JPS62228454A - Passivity-strengthened high-purity stainless steel - Google Patents

Passivity-strengthened high-purity stainless steel

Info

Publication number
JPS62228454A
JPS62228454A JP6852087A JP6852087A JPS62228454A JP S62228454 A JPS62228454 A JP S62228454A JP 6852087 A JP6852087 A JP 6852087A JP 6852087 A JP6852087 A JP 6852087A JP S62228454 A JPS62228454 A JP S62228454A
Authority
JP
Japan
Prior art keywords
stainless steel
ppm
effect
passivation
passivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6852087A
Other languages
Japanese (ja)
Other versions
JPH0470389B2 (en
Inventor
Masanori Ueda
上田 全紀
Tadashi Nishi
正 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP12637581A external-priority patent/JPS5827962A/en
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6852087A priority Critical patent/JPS62228454A/en
Publication of JPS62228454A publication Critical patent/JPS62228454A/en
Publication of JPH0470389B2 publication Critical patent/JPH0470389B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Abstract

PURPOSE:To strengthen passivation without addition of large amounts of expen sive alloying elements and to improve corrosion resistance, by specifying respec tive amounts of C, Si, Cr, Ni, Mo, Cu, N, Al, Nb, S, P, etc. CONSTITUTION:This stainless steel has a composition consisting of, by weight, 0.005-0.1% C, 0.05-3% Si, 9-27% Cr, 1-22% Ni, 0.02-4% Mo, 0.01-3% Cu, 0.005-0.4% N, 0.01-0.8% of one or more elements among Al, Nb, Ti, and V, and the balance Fe. Moreover, in the above composition, respective amounts of S, P, and Mn as impurities are specified as shown in [P](ppm)+10X[S](ppm)<=400 and [Mn](%)+0.38X[S](ppm)<=11.9. In the above stainless steel, passivity is strengthened, and particularly, resistance of passivity to Cl<->, etc., is increased, so that corrosion resistance can be improved.

Description

【発明の詳細な説明】 本発明は不(tlJ Bを強化した高純ステンレス鋼に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high purity stainless steel reinforced with tlJB.

本発明の目的はステンレス鋼の耐食性を高価な合金元素
の多量添加にたよらず耐食性を害する鋼中の不純物を極
限まで低減し、耐食性に有効な元素の少量添加と組合せ
ることによって耐食性を大巾に向上し、安価ですぐれた
ステンレス鋼を供給することである。
The purpose of the present invention is to improve the corrosion resistance of stainless steel by reducing impurities in the steel that impair corrosion resistance to the utmost limit, without relying on the addition of large amounts of expensive alloying elements, and by combining this with the addition of small amounts of elements that are effective for corrosion resistance. Our objective is to supply high-quality, inexpensive stainless steel.

ステンレス鋼はFe −Cr合金を基本とし、その表面
に生成する不働態皮膜によりすぐれた耐食性を示すこと
はよく知られ、Fe基耐食材料としてその用途を益々拡
大して来た。その用途の拡大にともなってFe −Cr
系からFe−Cr−Ni系、Fe−Cr−Ni−Mo系
へと発展し、組織的にはフェライト系、マルテンサイト
系、オーステナイト系、2相系の合金がよく知られてい
る。これらは主に主要合金元素によって不働態を強化し
て耐食性を向上させて来たイ吉果である。
Stainless steel is based on a Fe--Cr alloy, and it is well known that it exhibits excellent corrosion resistance due to the passive film formed on its surface, and its use as an Fe-based corrosion-resistant material has been increasingly expanded. With the expansion of its uses, Fe-Cr
The system has evolved from the Fe-Cr-Ni system to the Fe-Cr-Ni-Mo system, and microstructurally ferritic, martensitic, austenitic, and two-phase alloys are well known. These are the fruit of improved corrosion resistance mainly due to the reinforcement of passivation by main alloying elements.

これらのステンレス鋼は今後用途の拡大につれて益々使
用されると考えられる。しかし用途によっては耐食性が
不十分で高価なCr、 Nj、 Mo等々を多量合金せ
ざるを得ず、必然的にコストが高くなり用途の拡大の障
害になっているケースもある。
It is thought that these stainless steels will be increasingly used in the future as their applications expand. However, depending on the application, a large amount of Cr, Nj, Mo, etc., which have insufficient corrosion resistance and are expensive, must be alloyed in large quantities, which inevitably increases costs and becomes an obstacle to expanding the range of applications.

したがってこれら高価な合金を多量使用せずにステンレ
ス網の不働態化特性を大巾に向上させ得る技術が長い間
求められて来た。
Therefore, there has long been a need for a technology that can greatly improve the passivation properties of stainless steel mesh without using large amounts of these expensive alloys.

今日精錬技術の進歩はめざましく中でも高純化技術の進
歩はめざましい。本発明者らはステンレス鋼の耐食性、
特に不働態化現象に対する合金の純度依存性がきわめて
大きいことを見出した。その結果、通常純度の合金では
不純物が多く、本来その合金が当然示すべき不働態化特
性を十分に発揮出来ないでいることを見出した。高純鋼
にすることで不働態化特性が大巾に向上し、その結果高
価な合金元素であるCr、 Ni、 Mo等々を多量に
合金化することなく、耐食性のすぐれたステンレス鋼を
安価に供給することが出来る可能性がある。
Today, progress in refining technology is remarkable, especially in high purification technology. The present inventors have demonstrated the corrosion resistance of stainless steel,
In particular, it has been found that the passivation phenomenon is extremely dependent on the purity of the alloy. As a result, it was found that alloys of normal purity contain many impurities and are unable to fully exhibit the passivation properties that the alloy should originally exhibit. By using high-purity steel, the passivation properties are greatly improved, and as a result, stainless steel with excellent corrosion resistance can be supplied at low cost without alloying large amounts of expensive alloying elements such as Cr, Ni, Mo, etc. There is a possibility that it can be done.

本発明者らはこのような観点から現状で可能な限りの高
純合金の耐食性や不働態化特性について検討を重ねて来
た。
From this point of view, the present inventors have repeatedly investigated the corrosion resistance and passivation properties of high-purity alloys that are currently possible.

不純物元素として検討した元素はs、p、c。The elements considered as impurity elements were s, p, and c.

N、  O,Mn、 Si等々である。不働態化特性と
しては第1図に示した通り電気化学的に5%11□5O
430’C1脱気中で陽分極挙動を調査し、活性溶解の
ピーク電流(1つ)不働態化電位(V、)不働態保持電
流(■p)を測定した。又CX−等の不働態を破壊する
イオン種を含有する場合の不働態化特性の調査には5%
)IZSO4+3%NaC7!、30°C脱気中で陽分
極挙動を調査し、不働態貫通電位(V、二便宜的に1m
A/cnlの電流密度になる電位とした)を測定した。
These include N, O, Mn, Si, etc. As shown in Figure 1, the passivation property is electrochemically 5%11□5O.
The anodic polarization behavior was investigated in 430'C1 degassing, and the peak current of active dissolution (1), passivation potential (V,), and passivation retention current (■p) were measured. In addition, when investigating passivation properties when containing ionic species that destroy passivation such as CX-, 5%
)IZSO4+3%NaC7! , the anodic polarization behavior was investigated in degassing at 30 °C, and the passivation through-potential (V, two conveniently 1 m
The potential was set to a current density of A/cnl).

掃引スピードはいずれの場合にも50mV/minであ
る。又各種の腐食条件下で腐食試験を実施した。
The sweep speed is 50 mV/min in both cases. Corrosion tests were also conducted under various corrosion conditions.

これらの調査からステンレス鋼の不働態化特性に特に悪
影響を示す不純物元素はS、P、Mnであることが判明
した。C,N、O,Si等々は通常程度の含有量から技
術的極限まで低減しても余り顕著な改善効果を示さなか
った。
These investigations have revealed that S, P, and Mn are impurity elements that have a particularly bad effect on the passivation properties of stainless steel. Even when the content of C, N, O, Si, etc. was reduced from the usual level to the technical limit, no significant improvement effect was shown.

S、P、Mnの3元素の内、特にSは不働態化特性に対
する影響が大きく、さらにCX−による不働態破壊に対
しても大きな影響を有し、技術的に可能な限り低いこと
が望ましい。他の成分の影響もあるがSが10  pp
mから39ppmを境にして、これより低くなると不働
態化特性が格段に向上すること、すなわち例えば50p
pm程度からの外挿的傾向とは異なった格段の効果が得
られることが判明した。
Among the three elements S, P, and Mn, S in particular has a large effect on passivation properties, and also has a large effect on passivation destruction due to CX-, and it is desirable to have it as low as technically possible. . Although there are influences from other components, S is 10 pp.
The passivation properties are significantly improved when the concentration is lower than 39 ppm, that is, for example, 50 ppm.
It has been found that a remarkable effect can be obtained, which is different from the extrapolated tendency from the pm level.

PはSと関連するが、低くすればする程cg−に対する
不(tllGの抵抗を増大し、Mnも低くすれば低い程
CX−に対する不働態の抵抗を増大することが判明した
。以上の事実をより詳細に検討するため各種のステンレ
ス鋼を実験室において溶製しこれらの不純物許容レベル
について検討した。検討したステンレス鋼の成分範囲は
次の通りである。
P is related to S, and it was found that the lower it is, the more the resistance of passive state to CX- increases, and the lower the Mn is, the more the resistance of passive state to CX- increases. In order to study this in more detail, various types of stainless steel were melted in the laboratory and the allowable levels of these impurities were investigated.The composition range of the stainless steel studied was as follows.

C0,005〜0.10%、Si0.05〜3%、Cr
9〜27%、N41%を超え22%以下、NO,005
〜0.4%、Mo0.01〜4.0%、Cub、 01
〜2.8%、Ti0.02〜0.9%、Nb0.02〜
0.6%、/’40.01〜0.6%、80.001〜
0.05%、Vo、01〜0.7%等々を含有する合金
鋼で主としてCr、 Niの合金量によってフェライト
系、マルテンサイト系、オーステナイト系、フェライト
+オーステナイト2相系の合金とした。これらの合金系
において3つの元素S、P、Mnの量を検討したが、下
限はいずれも可能な限り低(し、Sは51)I)mから
soppmまで、Pは50ppmから4001)flま
で、Mnは0゜05〜2%(主としてフェライト系とマ
ルテンサイト系)と0.3〜12%(主としてオーステ
ナイト系と2相系)について検討した。この内Slop
pm未満の合金の溶製にはCr、 Ni等は最高純度の
電解合金を使用すると共に、ベースのFeも電解鉄をあ
らかじめ脱硫フラックスで十分予備脱硫して溶製した。
C0,005~0.10%, Si0.05~3%, Cr
9 to 27%, N41% to 22% or less, NO,005
~0.4%, Mo0.01~4.0%, Cub, 01
~2.8%, Ti0.02~0.9%, Nb0.02~
0.6%, /'40.01~0.6%, 80.001~
The alloy steel contains 0.05%, Vo, 01-0.7%, etc., and is made into ferritic, martensitic, austenitic, or ferrite + austenite two-phase alloys depending on the alloying amount of Cr and Ni. We investigated the amounts of the three elements S, P, and Mn in these alloy systems, and the lower limits were all as low as possible (for S, from 51) m to soppm, and for P, from 50 ppm to 4001) fl. , Mn was studied at 0.05% to 2% (mainly ferritic and martensitic) and 0.3 to 12% (mainly austenitic and two-phase). Of these, Slop
For the melting of alloys of less than pm, the highest purity electrolytic alloys were used for Cr, Ni, etc., and the base Fe was also melted by sufficiently pre-desulfurizing electrolytic iron with desulfurization flux.

又Sの分析は1o ppm未満は従来のJIS法ではバ
ラツキが大きく、新らたにSが20ppm以下で2 I
)pm程度まで精度よく分析可能な、還元茎溜メチレン
ブルー法をベースにした赤外線吸収法を開発設定して分
析を行なった。
In addition, the analysis of S has large variations when S is less than 10 ppm using the conventional JIS method, and a new method using 2I is used when S is less than 20 ppm.
) An infrared absorption method based on the reduced distilled methylene blue method, which can be analyzed with high accuracy down to the pm level, was developed and analyzed.

試験はすでに述べた5%H2SO,、30°C中の陽分
極曲線、ならびに5%tlzsOi + 3%NaCj
! 30℃中の陽分極曲線を測定した。高合金の場合に
はそれぞれのン夜温を高温にしたものもある。18Cr
−8Ni系における5%11□SO,中の陽分極曲線の
活性溶解ピーク電流値Ipに対するS低減の効果は第2
図の通りであり、320〜30ppmを境にして、それ
以下ではS低減効果が極めて顕著である。
The tests were already mentioned with 5% H2SO, anodic polarization curve in 30 °C, as well as 5% tlzsOi + 3% NaCj
! Positive polarization curves at 30°C were measured. In the case of high alloys, some have a high night temperature. 18Cr
The effect of S reduction on the active dissolution peak current value Ip of the anodic polarization curve in 5% 11□SO in the -8Ni system is the second
As shown in the figure, the S reduction effect is extremely significant below 320 to 30 ppm.

17Cr系の5%1lZsO4+ 3%NaCR中の陽
分極曲線とp、sの低減効果は第3図の通りであり、低
S系において、Pを低減することがCl″′の不働態破
壊を大[11に抑制することを示している。第4図は低
S系において、Mnを低減することがCX−の不働態破
壊を大14]に抑制することを示している。
Figure 3 shows the positive polarization curve and the effect of reducing p and s in 17Cr-based 5% 1lZsO4+ 3% NaCR. Figure 4 shows that in a low S system, reducing Mn suppresses the passivity destruction of CX- to a level of 14].

これらを基本として、多くの合金系においてこれら不純
元素の許容範囲を判定するには次の5つの系すなわち1
2Cr系、17Cr系、18Cr−8Ni系、18Cr
−8N+−2Mo系、25Cr  5Ni  2M。
Based on these, the following five systems can be used to determine the permissible range of these impurity elements in many alloy systems:
2Cr series, 17Cr series, 18Cr-8Ni series, 18Cr
-8N+-2Mo system, 25Cr 5Ni 2M.

系で不純物の通常含有レヘル(S=50 ppm、P=
 230 ppm、 Mn0.33〜0゜99%)を基
準合金と設定した。多数の合金の試験結果から不働態化
能を表わす目安として5%H2S0J中陽分極時の活性
ピークの電流密度(■、)がそれぞれ基準合金に対して
1/10以下になること、及びCff−に対する抵抗を
表わす目安として5%11□SO4+3%NaC(l中
隔分極時の不働態貫通電位(1g  : 1mA/CI
′11の電流密度に相当する電位を便宜上使用)が基準
合金に対して0.3V (S、  C,E)以上前にな
ることを前提条件としてS、P、Mnの許容限界を多く
のステンレス鋼で求めた結果、基本的には合金のNi量
によってすなわちNiが1%を境にしてNi1%以下の
合金では第5図、第6図の通りSとP、SとMnを共に
斜線以下に規制することが必要である。一方Ni1%を
超える合金ではSとPは第7図、第8図の斜線内に規制
することが必要で、特に斜線内でも低いことが望ましい
。Ni1%を超える合金では330 ppm未満に限っ
てMnの規制を大巾に緩和することが出来る特徴がある
。こうしてNi1%を超える合金では第7図のS−Pの
規制と第8図のS −Mnの規制が必要である。
The normal content of impurities in the system (S=50 ppm, P=
230 ppm, Mn 0.33-0°99%) was set as the standard alloy. From the test results of a large number of alloys, the current density (■,) at the active peak during anodic polarization in 5% H2SOJ is 1/10 or less of that of the reference alloy, and Cff- As a guideline to express the resistance to
The permissible limits of S, P, and Mn are determined based on the precondition that the potential corresponding to the current density of The results obtained for steel basically depend on the amount of Ni in the alloy, that is, in alloys where Ni is 1% or less, as shown in Figures 5 and 6, both S and P, and S and Mn are below the diagonal line. It is necessary to regulate the On the other hand, in alloys containing more than 1% Ni, it is necessary to control S and P within the diagonal lines in FIGS. 7 and 8, and it is particularly desirable that they be low even within the diagonal lines. Alloys containing more than 1% Ni have the characteristic that restrictions on Mn can be largely relaxed only when the content is less than 330 ppm. Thus, for alloys containing more than 1% Ni, the SP regulation shown in FIG. 7 and the S-Mn regulation shown in FIG. 8 are required.

このようにして多数のステンレス鋼に関して、不働態化
特性、並びにCf−等による不働態破壊特性に対する鋼
中不純物元素であるS、P、Mnを工業的に可能な限界
まで低減することによって、大巾な不働態の強化が可能
となり、したがって大巾な耐食性の向上が得られること
を明らかにし、多数のステンレス鋼でこのような作用効
果を生じるS、P、Mn量を確定した。
In this way, for many stainless steels, by reducing the impurity elements S, P, and Mn in steel to the industrially possible limit for the passivation property and the passivity destruction property due to Cf-, etc. It was clarified that it was possible to strengthen the passive state over a wide range, and therefore, a large improvement in corrosion resistance was obtained, and the amounts of S, P, and Mn that produced this effect in a large number of stainless steels were determined.

Niが1%を超えCrを9%から27%まで含有するス
テンレス鋼では、下記の通りS、P、Mnを規制するこ
とが必要である。
In stainless steel containing more than 1% Ni and 9% to 27% Cr, it is necessary to control S, P, and Mn as described below.

このようにして特に有害な不純物を極限まで低減したス
テンレス鋼では耐食性改善元素であるMo。
In this way, particularly harmful impurities are reduced to the utmost in stainless steel, and Mo is an element that improves corrosion resistance.

Cu、 Coをはじめとする通常ステンレス鋼に含有さ
れる諸元素と相乗効果を有し一層すぐれた耐食性を発揮
する。
It has a synergistic effect with various elements normally contained in stainless steel, such as Cu and Co, and exhibits even better corrosion resistance.

次に本発明合金鋼に含まれうる各元素の含有量の好まし
い範囲について説明する。
Next, preferred ranges of the content of each element that can be contained in the alloy steel of the present invention will be explained.

本発明はステンレス鋼の不働態化特性及びCX−等によ
る不働態破壊特性に対して鋼中の不純物のうちS、P、
Mnが特に悪影響を示す知見にもとづいてこれらの元素
を工業的に可能な限り低減してすぐれた耐食性のステン
レス鋼を得ることを目的にしたものである。
The present invention deals with the passivation properties of stainless steel and the passivation breakdown properties due to CX-, etc. Among the impurities in steel, S, P,
Based on the knowledge that Mn has a particularly bad effect, the purpose of this method is to reduce the content of these elements as much as possible industrially to obtain stainless steel with excellent corrosion resistance.

Sはステンレス鋼の不働態化特性及びCX−等による不
働態破壊特性の両者に悪影響を与え、低ければ低い程、
特に10ppm程度を境にして、それ以下で特に改善効
果が著るしい。ただ次に述べるP、Mn量との関連で許
容限は決まり、合金のNi量によって影響を受ける。
S has a negative effect on both the passivation properties of stainless steel and the passivity destruction properties due to CX-, etc., and the lower the S content, the more
In particular, the improvement effect is particularly significant below 10 ppm. However, the allowable limit is determined in relation to the amounts of P and Mn described below, and is influenced by the amount of Ni in the alloy.

PはCX−等による不働態破壊特性に悪影響し、低けれ
ば低い程望ましい。Slとの関連で許容限は決まり、又
合金のNilによっても影響を受ける。
P has an adverse effect on the passive state destruction properties caused by CX-, etc., and the lower the P content, the more desirable it is. Tolerance limits are determined in relation to Sl and are also influenced by Ni in the alloy.

MnもPと同様CX−等による不働態破壊特性に対して
悪影響を有し、低ければ低い程望ましい。
Like P, Mn also has an adverse effect on the passive state destruction properties caused by CX-, etc., and the lower the Mn is, the more desirable it is.

ただ合金によって影響度が異なり、Ni1%以下のステ
ンレス鋼で特に悪影響が大きく、Sとの関連で許容限は
決まる。しかしNi1%を超えるステンレス鋼において
もMnは低い方が良好であるが影否度合は小さくなり、
Sとの関連で許容限は決まる。
However, the degree of influence differs depending on the alloy, and the adverse effect is particularly large in stainless steel containing 1% Ni or less, and the allowable limit is determined in relation to S. However, even in stainless steel containing more than 1% Ni, the lower the Mn content, the better, but the degree of negative effect becomes smaller.
The tolerance limit is determined in relation to S.

Ni1%を超えるステンレス鋼では所期の作用効果を得
るため次の両条件を満たすことが必要である。
Stainless steel containing more than 1% Ni must satisfy both of the following conditions in order to obtain the desired effect.

(pH(ppm) +10 X (S) (ppm)≦
400[Mn:l  (%)  +0.38x [S)
 (ppm)  ≦11.9   (11なお以上の作
用効果は以下に述べる極めて広範囲のステンレス鋼につ
いて成立することを確かめた。
(pH (ppm) +10 X (S) (ppm)≦
400 [Mn:l (%) +0.38x [S)
(ppm) ≦11.9 (11) It has been confirmed that the above-mentioned effects are valid for an extremely wide range of stainless steels described below.

Crはステンレス鋼の不働態化の基本成分で9%未満で
は所期の作用効果が得られず、Crが多い程所期の作用
効果は大きくなるが上限27%を超えると高価になるの
で27%とする。S−P及びS−Mnの規制条件下では
特に作用効果が大きい。
Cr is a basic component for passivation of stainless steel, and if it is less than 9%, the desired effect cannot be obtained, and the higher the Cr content, the greater the desired effect, but if it exceeds the upper limit of 27%, it becomes expensive. %. The effect is particularly large under the regulated conditions of S-P and S-Mn.

Niに関してはS−P、S −Mnの規制された合金で
Niが多い程所期の作用効果を示す。すなわち、Niが
多いとS −Mnとの関連で特にMnの許容限が拡大す
ることが判明し、その作用効果の分岐点がNi1%にあ
り、1%超ではS −Mnの許容限が拡大する。したが
ってNiは1%超とし、添加量が増大する程作用効果は
大きくなるが、22%を超えると極めて高価な合金とな
る。
Regarding Ni, the more Ni there is in controlled alloys of S-P and S-Mn, the more the desired effect is exhibited. In other words, it was found that when Ni is high, the tolerance limit for Mn expands especially in relation to S-Mn, and the branching point of its action and effect is at 1% Ni, and when it exceeds 1%, the tolerance limit for S-Mn expands. do. Therefore, Ni should be more than 1%, and the effect becomes greater as the amount added increases, but if it exceeds 22%, the alloy becomes extremely expensive.

Cは所期の作用効果に大きな影響はなく、下限0.00
5%は工業的な技術下限であり上限0.10%を超える
と耐食性が劣化する。
C has no significant effect on the intended effect, and the lower limit is 0.00.
5% is the industrial technical lower limit, and if it exceeds the upper limit of 0.10%, corrosion resistance deteriorates.

Nは所期の作用効果に大きな影響はなく、下限0.00
5%は工業的な技術下限であり、相の安定性、機械的性
質の改良に対して添加されるが上限0.4%を超えると
添加が■難となる。
N has no significant effect on the intended effect, and the lower limit is 0.00.
5% is the industrial technical lower limit, and is added to improve phase stability and mechanical properties, but if it exceeds the upper limit of 0.4%, addition becomes difficult.

和は微量でも所期の作用効果に有効で、不純物程度(0
,01%)で効果がみられ、添加量と共に作用効果は大
きくなるが上限4.0%を超えるときわめて高価になる
。SP、S−Mnを規制すると特にMOの効果は大きい
Even a small amount of water is effective for the desired effect, and it is at the impurity level (0
, 01%), and the effect increases with the amount added, but if it exceeds the upper limit of 4.0%, it becomes extremely expensive. When SP and S-Mn are regulated, the effect of MO is particularly large.

CuもMoと同様で所期の作用効果に有効で不純物程度
の0.01%以上で効果を示し、添加量が多(なる程効
果は大きいが上限3%を超えると効果が飽和する。S−
P、S−Mnを規制した場合、特に効果が大きい。
Similar to Mo, Cu is also effective in achieving the desired effect and is effective when added at 0.01% or more, which is about the same as an impurity, and when added in a large amount (it is true that the effect is large, but the effect is saturated when the upper limit of 3% is exceeded.S) −
The effect is particularly great when P and S-Mn are regulated.

Si は強度を高めるのに効果がある。この効果は不純
物レベルである0、05%程度から顕在し、3.0%で
飽和する。従って、Siの含有量を0.05〜3.0%
とする。
Si is effective in increasing strength. This effect becomes apparent from an impurity level of about 0.05% and saturates at 3.0%. Therefore, the Si content should be 0.05 to 3.0%.
shall be.

Ti、 Nb、 A!、  Vは0.01〜0.8%の
範囲内で1種または2種以上を含有せしめることにより
所期の作用効果を示し、S−P、S−Mnを規制した合
金に通常のステンレス鋼におけると同様1種又は2種以
上選択添加出来る。各々の成分の上限は0.8%とする
のが好ましく、これを超えると作用効果が飽和する。
Ti, Nb, A! , V shows the desired effect by containing one or more types within the range of 0.01 to 0.8%, and normal stainless steel is added to the alloy with regulated S-P and S-Mn. As in , one or more types can be selectively added. The upper limit of each component is preferably 0.8%, and if it exceeds this, the effects will be saturated.

その他Sn、  B等々もさほど大きな影響はなく通常
のステンレス鋼におけると同様、1種又は2種選択添加
出来る。各成分の上限は0.05%とするのが好ましい
。これを超えると各成分の作用効果が飽和する。
In addition, Sn, B, etc. do not have a very large effect and can be selectively added in one or two types as in ordinary stainless steel. The upper limit of each component is preferably 0.05%. If this value is exceeded, the effects of each component will be saturated.

以下に本発明の実施例を示す。Examples of the present invention are shown below.

表1に示すように18Cr−8Ni系、17Cr−12
Ni  3Mo −ICu系、25Cr  13Ni−
0,8M。
As shown in Table 1, 18Cr-8Ni system, 17Cr-12
Ni 3Mo -ICu system, 25Cr 13Ni-
0.8M.

−0,4N系、25Cr −5Ni −2Mo −2,
5Cu系の4種のステンレス鋼を電炉、AODで溶製精
錬した上、取鍋で脱S、脱Pフラックスを底部から吹込
み、所定のS、Pのレベルにした。その後、常法により
得られたスラブを熱間圧延し更に冷延、焼鈍、酸洗して
11鵬厚の冷延製品とした。この製品板について機械的
性質をはじめ多くの特性を調査した。問題の不働態化特
性、Cp−による不働態破壊特性をはじめ各種耐食性試
験を実施した。比較材として上記3種のステンレス鋼で
通常製品についても表1にその成分系を示した。本発明
鋼はすべてS−P、S−Mnの規制値を満足し、比較鋼
はSをはじめとして、規制を満足していない。
-0,4N system, 25Cr -5Ni -2Mo -2,
Four types of 5Cu-based stainless steel were melted and refined in an electric furnace and AOD, and a de-S and de-P flux was blown into the ladle from the bottom to reach the specified S and P levels. Thereafter, the slab obtained by a conventional method was hot-rolled, further cold-rolled, annealed, and pickled to obtain a cold-rolled product with a thickness of 11 mm. Many properties of this product board, including mechanical properties, were investigated. Various corrosion resistance tests were carried out, including the passivation property and Cp-induced passivity destruction property. Table 1 also shows the component systems of the three types of stainless steels mentioned above as comparative materials. All of the steels of the present invention satisfy the regulation values of S-P and S-Mn, and the comparative steels do not satisfy the regulations, including S.

不働態化特性は5%1lzsOa中での陽分極曲線を測
定し、活性溶解のピーク電流密度1.と5%1hso4
中での浸漬腐食試験値で評価した。塩素イオン等による
不働態破壊特性は5%I(zsO4+3%NaCZ溶液
中での不働態貫通電位■、とFe(J3+ IICZI
C中での孔食テストを併用した。試験結果は表2の通り
である。
The passivation properties were determined by measuring the anodic polarization curve in 5% 1lzsOa, and the peak current density of active dissolution was 1. and 5%1hso4
It was evaluated based on the immersion corrosion test value. The passive state destruction properties due to chlorine ions, etc.
A pitting corrosion test in C was also used. The test results are shown in Table 2.

Cp−を含まない酸中での不働態化特性、すなわち5%
11□SO4溶液中での陽分極挙動、例えば(■、)は
もちろん、5%11□SO4?容液中での腐食試験にお
いても本発明鋼は比較鋼に比してすぐれた耐食性を示し
た。又Cβ−を含んだ溶液中での不働態破壊特性、すな
わち5%11□SO4+3%NaC1溶液中での陽分極
挙動、例えば不働態貫通電位(VS )はもちろん、孔
食試験として広く使用されている5 0 g / (!
 FeC1,J+1/2ONIICJ!?容液中での孔
食テストにおいても本発明鋼は比較鋼に比して大巾にす
ぐれた特性を示した。この結果から、本発明に従えばC
r、 Ni、 Mo等の合金量が少なくてもS、P、M
nを規制した高純化技術によって、比較鋼の内の高合金
鋼に代替し得る合金鋼を促供しうろことが明らかである
Passivation properties in Cp-free acids, i.e. 5%
Anodic polarization behavior in 11□SO4 solution, for example (■,), as well as 5% 11□SO4? Also in the corrosion test in liquid, the steel of the present invention showed superior corrosion resistance compared to the comparative steel. In addition, it is widely used as a pitting corrosion test as well as passivation breakdown property in a solution containing Cβ-, that is, anodic polarization behavior in a 5% 11□SO4 + 3% NaCl solution, such as passive penetration potential (VS). There are 50 g / (!
FeC1,J+1/2ONIICJ! ? Also in the pitting corrosion test in liquid, the steel of the present invention showed significantly superior properties compared to the comparative steel. From this result, according to the present invention, C
Even if the amount of alloys such as r, Ni, Mo etc. is small, S, P, M
It is clear that high purification technology that regulates n will promote alloy steels that can replace high alloy steels among comparative steels.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ta+は5%ll2So、溶液中のステンレス鋼
の陽分極曲線、同(b)は5%H2S0J  + 3%
NaCI!溶液中のステンレス鋼の陽分極曲線、第2図
は5%++2sO430°C脱気中の18Cr−8Ni
ステンレス鋼の陽分極曲線の活性溶解ピーク電流値【3
に対するSの影響を示す図、第3図は5%)12SOa
+3%NaC130’C脱気中の17Cr系ステンレス
鋼の陽分極曲線の■、に対するSとPの影響を示す図、
第4図は5%IIZSO4+ 3%NaC130”C脱
気中の17Cr系ステンレスの陽分極曲線の■8に対す
るMnの影響を示す図、第5図はNi1%以下のステン
レス鋼の不働態を強化するために許容されるS、Piの
関係、 (〔P) (ppm) +10X (S) (ppm)
≦350)を示す図、第6図はNi1%以下のステンレ
ス鋼の不働態を強化するために許容されるs、Mnft
の関係((Mn) (%)+0.018 x (S) 
(ppm)  ≦0.15)を示す図、第7図はNi1
%を超えるステンレス鋼の不働態を強化するために許容
されるP、Sの関(CP) (ppm)→−10X C
S ) (ppm)≦400)を示す図、第8図はNi
1%を超えるステンレス鋼の不働態を強化するために許
容されるMn、Sの関係(CMn〕(χ) + 0.3
8 X (S ) (ppm) ≦11.9)を示す図
である。 第3図:曲線■(P :50ppm、  S :10p
四)■(P :50ppm、  S :30ppm)■
(P :50ppm、  S :60ppm)■(P:
50ppm、  S:140ppm)曲線I  (S 
:20ppm、  P :50ppm)I[(S :2
0ppm、  P :150ppm>Iil (S :
20ppm、  P :250ppm)r/ (S :
20ppm、  P :340ppm)第4図:曲線■
(S :10ppm、 Mn:0.07χ)■(S :
10ppm、 Mn:0.18χ)■(S:10ppm
、 Mn:0.38χ)■(S:10ppm、 Mn:
0.80 X)竿/ 口 (α)(b) 第3 回
Figure 1 ta+ is 5% ll2So, positive polarization curve of stainless steel in solution, same (b) is 5% H2S0J + 3%
NaCI! Positive polarization curve of stainless steel in solution, Figure 2 shows 18Cr-8Ni in 5%++2sO430°C degassing.
Active dissolution peak current value of anodic polarization curve of stainless steel [3
Figure 3 shows the influence of S on 5%) 12SOa
A diagram showing the influence of S and P on the positive polarization curve of 17Cr stainless steel during +3% NaC130'C degassing,
Figure 4 shows the influence of Mn on the positive polarization curve of 17Cr stainless steel during degassing with 5% IIZSO4 + 3% NaC130"C, and Figure 5 shows the influence of Mn on the positive polarization curve of 17Cr stainless steel during degassing with 5% IIZSO4 + 3% NaC130"C. Figure 5 shows the effect of Mn on the passive state of stainless steel with Ni 1% or less The relationship between S and Pi allowed for, ([P) (ppm) +10X (S) (ppm)
≦350), Figure 6 shows the allowable s, Mnft to strengthen the passivity of stainless steel with Ni 1% or less.
The relationship ((Mn) (%) + 0.018 x (S)
(ppm) ≦0.15), Figure 7 shows Ni1
Permissible P, S barrier (CP) (ppm) to strengthen the passivity of stainless steel exceeding % → -10X C
Figure 8 shows Ni
Allowable relationship between Mn and S to strengthen the passivity of stainless steel exceeding 1% (CMn] (χ) + 0.3
8 X (S) (ppm)≦11.9). Figure 3: Curve ■ (P: 50ppm, S: 10p
4) ■(P: 50ppm, S: 30ppm)■
(P: 50ppm, S: 60ppm) ■(P:
50ppm, S: 140ppm) Curve I (S
:20ppm, P :50ppm)I[(S :2
0ppm, P: 150ppm>Iil (S:
20ppm, P:250ppm)r/(S:
20ppm, P: 340ppm) Figure 4: Curve ■
(S: 10ppm, Mn: 0.07χ)■(S:
10ppm, Mn:0.18χ)■(S:10ppm
, Mn:0.38χ)■(S:10ppm, Mn:
0.80 X) Rod/Mouth (α) (b) 3rd

Claims (1)

【特許請求の範囲】 重量%でC:0.005〜0.10%、Si:0.05
〜3%、Cr:9〜27%、Ni:1%を超え22%以
下、Mo:0.01〜4.0%、Cu:0.01〜3%
、N:0.005〜0.4%ならびにAl、Nb、Ti
およびVを0.01〜0.8%の範囲内で1種または2
種以上、S、P及びMnを下記式で規定される量とし、
残部が実質的にFeからなる不働態を強化した高純ステ
ンレス鋼。 〔P〕(ppm)+10×〔S〕(ppm)≦400〔
Mn〕(%)+0.38×〔S〕(ppm)≦11.9
[Claims] C: 0.005 to 0.10%, Si: 0.05% by weight
~3%, Cr: 9-27%, Ni: more than 1% and 22% or less, Mo: 0.01-4.0%, Cu: 0.01-3%
, N: 0.005-0.4% and Al, Nb, Ti
and one or two V within the range of 0.01 to 0.8%.
Species or more, S, P and Mn are in amounts defined by the following formula,
High-purity stainless steel with reinforced passivation, the remainder of which is essentially Fe. [P](ppm)+10×[S](ppm)≦400[
Mn](%)+0.38×[S](ppm)≦11.9
JP6852087A 1981-08-12 1987-03-23 Passivity-strengthened high-purity stainless steel Granted JPS62228454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6852087A JPS62228454A (en) 1981-08-12 1987-03-23 Passivity-strengthened high-purity stainless steel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP12637581A JPS5827962A (en) 1981-08-12 1981-08-12 High purity stainless steel with intensified passivity
JP6852087A JPS62228454A (en) 1981-08-12 1987-03-23 Passivity-strengthened high-purity stainless steel

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP12637581A Division JPS5827962A (en) 1981-08-12 1981-08-12 High purity stainless steel with intensified passivity

Publications (2)

Publication Number Publication Date
JPS62228454A true JPS62228454A (en) 1987-10-07
JPH0470389B2 JPH0470389B2 (en) 1992-11-10

Family

ID=26409732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6852087A Granted JPS62228454A (en) 1981-08-12 1987-03-23 Passivity-strengthened high-purity stainless steel

Country Status (1)

Country Link
JP (1) JPS62228454A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1055508C (en) * 1995-12-26 2000-08-16 中国科学院金属腐蚀与防护研究所 Casting of wear-resistant corrosion-proof alloy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52138420A (en) * 1976-05-15 1977-11-18 Nippon Steel Corp Two-phased stainless steel
JPS5413413A (en) * 1977-06-30 1979-01-31 Kubota Ltd High cr low ni two-phase stainless cast steel of high corrosion resistance and high strength
JPS5495913A (en) * 1978-01-14 1979-07-28 Nippon Yakin Kogyo Co Ltd Austenitic stainless steel having good corrosion resistivity
JPS54121223A (en) * 1978-03-14 1979-09-20 Kubota Ltd Highly corrosion-resistant, supertough, high-cr low-ni two- phase cast stailess steel
JPS57134542A (en) * 1981-02-13 1982-08-19 Sumitomo Metal Ind Ltd Ferrite stainless steel with superior corrosion resistance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52138420A (en) * 1976-05-15 1977-11-18 Nippon Steel Corp Two-phased stainless steel
JPS5413413A (en) * 1977-06-30 1979-01-31 Kubota Ltd High cr low ni two-phase stainless cast steel of high corrosion resistance and high strength
JPS5495913A (en) * 1978-01-14 1979-07-28 Nippon Yakin Kogyo Co Ltd Austenitic stainless steel having good corrosion resistivity
JPS54121223A (en) * 1978-03-14 1979-09-20 Kubota Ltd Highly corrosion-resistant, supertough, high-cr low-ni two- phase cast stailess steel
JPS57134542A (en) * 1981-02-13 1982-08-19 Sumitomo Metal Ind Ltd Ferrite stainless steel with superior corrosion resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1055508C (en) * 1995-12-26 2000-08-16 中国科学院金属腐蚀与防护研究所 Casting of wear-resistant corrosion-proof alloy

Also Published As

Publication number Publication date
JPH0470389B2 (en) 1992-11-10

Similar Documents

Publication Publication Date Title
US9212412B2 (en) Lean duplex stainless steel excellent in corrosion resistance and toughness of weld heat affected zone
JP6877532B2 (en) Duplex stainless steel and its manufacturing method
KR870002190B1 (en) Corrosion resistant alloy
JP4190993B2 (en) Ferritic stainless steel sheet with improved crevice corrosion resistance
US4832765A (en) Duplex alloy
CN107502834B (en) Fe-Cr-based multicomponent alloy and rolling process thereof
JP2004099921A (en) Seawater resistant steel and manufacturing method
JPS62228454A (en) Passivity-strengthened high-purity stainless steel
JPH028021B2 (en)
JPH0218379B2 (en)
JPH0465141B2 (en)
JPH01201445A (en) Ferritic stainless steel having excellent workability and corrosion resistance
JPS61223126A (en) Production of stainless clad steel material having excellent corrosion resistance
JP2019127613A (en) High hardness precipitation hardening stainless steel having excellent hot workability and requiring no sub-zero treatment
KR100215727B1 (en) Super duplex stainless steel with high wear-resistance
JP2004143576A (en) Low nickel austenitic stainless steel
JPH0435551B2 (en)
JPS61136662A (en) Austenitic stainless steel having superior resistance to stress corrosion cracking
JPS63157838A (en) Two-phase stainless steel excellent in crevice corrosion resistance
JPH07188866A (en) Highly pure ferritic stainless steel excellent in resistance to corrosion with nitric acid
JPH02115345A (en) Ferritic stainless steel having excellent corrosion resistance in high concentrated halide
JPS5950748B2 (en) Corrosion resistant high chromium alloy steel for acetic acid solution containing formic acid
JPS61223167A (en) Austenitic stainless steel having superior corrosion resistance
JPH08144022A (en) Ferritic stainless steel excellent in corrosion resistance and hot workability
JPH0547621B2 (en)