリングを用いてよい。こ
れらのバンド28及びOリングの材料は,ウレタンフォ
ームなどに変え得る。なお,下杭内径を規格より2cm
内外小径にし,可動リング及びシール材の寸法を設計す
れば,上杭通過時シール材は損傷を受けない。
During the above process, whether or not the closing pressure of the special press mechanism of the present invention can be applied to the concrete depends on whether the rubber band 28 attached to the movable ring 27 always behaves in unison with the movable ring 27. ing. In the embodiment, one protrusion 31 is provided at the center of the inner surface of the rubber band 28, and this protrusion 3
1 into a single concave strip provided on the outer surface of the movable ring 27, and also by gluing the contact surfaces of the rubber band 28 and the movable ring 27 together. It has been shown that the rubber band 28 behaves integrally with the movable ring 27 and remains in an unreleasable state until the outer surface of the rubber band 28 is worn out due to kinetic friction with the inner wall of the pile and is discarded. For large piles, the height of the movable ring 27 is increased,
A plurality of protrusions are provided on the inner surface of the rubber band 28, and the protrusions 3
1 is preferably fitted into a plurality of grooves provided on the outer surface of the movable ring 27. Further, instead of the above-mentioned rubber band 28, a plurality of large-diameter O-rings filled with cloth may be used. The material of these bands 28 and O-rings may be changed to urethane foam or the like. In addition, the inner diameter of the lower pile is 2 cm from the standard.
If the inner and outer diameters are small and the dimensions of the movable ring and sealing material are designed, the sealing material will not be damaged when the upper pile passes.

以上述べた簡易工法によると,杭中空部30のコンクリ
ートの上方にかなりの量の砂及び多量の水を給付する必
要がなく,杭の設置作業が単層化され,且つ設置に要す
る作業時間が大幅に短縮される。また,コンクリートに
対する加圧時杭には内圧が作用するが,これに対応する
逆方向の外圧が外周ルートR内の流動体から杭に作用す
るので,杭の内外の圧力差は小さく,杭に内圧破壊は生
じない。
According to the simple construction method described above, there is no need to supply a considerable amount of sand and a large amount of water above the concrete in the pile hollow part 30, the pile installation work is done in a single layer, and the work time required for installation is reduced. will be significantly shortened. In addition, internal pressure acts on the pile when concrete is pressurized, but a corresponding external pressure in the opposite direction acts on the pile from the fluid in the outer circumferential route R, so the pressure difference between the inside and outside of the pile is small, and the pile No internal pressure breakdown occurs.

上記の簡易工法は,円筒1を用いる場所打杭の設置に適
用できる。この場合は,円筒1内にコンクリートを満た
して掘進し,支持層において,回転軸2を適宜の高さ上
下に往復させ,固定リング29と可動リング27からな
る特殊閉鎖機構によるコンクリート加圧作動を数回繰り
返せば,外周ルートRの全長にコンクリートを上昇させ
ることができる。この施工時,下降する特殊閉鎖機構2
7,29には,これより上方のコンクリートの重量が上
載荷重として作用するので,杭の外径が2メートルを越
えても上部装置に要求される圧入力は左程巨大とはなら
ない。なお,回転軸2の先端内部には逆流防止バルブ(
公用のため図示せず。)が装備されているので,コンク
リートの加圧時,コンクリートは回転軸2内には進入し
ない。以上に述べた簡易工法で用いたコンクリートに対
する加圧機構は,円筒1と回転軸2及び回転軸上の特殊
閉鎖機構27,29の三者からなる巨大コンクリートポ
ンプにほかならない。
The above simple construction method can be applied to the installation of cast-in-place piles using cylinder 1. In this case, the cylinder 1 is filled with concrete and excavated, the rotary shaft 2 is moved up and down at an appropriate height in the supporting layer, and the concrete is pressurized by a special closing mechanism consisting of a fixed ring 29 and a movable ring 27. By repeating this several times, it is possible to raise the concrete to the entire length of the outer circumferential route R. Special closing mechanism 2 that descends during this construction
7 and 29, the weight of the concrete above acts as an overburden load, so even if the outside diameter of the pile exceeds 2 meters, the pressing force required of the upper device will not be as large as the one on the left. Note that there is a backflow prevention valve (
Not shown for official use. ), the concrete does not enter the rotating shaft 2 when pressurizing the concrete. The pressurizing mechanism for concrete used in the simple construction method described above is nothing but a huge concrete pump consisting of a cylinder 1, a rotating shaft 2, and special closing mechanisms 27 and 29 on the rotating shaft.

以上の実施例では,円板16の下面にビットを突設した
掘削装置を杭の先端に残留させたが,大形杭ではこの埋
め殺し掘削装置が高価となることから,掘削装置を回収
し得る特例を次に説明する。
In the above embodiment, a drilling device with a bit protruding from the underside of the disc 16 was left at the tip of the pile, but since this buried drilling device would be expensive for large piles, the drilling device was recovered. The special cases obtained are explained below.

この特例では,円筒1の先端内面に,円筒の内径より約
5cm程度小さい内径の短鋼管の上端をフランヂを介し
て一体に連結する。またこの短鋼管の内壁に3個の受動
片を等間隔に中心に向って突設する。上記のとおり構成
した短鋼管のフランヂ上に,回転軸2の可動リング27
を着座させると,回転軸2に固着した固定リング29の
下方凸面が,可動リング27の上部凹面に係止して中空
部30が閉鎖される。この状態の円筒1の中空部30に
コンクリートを満たしてのち,回転軸2を回転させると
,回転軸2に突設した3本のアーム2リが短鋼管内面に
設けた3個の受動片を押し,多数の撹拌翼を突設した円
筒1を回転させる。以上の回転軸の先端には,回収時縮
翼できるようにした掘削ビットを取付けて掘進するが,
その掘進の態様は前例に示したとおりである。
In this special example, the upper end of a short steel pipe having an inner diameter approximately 5 cm smaller than the inner diameter of the cylinder is integrally connected to the inner surface of the tip of the cylinder 1 via a flange. Furthermore, three passive pieces are provided protruding toward the center at equal intervals on the inner wall of this short steel pipe. The movable ring 27 of the rotating shaft 2 is placed on the flange of the short steel pipe configured as described above.
When the movable ring 27 is seated, the lower convex surface of the fixed ring 29 fixed to the rotating shaft 2 is engaged with the upper concave surface of the movable ring 27, and the hollow part 30 is closed. When the hollow part 30 of the cylinder 1 in this state is filled with concrete and the rotating shaft 2 is rotated, the three arms 2 protruding from the rotating shaft 2 move the three passive pieces provided on the inner surface of the short steel pipe. The cylinder 1 with a large number of protruding stirring blades is rotated. At the tip of the above-mentioned rotating shaft, a drilling bit that can be compressed during recovery is attached to dig.
The mode of excavation is as shown in the previous example.

また支持層に達したときは,回転軸を所要の高さ引き上
げ,次に特殊閉鎖機構27,29の機能を発現させて回
転軸2の圧入作業を行い,この往復運動を数回繰り返す
と,可動リング27の下方の短鋼管内の掘削土砂及び外
周ルートR内の走行軟化土砂が,上記圧入作業時吐出し
たコンクリートの圧力によって押し上げられて地上に排
土され,外周ルートR内には吐出コンクリートKが満た
される。この場合は円板16を用いないので,前記した
曲面状拡大ビットを円筒1の先端に取付け,場所打杭の
先端を拡大掘削し,ここに接地面積の広い拡大根を造成
する施工法を併用することが望ましい。以上の作業が完
了したのち,掘削装置を連結した回転軸を作動し,拡大
ビットを縮翼させる方向に円筒を回転させ,この円筒1
と回転軸2とを地上に回収するのであるが,円筒1内の
大量のコンクリートは地下孔内に残留し,地下孔内には
拡大根をもつコンクリート柱体が造成される。
When the support layer is reached, the rotating shaft is raised to the required height, and then the special closing mechanisms 27 and 29 are activated to press-fit the rotating shaft 2, and this reciprocating movement is repeated several times. The excavated soil in the short steel pipe below the movable ring 27 and the traveling softened soil in the outer route R are pushed up by the pressure of the concrete discharged during the press-fitting operation and are discharged to the ground, and the discharged concrete is in the outer route R. K is satisfied. In this case, since the disk 16 is not used, the above-mentioned curved enlarged bit is attached to the tip of the cylinder 1, and the tip of the cast-in-place pile is enlarged and excavated to create an enlarged root with a wide ground contact area. It is desirable to do so. After completing the above work, operate the rotating shaft connected to the drilling equipment to rotate the cylinder in the direction of shrinking the expanding bit.
and the rotating shaft 2 are recovered above ground, but a large amount of concrete inside the cylinder 1 remains in the underground hole, and a concrete column with an enlarged root is created inside the underground hole.

なおこと特例の施工法は,転石又は障害物の転在する施
土地に適用できる。この場合は,円筒1内には最初水を
給付して前記のとおり堀進する。掘進途上障害物にあえ
ば,一旦回転軸2を抜き上げ,オレンヂビール又はヂゼ
ルを装備した軸と入替えて障害物処理を行い,次に回転
軸2を円筒1内に戻して掘進作業を続行する。
The special construction method can be applied to construction land where there are scattered stones or obstacles. In this case, water is first supplied into the cylinder 1 and the excavation is carried out as described above. If an obstacle is encountered during excavation, the rotary shaft 2 is removed and replaced with a shaft equipped with orange beer or diesel to clear the obstacle, and then the rotary shaft 2 is returned to the cylinder 1 to continue excavation work. .

支持層では常用のコンクリートポンプなどを用いて円筒
先端部にコンクリート2を送入し,水と体積を入れ替え
てのち,前例に述べたとおり外周ルートR内にコンクリ
ートを上昇させる作業を行うなど特殊施工法を実施でき
る。なお,この特例の回転軸機構では,可動リングの上
部凹面,又は固定リングの下部凸面にゴム板を固着させ
ると,円筒1の中空部30への地下圧力水の進入が予防
される。
In the supporting layer, concrete 2 is pumped into the tip of the cylinder using a regular concrete pump, and after exchanging the volume with water, special construction is carried out, such as lifting the concrete into the outer route R as described in the previous example. Can enforce the law. In this special case of the rotating shaft mechanism, if a rubber plate is fixed to the upper concave surface of the movable ring or the lower convex surface of the fixed ring, underground pressure water is prevented from entering the hollow part 30 of the cylinder 1.

以上の各例を用いて本発明の施工法を詳述したが,各例
に共通する特徴は,外周ルートR内の先行軟化土砂を,
吐出コンクリートの運動圧力で押上げ,この加圧された
コンクリートで外周ルートRを満たすことにある。
The construction method of the present invention has been explained in detail using each of the above examples, but the common feature of each example is that
The purpose is to push up the discharged concrete using the kinetic pressure and fill the outer circumferential route R with this pressurized concrete.

従って外周ルートRの周りの原地盤の孔壁Tは,上昇す
る半流動体のコンクリートの動的圧力を受け,数kg1
/cm2の脈動する内圧を受けた場合と同様にその表層
組織が圧縮されて密実化し,その結果,外周ルート内の
コンクリートと孔壁Tとの一体度が高められ,必然的に
この密実化された孔壁Tによる杭の周面支持力が強化さ
れる。
Therefore, the hole wall T in the original ground around the outer circumferential route R is subjected to the dynamic pressure of the rising semi-fluid concrete, and the
As in the case of receiving a pulsating internal pressure of /cm2, the surface layer structure is compressed and becomes dense, and as a result, the degree of integration between the concrete in the outer route and the hole wall T is increased, and this dense compaction inevitably increases. The circumferential bearing capacity of the pile due to the shaped hole wall T is strengthened.

このように圧力をもち,流動するコンクリートの加圧作
用は,上記孔壁Tを圧縮するだけでなく,最も大きい動
的加圧は,吐出コンクリートの方向転換の折り返し点に
あたる地下孔の孔底部に作用する。すなわち,孔底部の
原地盤が反力体となって吐出コンクリートを上昇させる
のであって,原地盤は常にその反作用を受ける。この動
的最大圧力によって拡大根を含む地下孔の孔底部の原地
盤は格別に圧縮され,組織が密実化し,その結果,この
工法による場所打杭の先端支持力が強大となる。
The pressurizing action of flowing concrete with pressure not only compresses the hole wall T mentioned above, but also causes the greatest dynamic pressurization to occur at the bottom of the underground hole, which is the turning point of the direction change of the discharged concrete. act. In other words, the original ground at the bottom of the hole acts as a reaction force and causes the discharged concrete to rise, and the original ground is always subject to this reaction. Due to this maximum dynamic pressure, the original ground at the bottom of the underground hole, including the expanded roots, is extremely compressed and its structure becomes denser, resulting in a stronger tip-bearing capacity for the cast-in-place piles produced by this construction method.

以上に述べた本施工法における孔底部の原地盤及び孔壁
Tの原地盤を,コンクリートの流動変位する動的圧力で
締め固め,杭の先端支持力及び周面支持力を強化させる
独特の作用効果は,現行慣用の場所打杭のどの施工法に
おいても期待できない。すなわち、本施工法は,地下孔
全体を圧力管体となみし,この圧力管体に内圧を作用さ
せる新しい施工法である。
In this construction method described above, the original ground at the bottom of the hole and the original ground at the hole wall T are compacted by the dynamic pressure caused by the flow displacement of concrete, and the unique effect is to strengthen the tip bearing capacity and circumferential bearing capacity of the pile. No effect can be expected with any of the current conventional cast-in-place pile construction methods. In other words, this construction method is a new construction method that treats the entire underground hole as a pressure pipe and applies internal pressure to this pressure pipe.

本施工法において,外周ルートR内の先行軟化土砂を押
し上げるコンクリートの圧力の強さは,軟化土砂の押し
上げ抵抗力の強弱によって決まるので,ベントナイト泥
水を練りまぜ泥土より残分流動性の低いエア・ソイルを
外周ルートRに満たし,このエア・ソイルを押し上げる
コンクリートの吐出圧力を高め,圧力管体となる地下孔
に対するコンクリートによる作用圧力を高める手段を講
ずることが望ましく,この場合は地上に排土されるエア
・ソイルの残土処理が容易となる。
In this construction method, the strength of the concrete pressure that pushes up the pre-softened soil in the outer route R is determined by the strength of the pushing-up resistance of the softened soil. It is desirable to fill the outer route R with soil and increase the discharge pressure of the concrete that pushes up this air soil, thereby increasing the pressure exerted by the concrete on the underground hole that will become the pressure pipe. This makes it easier to dispose of leftover air and soil.

次に,本工法の円筒1内に給付する基礎材料は,上記し
たコンクリートに限定されるものではなく,セメントを
主材とする高強度モルタル,エポキシ樹脂など高分子材
料を主材とするモルタルが適用され,また軟弱地盤改良
工事においては,粒度分布の適切な砂または砂まじり砂
利を用い,サンドパイルまたはバラスパイルを造成し得
る。このうちバラスパイルは特に透水性が良好なので,
液状化しやすい軟弱砂層に計画的にこれを造設すれば,
地震時地中の過剰水分を地上に排出して土砂の液状化を
防止するとともに,軟弱地盤の耐荷能力を向上させる。
Next, the basic material delivered into the cylinder 1 of this construction method is not limited to the above-mentioned concrete, but also includes high-strength mortar mainly made of cement and mortar mainly made of polymeric materials such as epoxy resin. In addition, in soft ground improvement work, sand piles or loose piles can be created using sand or sand-mixed gravel with an appropriate particle size distribution. Among these, rose pile has particularly good water permeability, so
If this is constructed in a planned manner in a soft sand layer that is prone to liquefaction,
Excess moisture in the ground is discharged to the ground during an earthquake, preventing soil liquefaction and improving the load-bearing capacity of soft ground.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図,第2図及び第3図は,本発明の実施例1を示す
もので,第1図は地下孔掘進時の装置先端部の作動態様
図,第2図はコンクリート柱体造成初動時の装置先端部
の作動態様図,第3図は掘削装置の下面図,第4図は他
の掘削装置の斜面図,第5図及び第6図は実施例2を示
すもので,第5図は掘進工程時におけるPHC杭の下端
部と装置先端の作動態様図,第6図は支持層に設置完了
後のPHC杭の下端部とその周辺の構造を示す一部縦断
面図,第7図はPHC杭の下端部を縦断し,簡易工法に
用いる回転軸の特殊閉鎖機構の構造を示す断面図である
。 図面中,符号A…コンクリート柱体,B…PHC杭,K
…吐出コンクリート,R…外周ルート,S…スパイラル
・ルート,T…原地盤の孔壁,W1…粘性泥土,W2…
ソイルセメント,1…酸管製の円筒,2…回転軸,3…
逆流スパイラル,4…環状端板,5…逆流スパイラルの
吐出口,6…油圧シリンダ,7…ピストンロッド,8…
逆流スパイラルの閉鎖板,10…反り面をもつ翼状ビッ
ト,12…土砂の抑え鉄板,13…流体の射出口,14
…撹拌翼,15…鋭角ビット,16…掘削装置の円板,
18…PHC杭の拡大根,25…拡大根に設けたフシ,
27…可動リング,28…水密性のゴムバンド,29…
固定リング。
Figures 1, 2, and 3 show Embodiment 1 of the present invention. Figure 1 is a diagram of the operation of the tip of the device during underground hole excavation, and Figure 2 is the initial operation of concrete column construction. Fig. 3 is a bottom view of the excavating rig, Fig. 4 is a slope view of another excavating rig, Figs. 5 and 6 show Embodiment 2, and Fig. Figure 6 shows the operating state of the lower end of the PHC pile and the tip of the device during the excavation process, Figure 6 is a partial longitudinal sectional view showing the lower end of the PHC pile and its surrounding structure after installation in the support layer, and Figure 7 The figure is a cross-sectional view of the lower end of the PHC pile, showing the structure of the special closing mechanism for the rotating shaft used in the simple construction method. In the drawing, code A...Concrete column, B...PHC pile, K
...discharged concrete, R...outer route, S...spiral route, T...hole wall of original ground, W1...viscous mud, W2...
Soil cement, 1... cylinder made of acid pipe, 2... rotating shaft, 3...
Backflow spiral, 4... Annular end plate, 5... Discharge port of backflow spiral, 6... Hydraulic cylinder, 7... Piston rod, 8...
Reverse flow spiral closing plate, 10... wing-shaped bit with warped surface, 12... earth and sand suppressing iron plate, 13... fluid injection port, 14
... Stirring blade, 15... Sharp bit, 16... Drilling equipment disc,
18... Expanded root of PHC pile, 25... Fence provided on expanded root,
27...Movable ring, 28...Watertight rubber band, 29...
Fixed ring.

Claims (1)

【特許請求の範囲】[Claims] 回転軸の先端に装着した掘削装置で、逆流スパイラルを
装備した回転軸を内蔵する円筒の外径より大きく地下孔
を掘削し、且つ所要の流体を射出して掘削土砂を軟化し
、逆流するスパイラルルートを閉じて前記軟化土砂を円
筒を取り巻く外周ルートに誘導しながら円筒を所要の深
度に到達させ、そののち前記スパイラルルートを開き、
円筒内に給付した基礎材料に回転する逆流スパイラルに
よる下降圧力を加え、この圧力によつて基礎材料を地下
孔内に吐出し、孔底部及び外周ルート内の先行軟化土砂
をこの基礎材料で押し上げることを特徴とする逆流スパ
イラル基礎工法。
A drilling device attached to the tip of a rotating shaft that excavates an underground hole larger than the outside diameter of the cylinder that houses the rotating shaft equipped with a backflow spiral, and injects the required fluid to soften the excavated soil and create a backflow spiral. Closing the route and guiding the softened earth and sand to a peripheral route surrounding the cylinder while allowing the cylinder to reach a required depth, and then opening the spiral route,
Applying downward pressure from a rotating counterflow spiral to the foundation material delivered into the cylinder, this pressure discharges the foundation material into the underground hole, and the previously softened earth and sand in the bottom of the hole and the outer route are pushed up by this foundation material. A counterflow spiral foundation construction method featuring:
JP6845988A 1988-03-22 1988-03-22 Reflux spiral foundation work Pending JPH01244016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6845988A JPH01244016A (en) 1988-03-22 1988-03-22 Reflux spiral foundation work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6845988A JPH01244016A (en) 1988-03-22 1988-03-22 Reflux spiral foundation work

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP25422988A Division JPH01244015A (en) 1988-10-07 1988-10-07 Anchor casting for foundation pile

Publications (1)

Publication Number Publication Date
JPH01244016A true JPH01244016A (en) 1989-09-28

Family

ID=13374298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6845988A Pending JPH01244016A (en) 1988-03-22 1988-03-22 Reflux spiral foundation work

Country Status (1)

Country Link
JP (1) JPH01244016A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101700848B1 (en) * 2016-04-14 2017-02-01 조준열 Auger pile
CN106761415A (en) * 2017-01-23 2017-05-31 中电建建筑集团有限公司 The constructing device and its construction method of a kind of profound cast-in-situ bored pile

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101700848B1 (en) * 2016-04-14 2017-02-01 조준열 Auger pile
CN106761415A (en) * 2017-01-23 2017-05-31 中电建建筑集团有限公司 The constructing device and its construction method of a kind of profound cast-in-situ bored pile
CN106761415B (en) * 2017-01-23 2019-04-26 中电建建筑集团有限公司 A kind of constructing device and its construction method of profound cast-in-situ bored pile

Similar Documents

Publication Publication Date Title
EP1888848B1 (en) Slotted mandrel for lateral displacement pier and method of use
RU2500856C2 (en) Screen-equipped ramming device and method to form bored cast-in-place pile
KR930012067B1 (en) Process for compaction reinforcement grouting or for decompaction drainage and for construction of linear works and plane works in the soils
US4411557A (en) Method of making a high-capacity earthbound structural reference
WO1990002243A1 (en) Drills for piles and soil stabilization
KR20100101568A (en) Method and apparatus for building support piers from one or more successive lifts formed in a soil matrix
CZ20001770A3 (en) Improved methods and apparatus for boring and piling
US6672015B2 (en) Concrete pile made of such a concrete and method for drilling a hole adapted for receiving the improved concrete pile in a weak ground
JP2002275907A (en) Stabilization construction method for slope
JP3468724B2 (en) Method and device for placing concrete pile and enlarged head
JP4520913B2 (en) Ground improvement method and existing structure foundation reinforcement method
CN104099925A (en) Construction device for concrete pile and construction method thereof
CN107338792A (en) A kind of prestressing force cement mixing method and its construction method
JPS5985028A (en) Steel pipe pile and laying work thereof
CN111287173A (en) Assembled core-carrying pile and construction method
JPS6347416A (en) Steel tubular pile and its embedding work
CN104153355B (en) The constructing device of concrete-pile and construction method thereof
JPH01244016A (en) Reflux spiral foundation work
EP1041240A2 (en) Auger drill
CN104153356B (en) The constructing device of concrete-pile and construction method thereof
CN106193038A (en) The construction equipment of concrete-pile and construction method thereof
CN1259604A (en) Cement earth reinforced composite piling method
US11952736B2 (en) System and method for installing an aggregate pier
CN1042158C (en) Injecting method for steel rod concrete prefabricated pile end
US413383A (en) Method of constructing tunnels