JPS62227903A - Production of solvent-resistant porous fine particle of uniform particle diameter - Google Patents

Production of solvent-resistant porous fine particle of uniform particle diameter

Info

Publication number
JPS62227903A
JPS62227903A JP7224486A JP7224486A JPS62227903A JP S62227903 A JPS62227903 A JP S62227903A JP 7224486 A JP7224486 A JP 7224486A JP 7224486 A JP7224486 A JP 7224486A JP S62227903 A JPS62227903 A JP S62227903A
Authority
JP
Japan
Prior art keywords
fine particles
crosslinked polymer
particles
weight
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7224486A
Other languages
Japanese (ja)
Inventor
Yutaka Moroishi
裕 諸石
Toshihiko Tomita
俊彦 富田
Tadashi Asano
浅野 匡司
Mareyoshi Sawada
澤田 希能
Ken Noguchi
野口 謙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP7224486A priority Critical patent/JPS62227903A/en
Publication of JPS62227903A publication Critical patent/JPS62227903A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce the titled fine particles excelling in solvent resistance and having a uniform particle diameter, by extracting solvent-soluble matter from a specified precursor of porous fine crosslinked polymer particles. CONSTITUTION:A monomer mixture comprising 99-99.95wt% noncrosslinking monomer and 1-0.05wt% crosslinking monomer is copolymerized in an aqueous medium in the presence of an emulsifier and a water-soluble polymerization initiator to obtain a low crosslinking density crosslinked polymer. The diameter of the polymer particles is increased by repeating seed polymerization at least thrice by using the polymer particles as initial seed particles to obtain a low-crosslinking degree fine polymer particles having a particle diameter of 0.5-10mum and a standard deviation of a particle size distribution <=0.1mum. 100-3,000pts.wt. monomer mixture comprising 50-90wt% noncrosslinking monomer and 50-10wt% crosslinking monomer and 100-6,000pts.wt. pore modifier are absorbed by 100pts.wt. above produced fine particles and copolymerized in an aqueous medium to obtain a precursor of crosslinked porous fine polymer particles. Solvent-soluble matter is extracted from this precursor to obtain solvent-resistant porous fine particles having a uniform diameter, a particle diameter of 2-30mum and a standard deviation of a particle size distribution <=1mum.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は低架橋密度の架橋重合体と、孔調整剤と、高架
橋密度の架橋重合体からなる多孔性架橋重合体微粒子の
前駆体より溶剤可溶物質を除去することを特徴とする、
粒径が2〜30μmで粒径分布の標準偏差がlum以下
であり、耐溶剤性でかつ多孔性の均一粒径微粒子の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Industrial Field of Application The present invention provides a solution to a solvent-soluble precursor of porous cross-linked polymer fine particles comprising a cross-linked polymer with a low cross-link density, a pore control agent, and a cross-linked polymer with a high cross-link density. characterized by the removal of substances,
The present invention relates to a method for producing uniformly sized fine particles having a particle size of 2 to 30 μm and a standard deviation of particle size distribution of lum or less, which is solvent resistant and porous.

従来の技術 不透明化剤、つや消し剤、有機顔料ないし充填材、厚み
間隙調整材、クロマトグラフィ用担体などとして利用さ
れる高分子微粒子には、その粒径が均一であることが強
く要求される。また、厚み間隙調整材やクロマトグラフ
ィ用担体などとして利用するときのように、各種の溶剤
に分散させた状態で適用される場合には、その溶剤に溶
解ないし膨潤しないことが要求される。さらに、クロマ
トグラフィ用担体ないし各種物質の担持体などとして利
用するときのように表面槽の大きいことが有利に機能す
る用途にあっては、多孔性であることも望まれる。
BACKGROUND OF THE INVENTION Polymer fine particles used as opacifying agents, matting agents, organic pigments or fillers, thickness and gap adjusting agents, carriers for chromatography, etc. are strongly required to have uniform particle diameters. Furthermore, when used in a dispersed state in various solvents, such as when used as a thickness gap adjustment material or a carrier for chromatography, it is required that the material does not dissolve or swell in the solvent. Furthermore, in applications where a large surface tank is advantageous, such as when used as a carrier for chromatography or a carrier for various substances, porous properties are also desired.

従来、耐溶剤性の均一粒径微粒子の製造方法としては、
架橋状態にある高分子微粒子をシード粒子とし、これに
非架橋性単量体あるいは架橋しうる単量体混合物を吸収
させて重合処理する方法が知られていた(特開昭59−
18705号公報、英国特許第728508号、英国特
許第1116800号)。
Conventionally, methods for producing solvent-resistant, uniformly sized fine particles include:
There has been known a method of polymerizing polymer particles in a crosslinked state by using them as seed particles and absorbing a non-crosslinkable monomer or a crosslinkable monomer mixture (Japanese Unexamined Patent Application Publication No. 1983-1992).
18705, British Patent No. 728508, British Patent No. 1116800).

一方、多孔性の均一粒径微粒子の製造方法としては、用
いる単量体は溶かすが反応生成物は溶かさない有機溶剤
の存在下に、親水性ビニル系単量体とアクリル酸等とを
、あるいはフェニル基含有疎水性単量体と親水性単量体
とを水性懸濁下に重合させたのち該有機溶剤を除去する
方法が知られていた(特開昭58−88657号公報、
特開昭58−83260号公報)。
On the other hand, as a method for producing porous particles of uniform particle size, hydrophilic vinyl monomers and acrylic acid, etc. are mixed in the presence of an organic solvent that dissolves the monomers used but does not dissolve the reaction product. A method has been known in which a phenyl group-containing hydrophobic monomer and a hydrophilic monomer are polymerized in aqueous suspension and then the organic solvent is removed (Japanese Patent Application Laid-open No. 88657/1983,
(Japanese Unexamined Patent Publication No. 58-83260).

発明が解決しようとする問題点 しかしながら、上記した単に耐溶剤性のものを得るだけ
のいずれの方法にあっても、得られる微粒子が粒径の均
一性に劣るという問題点があった。
Problems to be Solved by the Invention However, in any of the above-mentioned methods for simply obtaining solvent-resistant particles, there is a problem in that the resulting fine particles have poor uniformity in particle size.

また、多孔性のものを得るための水性懸濁重合方法にあ
っても、得られる粒子の粒径分布が幅広((数ミクロン
−数十ミクロン)その均一性に劣る問題点があった。
Furthermore, even in the aqueous suspension polymerization method for obtaining porous materials, there is a problem in that the resulting particles have a wide particle size distribution ((several microns to several tens of microns)) and are poor in uniformity.

このように、従来方法では粒径の均一性に優れる微粒子
を得ることが困難であった。そのため、重合後に分級処
理して粒径の均一化をはかっているのが現状である。し
かし、粒径が2〜30μmの範囲において粒径分布の標
準偏差が1μm以下となるように分級処理するまでには
至っていない。。
As described above, it has been difficult to obtain fine particles with excellent uniformity in particle size using conventional methods. Therefore, the current practice is to perform a classification process after polymerization to make the particle size uniform. However, classification processing has not yet been carried out so that the standard deviation of the particle size distribution is 1 μm or less in the particle size range of 2 to 30 μm. .

従って、粒径が2〜30μmnで粒径分布の標準偏差が
1 ttm以下であり、耐溶剤性でかつ多孔性の均一粒
径微粒子を製造する方法はこれまでに知られていない。
Therefore, there has been no known method for producing solvent-resistant, porous, uniformly sized fine particles having a particle size of 2 to 30 μm and a standard deviation of particle size distribution of 1 ttm or less.

問題点を解決するための手段 本発明者らは上記の問題点を克服し、粒径が2〜30 
p toで粒径分布の標準偏差が1 μm以下であり、
耐溶剤性でかつ多孔性の均一粒径微粒子を分級処理する
ことなく得ることができる製造方法を開発するために鋭
意研究を重ねた結果、シード重合方式で粒径を成長させ
た低架橋密度の高分子微粒子中に、架橋性単量体の含有
濃度が高い単量体混合物と孔調整剤を浸入させてこれを
共重合処理し、得られた多孔性架橋重合体微粒子の前駆
体より溶剤可溶物質を抽出除去することによりその目的
を達成しうろことを見出し、本発明をなすに至った。
Means for Solving the Problems The present inventors have overcome the above problems, and have
The standard deviation of the particle size distribution is 1 μm or less at p to,
As a result of intensive research to develop a manufacturing method that can produce solvent-resistant, porous, and uniformly sized fine particles without the need for classification, we have developed a method with a low crosslinking density in which the particle size is grown using a seed polymerization method. A monomer mixture containing a high concentration of crosslinkable monomers and a pore control agent are infiltrated into polymer fine particles, and this is copolymerized, and the precursor of the obtained porous crosslinked polymer fine particles is made solvent-free. It was discovered that the objective could be achieved by extracting and removing the dissolved substance, and the present invention was completed.

すなわち、本発明は、(A)シード粒子の水分散液に水
、非架橋性単量体99〜99.95重量%と架橋性単量
体1〜0.05重量%からなる単量体混合物を加えて重
合処理し、得られた粒子を次のシード粒子として用いて
さらに径を成長させる操作を、非架橋性単量体99〜9
9.95重量%と架橋性単量体1〜0.05重量%から
なる単量体混合物を水媒中で処理して得た低架橋密度の
架橋重合体を初期のシード粒子として3回以上繰り返し
て得た、粒径が0.5〜10μmで粒径分布の標準偏差
が0.1μm以下の低架橋高分子微粒子中に、非架橋性
単量体50〜90重量%と架橋性単量体50〜IO重量
%からなる単量体混合物及び孔調整剤を吸収させ、水媒
中でこれを共重合処理して多孔性架橋重合体微粒子の前
駆体を得る工程、(B)前記工程で得た多孔性架橋重合
体微粒子の前駆体より溶剤可溶物質を抽出する工程から
なる粒径が2〜30μmで粒径分布の標準偏差がlum
以下であり、耐溶剤性でかつ多孔性の均一粒径微粒子の
製造方法を提供するものである。
That is, in the present invention, (A) an aqueous dispersion of seed particles contains water, a monomer mixture consisting of 99 to 99.95% by weight of a non-crosslinkable monomer and 1 to 0.05% by weight of a crosslinkable monomer. The non-crosslinkable monomer 99-9
A crosslinked polymer with a low crosslinking density obtained by treating a monomer mixture consisting of 9.95% by weight and 1 to 0.05% by weight of a crosslinkable monomer in an aqueous medium was used as initial seed particles three times or more. 50 to 90% by weight of non-crosslinkable monomers and crosslinkable monomers are contained in the repeatedly obtained low crosslinked polymer fine particles with a particle size of 0.5 to 10 μm and a standard deviation of particle size distribution of 0.1 μm or less. (B) obtaining a precursor of porous crosslinked polymer fine particles by absorbing a monomer mixture consisting of 50 to IO weight % and a pore adjusting agent and copolymerizing the same in an aqueous medium; The process consists of extracting a solvent-soluble substance from the precursor of the obtained porous crosslinked polymer fine particles.The particle size is 2 to 30 μm and the standard deviation of the particle size distribution is lum.
The following provides a method for producing solvent-resistant, porous, uniformly sized fine particles.

本発明方法においては、先ずシード重合方式で得た低架
橋高分子微粒子中に架橋性単量体の含有濃度が高い単量
体混合物と孔調整剤を吸収させ、これを共重合処理して
多孔性架橋重合体微粒子の前駆体を得る(A工程)。
In the method of the present invention, first, a monomer mixture containing a high concentration of crosslinkable monomers and a pore adjusting agent are absorbed into low crosslinked polymer fine particles obtained by a seed polymerization method, and this is copolymerized to form a pore-forming agent. A precursor of crosslinked polymer fine particles is obtained (Step A).

その際、低架橋高分子微粒子としては非架橋性単量体9
9〜99.95重量%と架橋性単量体1〜0.05重量
%からなる単量体混合物の架橋重合体よりなり、かつシ
ード重合を3回以上繰り返して得た、粒径が0.5〜1
0μmで粒径分布の標準偏差が0.1μm以下、好まし
くは0.05μm以下のものが用いられる。
At that time, the non-crosslinked monomer 9 is used as the low crosslinked polymer fine particles.
A crosslinked polymer made of a monomer mixture consisting of 9 to 99.95% by weight and 1 to 0.05% by weight of a crosslinkable monomer, and obtained by repeating seed polymerization three or more times, and has a particle size of 0. 5-1
A particle having a standard deviation of particle size distribution of 0.1 μm or less, preferably 0.05 μm or less is used.

すなわち、シード粒子の水分散液に水、非架橋性単量体
99〜99.95重量%と架橋性単量体1〜0.05重
量%からなる単量体混合物、さらには必要に応じて反応
の安定化に要する量の乳化剤(表面張力が55ダイン/
 0m以上となるようにすることが好ましい。)及び重
合開始剤、好ましくは水溶性の重合開始剤を加えて重合
処理し、得られた粒子を次のシード粒子として用いてさ
らに径を成長させる操作を3回以上繰り返して所定の大
きさとしたものが用いられる。初期のシード粒子として
は、非架橋性単量体99〜99.95重量%と架橋性単
量体1〜0.05重量%からなる単量体混合物を水媒中
で処理して得た低架橋密度の架橋重合が用いられる。
That is, water is added to the aqueous dispersion of seed particles, a monomer mixture consisting of 99 to 99.95% by weight of a non-crosslinkable monomer and 1 to 0.05% by weight of a crosslinkable monomer, and further, as necessary. The amount of emulsifier required to stabilize the reaction (surface tension 55 dynes/
It is preferable to set it to 0 m or more. ) and a polymerization initiator, preferably a water-soluble polymerization initiator, are polymerized, and the obtained particles are used as the next seed particles to further grow the diameter, which is repeated three or more times to reach a predetermined size. things are used. Initial seed particles were prepared by treating a monomer mixture consisting of 99 to 99.95% by weight of non-crosslinking monomers and 1 to 0.05% by weight of crosslinking monomers in an aqueous medium. Crosslinking polymerization of crosslinking density is used.

すなわち、例えば前記単量体混合物を通例の乳化重合方
式等で処理して得たエマルジョンにおける低架橋密度の
架橋重合体などが用いられる。このような条件を満足す
る低架橋高分子微粒子を用いることにより、最終目的物
における粒径と粒径分布の標準偏差が実現されると共に
、一般に真球状性に優れる最終目的物とすることができ
る。また、後で用いられる架橋性単量体の含有濃度の高
い単量体混合物ないしその構成単量体で膨潤しうるちの
とすることができる。前記混合割合の単量体混合物を用
いて得られる低架橋高分子微粒子の膨潤度(膨潤前後に
おける粒子の容積比)は、通常8〜100である。この
程度の膨潤度のものが本発明においては好ましい。従っ
て、前記の処理の際に用いる単量体混合物における架橋
性単量体の含有量が少な過ぎると膨潤度の過大なものが
得られることとなり、最終目的物である均一粒径微粒子
の耐溶剤性が充分でないなど本発明の目的が達成されに
(い。一方、架橋性単量体の含有量が多過ぎると膨潤度
の過小(架橋密度過多)なものが得られることとなり、
後で用いる架橋性単量体の含有濃度の高い単量体混合物
が粒子中に充分に拡散できず、粒子中での重合が不充分
となり、また粒径のバラツキの原因となる新たな粒子が
生成しやす(なって、本発明の目的が充分に達成されに
くい。
That is, for example, a crosslinked polymer having a low crosslinking density in an emulsion obtained by processing the monomer mixture by a conventional emulsion polymerization method or the like is used. By using low-crosslinked polymer fine particles that satisfy these conditions, the standard deviation of particle size and particle size distribution in the final target product can be achieved, and the final target product can generally have excellent sphericity. . Further, it can be made into a material that can be swollen with a monomer mixture containing a high crosslinkable monomer or its constituent monomers to be used later. The swelling degree (the volume ratio of the particles before and after swelling) of the low crosslinked polymer fine particles obtained using the monomer mixture having the above-mentioned mixing ratio is usually 8 to 100. A material with a swelling degree of this level is preferred in the present invention. Therefore, if the content of the crosslinkable monomer in the monomer mixture used in the above treatment is too low, a product with an excessive degree of swelling will be obtained, and the solvent resistance of the final target product, uniform particle size fine particles, will be reduced. On the other hand, if the content of the crosslinkable monomer is too high, a product with an insufficient degree of swelling (excessive crosslinking density) may be obtained.
A monomer mixture containing a high concentration of crosslinkable monomers used later cannot be sufficiently diffused into the particles, resulting in insufficient polymerization in the particles, and new particles are formed that cause variation in particle size. (This makes it difficult to fully achieve the purpose of the present invention.)

前記の低架橋高分子微粒子は、架橋性単量体の含有濃度
が高い単量体混合物の反応ベースとして利用される。す
なわち、低架橋高分子微粒子中に該単量体混合物と孔調
整剤を吸収させてこれを重合開始剤の存在下、共重合処
理する操作に供される。これにより、低架橋密度の架橋
重合体からなる低架橋高分子微粒子の少なくとも内部に
、架橋性単量体の含有濃度が高い単量体混合物に基づく
高架橋密度の架橋重合体と孔調整剤を有し、粒径が拡張
した多孔性架12重合体微粒子の前駆体が得られ、比表
面積の大きい最終目的物とすることができる。
The low-crosslinked polymer fine particles described above are used as a reaction base for a monomer mixture containing a high concentration of crosslinkable monomers. That is, the monomer mixture and the pore-adjusting agent are absorbed into the low-crosslinked polymer fine particles and subjected to a copolymerization treatment in the presence of a polymerization initiator. As a result, a crosslinked polymer with a high crosslinking density based on a monomer mixture with a high concentration of crosslinking monomers and a pore control agent are contained at least inside the low crosslinked polymer fine particles made of a crosslinked polymer with a low crosslinking density. However, a precursor of porous cross-dodecpolymer fine particles with an expanded particle size can be obtained, and a final target product with a large specific surface area can be obtained.

低架橋高分子微粒子中に単量体混合物と孔調整剤を吸収
させる処理は、低架橋高分子微粒子の分散液、殊に乳化
重合液としての水分散液に、単量体混合物と孔調整剤を
加えて撹拌する方式が一般である。この方式によれば、
低架橋高分子微粒子の調製液を利用して共重合処理を一
連に行える利点がある。ただし、これに限定するもので
な(、結果的に該吸収状態が形成される方式であればよ
い。
The process of absorbing the monomer mixture and the pore adjuster into the low crosslinked polymer fine particles involves adding the monomer mixture and the pore adjuster to a dispersion of the low crosslinked polymer fine particles, especially an aqueous dispersion as an emulsion polymerization liquid. A common method is to add and stir. According to this method,
This method has the advantage that a series of copolymerization treatments can be performed using a preparation solution of low crosslinked polymer fine particles. However, the present invention is not limited to this, and any method may be used as long as the absorption state is formed as a result.

前記単量体混合物と孔調整剤とはこれらを混合して加え
てもよいし、別途に加えてもよ(、これらを併用しても
よい。従って、前記単量体混合物と孔調整剤とは低架橋
高分子微粒子中において混合一体化した状態で存在して
いてもよいし、そうでなくてもよい。また、吸収処理に
際しては、吸収速度をあげるために加熱してもよいし、
アセトンやエタノールなどの水溶性溶剤を加えてもよい
The monomer mixture and the pore regulator may be added as a mixture, or may be added separately (or may be added in combination. Therefore, the monomer mixture and the pore regulator may be added separately (or may be added in combination). may or may not be present in a mixed and integrated state in the low crosslinked polymer fine particles.Furthermore, during the absorption treatment, heating may be performed to increase the absorption rate,
A water-soluble solvent such as acetone or ethanol may also be added.

さらに、単量体混合物と孔調整剤をあらかじめ乳化して
加えてもよい。この乳化物として加える方式はその吸収
性が良好で特に好ましい。なお、溶剤を用いる方式にあ
ってはその溶剤を重合開始前に除去しておくことが好ま
しい。
Furthermore, the monomer mixture and the pore regulator may be emulsified in advance and added. This method of adding as an emulsion is particularly preferable because of its good absorbability. In addition, in a method using a solvent, it is preferable to remove the solvent before starting the polymerization.

前記した多孔性架橋重合体微粒子の前駆体を得るための
処理における単量体混合物の使用量は、低架橋高分子微
粒子100重量部あたり100〜3000重量部が適当
である。その使用量が100重量部未満であると得られ
る均一粒径微粒子の耐溶剤性が不充分となり、3000
重量部を超えると低架橋高分子微粒子外での重合が進行
しやすくなって好ましくない。
The appropriate amount of the monomer mixture used in the treatment for obtaining the precursor of the porous crosslinked polymer fine particles described above is 100 to 3000 parts by weight per 100 parts by weight of the low crosslinked polymer fine particles. If the amount used is less than 100 parts by weight, the resulting fine particles of uniform particle size will have insufficient solvent resistance.
If the amount exceeds 1 part by weight, polymerization outside the low-crosslinked polymer particles tends to proceed, which is undesirable.

その単量体混合物における非架橋性単量体と架橋性単量
体との混合割合は、非架橋性単量体50〜90重量%、
架橋性単量体50〜IO重量%が適当である。架橋性単
量体の混合割合が50重量%を超えるとその架橋重合体
の架橋密度が過多となり、10重量%未満であると架橋
密度が過少となって本発明の目的が達成されにくくなる
The mixing ratio of the non-crosslinkable monomer and the crosslinkable monomer in the monomer mixture is 50 to 90% by weight of the non-crosslinkable monomer;
50 to IO weight percent of crosslinking monomer is suitable. If the mixing ratio of the crosslinkable monomer exceeds 50% by weight, the crosslinking density of the crosslinked polymer will be too high, and if it is less than 10% by weight, the crosslinking density will be too low, making it difficult to achieve the object of the present invention.

本発明において低架橋高分子微粒子、あるいは多孔性架
橋重合体微粒子の前駆体を得るための単量体混合物にお
ける単量体としては、そのものないしその重合体が水に
難溶性のものないし溶解しないものが好ましく用いられ
る。水に溶解しやすいものであると、水中で重合が進行
してシード粒子等の粒径が成長しにくかったり、新たな
粒子ができやす(なったり、あるいは低架橋高分子微粒
子中に吸収されにくかったりして好ましくない。
In the present invention, monomers in the monomer mixture for obtaining precursors of low crosslinked polymer fine particles or porous crosslinked polymer fine particles include those which themselves or their polymers are poorly soluble or insoluble in water. is preferably used. If it is easily dissolved in water, polymerization will progress in water, making it difficult for the particle size of seed particles to grow, creating new particles (or forming them), or making them difficult to absorb into low-crosslinked polymer fine particles. This is not desirable.

好ましく用いうる非架橋性単量体としては、例えばスチ
レン、メチルスチレン、エチルスチレンのようなスチレ
ン系単量体、アクリル酸ブチル、メタクリル酸ブチル、
アクリル酸2−エチルヘキシル、メタクリル酸2−エチ
ルヘキシルのような炭素数が4以上のアルキル基を有す
るアクリル酸、メタクリル酸のエステル系単量体などを
あげることができる。
Examples of non-crosslinkable monomers that can be preferably used include styrene monomers such as styrene, methylstyrene, and ethylstyrene, butyl acrylate, butyl methacrylate,
Examples include acrylic acid and methacrylic acid ester monomers having an alkyl group having 4 or more carbon atoms, such as 2-ethylhexyl acrylate and 2-ethylhexyl methacrylate.

好ましく用いうる架橋性単量体としては、例えばトリメ
ヂロールプロパントリメタクリレート、ジエチレングリ
コールジメタクリレート、ジビニルベンゼンのようなエ
チレン性二重結合を2以上有する単量体などをあげるこ
とができる。
Examples of crosslinkable monomers that can be preferably used include monomers having two or more ethylenic double bonds, such as trimedylolpropane trimethacrylate, diethylene glycol dimethacrylate, and divinylbenzene.

非架橋性単量体、架橋性単量体の使用は1種のみであっ
てもよいし、2種以上であってもよい。
The number of non-crosslinkable monomers and crosslinkable monomers may be one, or two or more.

目的物の用途に応じて決定される。例えば、厚み間隙調
整材、クロマトグラフィ用担体として使用する場合には
耐圧性が要求されるので、重合体のガラス転移点が高い
スチレン系単量体を非架橋性単量体として用い、水への
溶解性の低いジビニルベンゼンを架橋性単量体として用
いることが好ましい。なお、スチレン系単量体は共重合
処理において凝集することなく安定に処理を進めうる利
点なども有している。
Determined according to the intended use of the object. For example, when used as a thickness gap adjustment material or a carrier for chromatography, pressure resistance is required. It is preferable to use divinylbenzene, which has low solubility, as the crosslinking monomer. The styrene monomer also has the advantage that the copolymerization process can proceed stably without agglomeration.

孔調整剤の使用量は、低架橋高分子微粒子100重量部
あたり100〜6000重量部が適当である。その使用
量が100重量部未満であると形成される孔が過小とな
って、得られる均一粒径微粒子がその多孔性としての特
性に乏しいものとなり、6000重量部を超えると用い
た低架橋高分子微粒子以外に新たな粒子が生成しやすく
なって好ましくない孔調整剤としては、後続の抽出処理
過程で溶剤可溶物質として除去可能なものが用いられる
。一般には、水に対する溶解度が室温において1重量%
以下(水不溶性)であり、用いる非架橋性4L量体又は
/及び架橋性単量体に可溶のものが用いられる。その溶
解度が1重量%を超えるものでは、低架橋高分子微粒子
中に吸収されずに水媒中に残存して多孔性の形成に寄与
しなかったり、反応系の安定を阻害したりする場合があ
る。
The appropriate amount of the pore regulator used is 100 to 6,000 parts by weight per 100 parts by weight of the low crosslinked polymer fine particles. If the amount used is less than 100 parts by weight, the pores formed will be too small and the obtained uniform particle size fine particles will have poor porosity properties.If the amount used exceeds 6000 parts by weight, the low crosslinking As the pore adjusting agent, which is undesirable because it tends to generate new particles in addition to molecular fine particles, there is used one that can be removed as a solvent-soluble substance in the subsequent extraction process. Generally, the solubility in water is 1% by weight at room temperature.
(water-insoluble) and soluble in the non-crosslinkable 4L-mer and/or crosslinkable monomer used. If the solubility exceeds 1% by weight, it may not be absorbed into the low-crosslinked polymer fine particles and may remain in the water medium, not contributing to the formation of porosity, or inhibiting the stability of the reaction system. be.

孔調整剤の具体例としては、ヘキサン、ヘプタン、イソ
オクタン等の飽和炭化水素類、トルエン、キシレン、エ
チルベンゼン等の芳香族炭化水素類、n−ヘキシルアル
コール、n−オクチルアルコール、2−エチルヘキシル
アルコール等のアルコール類、ポリスチレン、流動パラ
フィン等の線状高分子類などをあげることができる。孔
調整剤は1種のみを用いてもよいし、2種以上を併用し
てもよい。
Specific examples of pore control agents include saturated hydrocarbons such as hexane, heptane, and isooctane, aromatic hydrocarbons such as toluene, xylene, and ethylbenzene, and n-hexyl alcohol, n-octyl alcohol, and 2-ethylhexyl alcohol. Examples include linear polymers such as alcohols, polystyrene, and liquid paraffin. Only one type of pore adjusting agent may be used, or two or more types may be used in combination.

なお、本発明においては用いた非架橋性単量体の重合体
に対する良溶剤を孔調整剤として用いると、得られる均
一粒径微粒子における孔径が小さく、貧溶媒を孔調整剤
として用いるとその孔径が大きい傾向にある。従って、
孔調整剤の種類によっても多孔性としての特性を制御す
ることができる。
In addition, in the present invention, when a good solvent for the polymer of the non-crosslinkable monomer used is used as a pore control agent, the pore size in the obtained uniform particle size fine particles is small, and when a poor solvent is used as a pore control agent, the pore size becomes small. tends to be large. Therefore,
The porosity characteristics can also be controlled by the type of pore control agent.

多孔性架橋重合体微粒子の前駆体を得るための共重合処
理は、適宜な媒体を用いて通例の重合処理条件で行うこ
とができる。水媒系による場合、重合開始剤としては通
常の油溶性のラジカル系開始剤が好ましく用いられる。
The copolymerization treatment for obtaining a precursor of porous crosslinked polymer fine particles can be carried out using an appropriate medium under usual polymerization treatment conditions. When using an aqueous medium, a common oil-soluble radical initiator is preferably used as the polymerization initiator.

水溶性のものであると新たな粒子が生成するときがあっ
て不都合を生じる場合がある。なお、油溶性の重合開始
剤は単量体混合物に0.1〜5重呈%溶解させて用いる
方式が、低架橋高分子微粒子中での重合を円滑に行わし
めるうえで望ましい。
If it is water-soluble, new particles may be generated, which may cause problems. Note that it is preferable to use the oil-soluble polymerization initiator dissolved in the monomer mixture at a concentration of 0.1 to 5% in order to smoothly carry out the polymerization in the low-crosslinked polymer fine particles.

なお、共重合処理に際しては乳化剤、重合安定剤を用い
て粒子を安定化せしめることが望ましい。
Incidentally, during the copolymerization treatment, it is desirable to stabilize the particles using an emulsifier or a polymerization stabilizer.

その使用量は多孔性架橋重合体微粒子の前駆体以外に新
たな粒子が生成しない量とすることが適当である。
It is appropriate that the amount used is such that no new particles are generated other than the precursor of the porous crosslinked polymer fine particles.

上記のようにして共重合処理することにより、低架橋高
分子微粒子の内部に孔調整剤と、高架橋密度の架橋重合
体を有する構造の、粒径が2〜30μm1好ましくは2
〜20μmで、粒径分布の標準偏差が1 am以下、好
ましくは0.5u…以下であり、一般に真球状性に優れ
る多孔性架橋重合体微粒子の前駆体が得られる。なお、
多孔性架橋重合体微粒子の前駆体中における高架橋密度
の架橋重合体は前駆体と化学的に結合していてもよいし
、シ゛ていな(てbよい。また、多孔性架橋重合体微粒
子の前駆体の表面に高架橋密度の架橋重合体を有してい
ても、よい。
By carrying out the copolymerization treatment as described above, the particle size of 2 to 30 μm 1, preferably 2 μm, of a structure having a pore control agent and a crosslinked polymer with a high crosslink density inside the low crosslinked polymer fine particles is obtained.
~20 μm, the standard deviation of the particle size distribution is 1 am or less, preferably 0.5 μm or less, and a precursor of porous crosslinked polymer fine particles having generally excellent sphericity can be obtained. In addition,
The crosslinked polymer having a high crosslinking density in the precursor of porous crosslinked polymer fine particles may be chemically bonded to the precursor, or may be in a solid state. It is also possible to have a crosslinked polymer with a high crosslinking density on the surface of the body.

本発明方法において前記の工程で得られた多孔性架橋重
合体微粒子の前駆体は次に、溶剤可溶物質の抽出工程に
おかれる(B工程)。これにより、多孔性が付与された
架橋重合体微粒子からなる目的物としての均一粒径微粒
子が得られる。この均一粒径微粒子は一般に機械的強度
に侵れている。
In the method of the present invention, the precursor of the porous crosslinked polymer fine particles obtained in the above step is then subjected to a step of extracting a solvent-soluble substance (step B). As a result, uniform particle size particles can be obtained, which are made of crosslinked polymer particles imparted with porosity. These uniformly sized fine particles generally have poor mechanical strength.

溶剤可溶物質の抽出は、例えば次の方式により行うこと
ができる。
Extraction of solvent-soluble substances can be performed, for example, by the following method.

すなわち、上記へ工程で得られた多孔性架橋重合体微粒
子の前駆体を含む水分散液における分散媒としての水を
、より極性の低い媒体へと徐々に置換して、使用した孔
調整剤とSP値(溶解性パラメータ)が類似した媒体に
最終的に置換し、この媒体で洗浄を繰り返して多孔性架
橋重合体微粒子の前駆体中の溶剤可溶物質を抽出する。
That is, the water as a dispersion medium in the aqueous dispersion containing the precursor of porous crosslinked polymer fine particles obtained in the above step is gradually replaced with a less polar medium, and the pore control agent used is Finally, the medium is replaced with a medium having a similar SP value (solubility parameter), and washing is repeated with this medium to extract the solvent-soluble substances in the precursor of the porous crosslinked polymer fine particles.

置換媒体としては、究極には微粒子中より除去されるこ
とが望まれるので、揮発11の低沸点溶剤が一般に好ま
しく用いられる。その代表例としてはメタノール、エタ
ノールのようなアルコール類、アセトンのようなケトン
類、その他アセトニトリル、クロロホルム、テトラヒド
ロフラン、ベンゼン、トルエン、キシレン、エチルベン
ゼンなどをあげることができる。置換媒体は、水との温
媒体あるいは2種以上の溶剤を用いた温媒体などであっ
てもよい。
As the substitution medium, it is generally desired to use a low boiling point solvent with a volatility of 11 because it is ultimately desired to remove it from the fine particles. Typical examples include alcohols such as methanol and ethanol, ketones such as acetone, acetonitrile, chloroform, tetrahydrofuran, benzene, toluene, xylene, and ethylbenzene. The displacement medium may be a hot medium with water or a hot medium using two or more types of solvents.

抽出処理は、多孔性架橋重合体微粒子の前駆体を置換媒
体中に分散させて処理する方式が効率的である場合もあ
る。その場合には、例えば超音波による分散方式を適用
することも可能である。
In some cases, it is efficient to carry out the extraction process by dispersing the precursor of the porous crosslinked polymer particles in a replacement medium. In that case, it is also possible to apply a dispersion method using ultrasonic waves, for example.

抽出処理により除去される成分は、孔調整剤が主なもの
であると本発明者らは考えている。
The present inventors believe that the main component removed by the extraction process is the pore control agent.

なお、抽出処理後の多孔性架橋重合体微粒子中に残存す
る置換媒体の除去は、例えば減圧乾燥方式、スプレード
ライヤー等による方式などで容易に行うことができる。
Note that the substitution medium remaining in the porous crosslinked polymer fine particles after the extraction treatment can be easily removed by, for example, a vacuum drying method, a spray dryer, or the like.

上記のようにして、粒径が2〜30μm1好ましくは2
〜20νmで、粒径分布の標準偏差が1μm以下、好ま
しくは0.5μn+以下で耐溶剤性に優れ、かつ多孔性
の均一粒径微粒子が得られる。この均一粒径微粒子は一
般に、低架橋密度の架橋重合体の内部に高架橋密度の架
橋重合体を含む構造の架橋重合体微粒子よりなり、その
比表面積は30n?/g以上、好マシクハ50〜100
011r/g1ヨリ好マシ<ハ100〜500nf /
gで、真球状性、機械的強度に優れている。
As described above, the particle size is 2 to 30 μm, preferably 2
~20 νm, the standard deviation of particle size distribution is 1 μm or less, preferably 0.5 μm or less, and excellent solvent resistance and porous uniform particle size can be obtained. These uniform particle size particles generally consist of crosslinked polymer particles having a structure containing a crosslinked polymer with a high crosslinking density inside a crosslinked polymer with a low crosslinking density, and have a specific surface area of 30n? /g or more, good mass 50-100
011r/g1 better than 100~500nf/
g, and has excellent sphericity and mechanical strength.

なお、前記均一粒径微粒子をイオン交換基等の官能基を
有するものとして、イオン交換樹脂等とすることも可能
である。
In addition, it is also possible to use an ion exchange resin or the like as the uniform particle size fine particles having a functional group such as an ion exchange group.

発明の効果 本発明によれば、粒径の均一性に優れる低架橋高分子微
粒子を架橋性単量体の含有濃度が高い単量体混合物と孔
調整剤とで処理して多孔性架橋重合体微粒子の前駆体と
し、次にこの前駆体より溶剤可溶物質を除去する方法と
したので、粒径の均一11に優れる均一粒径微粒子を分
級処理することなく実用途に供しつる状態で、高収率に
得ることができると共に、得られた均一粒径微粒子は優
れた耐溶剤性と、多孔性に基づく大きい比表面積を有し
ている。
Effects of the Invention According to the present invention, a porous crosslinked polymer is produced by treating low crosslinked polymer fine particles with excellent particle size uniformity with a monomer mixture containing a high concentration of crosslinkable monomer and a pore control agent. Since the method uses a precursor of fine particles and then removes solvent-soluble substances from this precursor, the fine particles with a uniform particle size, which is excellent in particle size uniformity 11, can be used for practical purposes without classification, and can be In addition to being able to obtain a high yield, the obtained uniformly sized fine particles have excellent solvent resistance and a large specific surface area due to their porosity.

実施例 参考例 ラウリル硫酸ナトリウム0.6部(M量部、以下同様)
を溶解させたイオン交換水70部に、ジビニルベンゼン
を0.25%(重量%、以下同様)含むスチレン30部
を分散させた後これを撹拌しながら窒素気流下で70℃
に昇温させ、ついで過硫酸カリウム0.03部を溶解さ
せたイオン交換水5部を加え、70°Cに8時間保持し
て初期シード粒子としての低架橋密度の架橋重合体の水
分散液を得た。この低架橋密度の架橋重合体の粒径は0
.043μm1粒径分布の標準偏差は0.01部m以下
であった。
Examples Reference Examples Sodium lauryl sulfate 0.6 part (M part, same below)
After dispersing 30 parts of styrene containing 0.25% (wt%) of divinylbenzene in 70 parts of ion-exchanged water, the mixture was stirred and heated at 70°C under a nitrogen stream.
Then, 5 parts of ion-exchanged water in which 0.03 part of potassium persulfate was dissolved was added, and the mixture was kept at 70°C for 8 hours to form an aqueous dispersion of a crosslinked polymer with a low crosslink density as initial seed particles. I got it. The particle size of this crosslinked polymer with low crosslinking density is 0
.. The standard deviation of the particle size distribution was 0.01 part m or less.

次に、得られた初期シード粒子の水分散液10部とイオ
ン交換水65部を混合して70℃に昇温したのちジビニ
ルベンゼンを0.25%含むスチレン30部を加えて1
時間撹拌し、ついで過硫酸カリウム0.03部を溶解さ
せたイオン交換水5部を加えて70℃に8時間保持し、
粒径が0.149uIlx粒径分布の標準偏差が0.0
12uI11の2次シード粒子の水分散液を得た。そし
て、さらに前記に準じて2次シード粒子より3次シード
粒子を、3次シード粒子より4次シード粒子を、4次シ
ード粒子より5次シード粒子を表に示す組成で順次調製
した。  ゛なお、5次のシード粒子のスチレンに対す
る膨潤度を測定すると15であった。
Next, 10 parts of the aqueous dispersion of the obtained initial seed particles and 65 parts of ion-exchanged water were mixed and heated to 70°C, and then 30 parts of styrene containing 0.25% divinylbenzene was added.
Stir for an hour, then add 5 parts of ion-exchanged water in which 0.03 part of potassium persulfate is dissolved and maintain at 70°C for 8 hours.
Particle size is 0.149uIlx Standard deviation of particle size distribution is 0.0
An aqueous dispersion of secondary seed particles of 12 uI11 was obtained. Further, according to the above procedure, tertiary seed particles were prepared from secondary seed particles, quaternary seed particles were prepared from tertiary seed particles, and 5th seed particles were prepared from quaternary seed particles in the compositions shown in the table.゛The swelling degree of the fifth-order seed particles against styrene was measured to be 15.

実施例1 参考例で得た4次シード粒子を低架橋高分子微粒子とし
て用い、その調製液としての水分散液10部にイオン交
換水120部とケン化度88%のポリビニルアルコール
の10重量%水溶18部を加えて均一に撹拌したのち、
スチレン65%、ジビニルベンゼン35%の単量体混合
物48部と11−ヘキシルアルコール30部の混液に過
酸化ベンゾイル0.5部を溶解させてこれにイオン交換
水200部、ラウリル硫酸ナトリウム0.018部を混
合し超音波処理下に乳化液としたものを加え、撹拌しな
がら窒素気流下60℃で2時間、続いて80℃に昇温し
て6時間共重合処理し、多孔性架橋重合体微粒子の前駆
体を含む水分散液を得た。この前駆体の粒径は3.07
部ms粒径分布の標準偏差は0.18部mであった。
Example 1 The quaternary seed particles obtained in Reference Example were used as low-crosslinked polymer fine particles, and 120 parts of ion-exchanged water and 10% by weight of polyvinyl alcohol with a saponification degree of 88% were added to 10 parts of an aqueous dispersion as a preparation liquid. After adding 18 parts of water solution and stirring uniformly,
Dissolve 0.5 part of benzoyl peroxide in a mixture of 48 parts of a monomer mixture of 65% styrene and 35% divinylbenzene and 30 parts of 11-hexyl alcohol, add 200 parts of ion-exchanged water, and 0.018 parts of sodium lauryl sulfate. The mixture was mixed with an emulsified liquid under ultrasonic treatment, and stirred at 60°C under a nitrogen stream for 2 hours, then heated to 80°C and copolymerized for 6 hours to form a porous crosslinked polymer. An aqueous dispersion containing a precursor of fine particles was obtained. The particle size of this precursor is 3.07
The standard deviation of the particle size distribution was 0.18 parts m.

次に、この水分散液における分散媒を水よりメタノール
、エタノール、アセトン、アセトン/トルエン(1/l
)混溶剤、トルエンへと順次置換してトルエン分散液と
し、その沸点温度で40時間加温した。その後、トルエ
ン分散液より微粒子を分離してさらにトルエンで洗浄し
、ついで前記とは逆の順序で分散媒を置換して水分散液
とした。
Next, the dispersion medium in this aqueous dispersion was changed from water to methanol, ethanol, acetone, acetone/toluene (1/l
) and toluene to prepare a toluene dispersion, which was then heated at its boiling point temperature for 40 hours. Thereafter, fine particles were separated from the toluene dispersion and further washed with toluene, and then the dispersion medium was replaced in the reverse order to prepare an aqueous dispersion.

得られた水分散液より抽出処理後の多孔性架橋重合体微
粒子を分離し、これをスプレードライヤーで乾燥処理し
た。
Porous crosslinked polymer fine particles after the extraction treatment were separated from the obtained aqueous dispersion, and dried with a spray dryer.

得られた多孔性架橋重合体微粒子としての均一粒径微粒
子は、その粒径が3.07μm1粒径分布の標準偏差が
0.18μmであり、前記した前駆体としての場合と変
わりはなかった。また、抽出処理後における微粒子の重
量減少、すなわち多孔性架橋重合体微粒子の前駆体に対
し、これを抽出処理して得た多孔性架橋重合体微粒子と
しての均一粒径微粒子の重量減少分は37%であった。
The obtained porous crosslinked polymer fine particles having a uniform particle size had a particle size of 3.07 μm and a standard deviation of the particle size distribution of 0.18 μm, which was the same as that of the precursor described above. In addition, the weight loss of the fine particles after the extraction treatment, that is, the weight loss of the uniform-sized fine particles as the porous crosslinked polymer fine particles obtained by the extraction treatment with respect to the precursor of the porous crosslinked polymer fine particles is 37 %Met.

さらに、B、E。Furthermore, B, E.

T法(窒素ガス吸着)により求めた比表面積は、200
.5J/gであった。なお、走査型電子顕微鏡による観
察の結果、多孔性であることのほかに、真球状性に優れ
ることもわかった。
The specific surface area determined by the T method (nitrogen gas adsorption) is 200
.. It was 5 J/g. Furthermore, as a result of observation using a scanning electron microscope, it was found that in addition to being porous, it also had excellent sphericity.

実施例2 参考例で得た5次シード粒子を低架橋高分子微粒子とし
て用い、その調製液としての水分散液10部にイオン交
換水120部と上記したポリビニルアルコール水溶液5
部を加えて均一に撹拌したのち、スチレン75重量%、
ジビニルベンゼン25重量%の単量体混合物60部とn
−ヘキシルアルコール20部とトルエン20部との混液
に過酸化ベンゾイル0.6部を溶解させたものを加え、
撹拌しながら窒素気流下60℃で4時間、続いて80℃
に昇温しで5時間共重合処理し、多孔性架橋重合体微粒
子の前駆体を含む水分散液を得た。この前駆体の粒径は
7.519m1粒径分布の標準偏差は0.25μmであ
った。
Example 2 The 5th seed particles obtained in Reference Example were used as low-crosslinked polymer fine particles, and 120 parts of ion-exchanged water and the above polyvinyl alcohol aqueous solution 5 were added to 10 parts of an aqueous dispersion as a preparation liquid.
75% by weight of styrene,
60 parts of a monomer mixture containing 25% by weight of divinylbenzene and n
- Adding 0.6 part of benzoyl peroxide dissolved in a mixture of 20 parts of hexyl alcohol and 20 parts of toluene,
4 hours at 60°C under a nitrogen stream with stirring, followed by 80°C.
The mixture was copolymerized for 5 hours at an elevated temperature to obtain an aqueous dispersion containing a precursor of porous crosslinked polymer fine particles. The particle size of this precursor was 7.519 ml, and the standard deviation of the particle size distribution was 0.25 μm.

次に、実施例1と同様に抽出処理し、乾燥処理して多孔
性架橋重合体微粒子を得た。
Next, extraction treatment and drying treatment were carried out in the same manner as in Example 1 to obtain porous crosslinked polymer fine particles.

得られた多孔性架橋重合体微粒子としての均一粒径微粒
子は、その粒径が7.51部ms粒径分布の標準偏差が
0.25μmnであり、前記した前駆体としての場合と
ほとんど変わりはなかった。また、抽出処理後における
微粒子の重量減少分は38%であった。
The uniform particle size fine particles as porous crosslinked polymer fine particles obtained have a particle size of 7.51 parts ms and a standard deviation of particle size distribution of 0.25 μmn, which is almost different from the case of the precursor described above. There wasn't. Furthermore, the weight reduction of the fine particles after the extraction treatment was 38%.

さらに、B、E、T法(窒素ガス吸着)により求めた比
表面積は、150.511?/gであった。なお、走査
型電子顕微鏡による観察の結果、多孔性であることのほ
かに、真球状性に優れることもわかった。
Furthermore, the specific surface area determined by the B, E, T method (nitrogen gas adsorption) is 150.511? /g. Furthermore, as a result of observation using a scanning electron microscope, it was found that in addition to being porous, it also had excellent sphericity.

Claims (1)

【特許請求の範囲】 1、(A)シード粒子の水分散液に水、非架橋性単量体
99〜99.95重量%と架橋性単量体1〜0.05重
量%からなる単量体混合物を加えて重合処理し、得られ
た粒子を次のシード粒子として用いてさらに径を成長さ
せる操作を、非架橋性単量体99〜99.95重量%と
架橋性単量体1〜0.05重量%からなる単量体混合物
を水媒中で処理して得た低架橋密度の架橋重合体を初期
のシード粒子として3回以上繰り返して得た、粒径が0
.5〜10μmで粒径分布の標準偏差が0.1μm以下
の低架橋高分子微粒子中に、非架橋性単量体50〜90
重量%と架橋性単量体50〜10重量%からなる単量体
混合物及び孔調整剤を吸収させ、水媒中でこれを共重合
処理して多孔性架橋重合体微粒子の前駆体を得る工程、 (B)前記工程で得た多孔性架橋重合体微 粒子の前駆体より溶剤可溶物質を抽出する工程 からなる粒径が2〜30μmで粒径分布の標準偏差が1
μm以下であり、耐溶剤性でかつ多孔性の均一粒径微粒
子の製造方法。 2、乳化剤を用いる特許請求の範囲第1項記載の方法。 3、孔調整剤が水に不溶性で単量体混合物ないしその構
成単量体に可溶のものである特許請求の範囲第1項記載
の方法。 4、低架橋高分子微粒子100重量部あたり架橋性単量
体を50〜10重量%含む単量体混合物を100〜30
00重量部、孔調整剤を100〜6000重量部用いる
特許請求の範囲第1項記載の方法。 5、架橋性単量体を50〜10重量%含む単量体混合物
が重合開始剤を含むものである特許請求の範囲第1項記
載の方法。 6、架橋性単量体を50〜10重量%含む単量体混合物
及び孔調整剤を乳化状態で低架橋高分子微粒子の水分散
液に加える特許請求の範囲第1項記載の方法。
[Scope of Claims] 1. (A) Water in the aqueous dispersion of seed particles, monomers consisting of 99 to 99.95% by weight of non-crosslinking monomers and 1 to 0.05% by weight of crosslinking monomers. A mixture of 99 to 99.95% by weight of non-crosslinkable monomers and 1 to 1 to 100% of crosslinkable monomers is added to polymerize the particles, and the obtained particles are used as the next seed particles to further grow the diameter. A crosslinked polymer with a low crosslinking density obtained by treating a monomer mixture consisting of 0.05% by weight in an aqueous medium was used as an initial seed particle three times or more, and the particle size was 0.
.. 5 to 90% of non-crosslinked monomers are contained in low crosslinked polymer fine particles of 5 to 10 μm and a standard deviation of particle size distribution of 0.1 μm or less.
A step of absorbing a monomer mixture consisting of 50 to 10% by weight of a crosslinkable monomer and a pore control agent, and copolymerizing the same in an aqueous medium to obtain a precursor of porous crosslinked polymer fine particles. (B) consists of a step of extracting a solvent-soluble substance from the precursor of porous crosslinked polymer fine particles obtained in the above step.The particle size is 2 to 30 μm and the standard deviation of the particle size distribution is 1.
A method for producing fine particles having a uniform particle size of .mu.m or less, solvent resistance, and porosity. 2. The method according to claim 1, which uses an emulsifier. 3. The method according to claim 1, wherein the pore regulating agent is insoluble in water and soluble in the monomer mixture or its constituent monomers. 4. 100 to 30% of a monomer mixture containing 50 to 10% by weight of a crosslinkable monomer per 100 parts by weight of low crosslinked polymer fine particles
2. The method according to claim 1, wherein the pore-adjusting agent is used in an amount of 100 to 6,000 parts by weight. 5. The method according to claim 1, wherein the monomer mixture containing 50 to 10% by weight of the crosslinkable monomer contains a polymerization initiator. 6. The method according to claim 1, wherein a monomer mixture containing 50 to 10% by weight of a crosslinkable monomer and a pore regulator are added in an emulsified state to an aqueous dispersion of low crosslinked polymer fine particles.
JP7224486A 1986-03-29 1986-03-29 Production of solvent-resistant porous fine particle of uniform particle diameter Pending JPS62227903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7224486A JPS62227903A (en) 1986-03-29 1986-03-29 Production of solvent-resistant porous fine particle of uniform particle diameter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7224486A JPS62227903A (en) 1986-03-29 1986-03-29 Production of solvent-resistant porous fine particle of uniform particle diameter

Publications (1)

Publication Number Publication Date
JPS62227903A true JPS62227903A (en) 1987-10-06

Family

ID=13483683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7224486A Pending JPS62227903A (en) 1986-03-29 1986-03-29 Production of solvent-resistant porous fine particle of uniform particle diameter

Country Status (1)

Country Link
JP (1) JPS62227903A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001002716A (en) * 1999-04-23 2001-01-09 Tosoh Corp Singly particle diameter-dispersed particle, method for producing the same and use by using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001002716A (en) * 1999-04-23 2001-01-09 Tosoh Corp Singly particle diameter-dispersed particle, method for producing the same and use by using the same

Similar Documents

Publication Publication Date Title
KR0171604B1 (en) Process of making controlled, uniform-sized particles in the 1 to 50 micrometer range
Wang et al. Fine control of the porous structure and chromatographic properties of monodisperse macroporous poly (styrene‐co‐divinylbenzene) beads prepared using polymer porogens
Tuncel et al. Electron microscopic observation of uniform macroporous particles. I. Effect of seed latex type and diluent
JP4049419B2 (en) Use of substantially monodisperse polymer particles as polymerized seeds, method for producing polymer particles and substantially monodisperse particulate polymer material
JP2009041038A (en) Nanoscale polymerized hydrocarbon particle and methods of making and using such particle
JPH07504223A (en) Preparation of surface functional polymer particles
KR101977195B1 (en) Method for Preparing Porous Polymer Composite Particles
JPS6379065A (en) Filler for liquid chromatography
EP1242490A1 (en) Single stage seed polymerisation for the production of large polymer particles with a narrow size distribution
WO2005090413A1 (en) Storage stable polymer-oligomer particles and their use in seed polymerisation
JP2002542318A (en) Method for producing monodisperse polymer particles
JPS62227903A (en) Production of solvent-resistant porous fine particle of uniform particle diameter
JPS6372715A (en) Production of solvent-resistant, porous fine particle of uniform-particle diameter
KR100729173B1 (en) Monodisperse seed particles and preparation method of monodisperse crosslinked polymer bead using it
JPS62227902A (en) Production of solvent-resistant porous fine particle of uniform particle diameter
JPH0572923B2 (en)
KR100546817B1 (en) Method of Preparing Monodisperse Functional Polymer Particle
CN111533839A (en) Preparation method of porous polymer microspheres
Blondeau et al. Ultrasound suspension polymerization method for preparation of 2-hydroxyethylmethacrylate macroporous copolymers
JPS6372713A (en) Production of solvent-resistant fine particle of uniform particle diameter
JPS62223202A (en) Production of solvent-resistant porous fine particle of uniform particle diameter
JPS62223201A (en) Solvent-resistant porous fine particle of uniform particle diameter and its production
JPS62227901A (en) Solvent-resistant porous fine particle of uniform particle diameter and its production
JPS6379066A (en) Filler for gas chromatography
KR100658446B1 (en) Method of producing polymer beads by emulsion polymerization