JPS6372715A - Production of solvent-resistant, porous fine particle of uniform-particle diameter - Google Patents
Production of solvent-resistant, porous fine particle of uniform-particle diameterInfo
- Publication number
- JPS6372715A JPS6372715A JP21611286A JP21611286A JPS6372715A JP S6372715 A JPS6372715 A JP S6372715A JP 21611286 A JP21611286 A JP 21611286A JP 21611286 A JP21611286 A JP 21611286A JP S6372715 A JPS6372715 A JP S6372715A
- Authority
- JP
- Japan
- Prior art keywords
- fine particles
- particles
- crosslinked polymer
- weight
- particle size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002245 particle Substances 0.000 title claims abstract description 159
- 239000010419 fine particle Substances 0.000 title claims abstract description 120
- 239000002904 solvent Substances 0.000 title claims abstract description 20
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000000178 monomer Substances 0.000 claims abstract description 107
- 239000000203 mixture Substances 0.000 claims abstract description 66
- 239000006185 dispersion Substances 0.000 claims abstract description 47
- 238000000034 method Methods 0.000 claims abstract description 34
- 239000002243 precursor Substances 0.000 claims abstract description 34
- 238000009826 distribution Methods 0.000 claims abstract description 29
- 239000011148 porous material Substances 0.000 claims abstract description 25
- 238000004132 cross linking Methods 0.000 claims abstract description 23
- 239000012736 aqueous medium Substances 0.000 claims abstract description 8
- 229920006037 cross link polymer Polymers 0.000 claims description 113
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 33
- 239000003795 chemical substances by application Substances 0.000 claims description 24
- 239000003505 polymerization initiator Substances 0.000 claims description 6
- 239000003995 emulsifying agent Substances 0.000 claims description 3
- 239000000470 constituent Substances 0.000 claims description 2
- 230000001105 regulatory effect Effects 0.000 claims 1
- 238000006116 polymerization reaction Methods 0.000 abstract description 14
- 239000000126 substance Substances 0.000 abstract description 12
- 239000003607 modifier Substances 0.000 abstract 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 31
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 24
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 20
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 18
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 16
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 14
- 239000000839 emulsion Substances 0.000 description 14
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 14
- 238000000605 extraction Methods 0.000 description 12
- 238000003756 stirring Methods 0.000 description 12
- 239000002609 medium Substances 0.000 description 10
- 230000008961 swelling Effects 0.000 description 10
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- 239000004342 Benzoyl peroxide Substances 0.000 description 7
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 7
- 239000004372 Polyvinyl alcohol Substances 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 7
- 235000019400 benzoyl peroxide Nutrition 0.000 description 7
- 229920002451 polyvinyl alcohol Polymers 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 238000007334 copolymerization reaction Methods 0.000 description 6
- 238000009210 therapy by ultrasound Methods 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 4
- 238000004587 chromatography analysis Methods 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 238000002525 ultrasonication Methods 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 229940124532 absorption promoter Drugs 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000013585 weight reducing agent Substances 0.000 description 3
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- XFCMNSHQOZQILR-UHFFFAOYSA-N 2-[2-(2-methylprop-2-enoyloxy)ethoxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCCOC(=O)C(C)=C XFCMNSHQOZQILR-UHFFFAOYSA-N 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 239000007900 aqueous suspension Substances 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 1
- WDQMWEYDKDCEHT-UHFFFAOYSA-N 2-ethylhexyl 2-methylprop-2-enoate Chemical compound CCCCC(CC)COC(=O)C(C)=C WDQMWEYDKDCEHT-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 1
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- OKKRPWIIYQTPQF-UHFFFAOYSA-N Trimethylolpropane trimethacrylate Chemical compound CC(=C)C(=O)OCC(CC)(COC(=O)C(C)=C)COC(=O)C(C)=C OKKRPWIIYQTPQF-UHFFFAOYSA-N 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- MPMBRWOOISTHJV-UHFFFAOYSA-N but-1-enylbenzene Chemical compound CCC=CC1=CC=CC=C1 MPMBRWOOISTHJV-UHFFFAOYSA-N 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010556 emulsion polymerization method Methods 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- YCOZIPAWZNQLMR-UHFFFAOYSA-N heptane - octane Natural products CCCCCCCCCCCCCCC YCOZIPAWZNQLMR-UHFFFAOYSA-N 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- 239000006224 matting agent Substances 0.000 description 1
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 1
- 239000012766 organic filler Substances 0.000 description 1
- 239000012860 organic pigment Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000010558 suspension polymerization method Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000003021 water soluble solvent Substances 0.000 description 1
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Polymerisation Methods In General (AREA)
- Graft Or Block Polymers (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は非架橋高分子微粒子と、孔調整剤と、低架橋密
度の架橋重合体と、高架B度の架橋重合体からなる多孔
性架橋重合体微粒子の前駆体より溶剤可溶物質を除去す
ることを特徴とする、粒径が2〜30μmで粒径分布の
標準偏差が1μm以下であり、耐溶剤性でかつ多孔性の
均一粒径微粒子の製造方法に関する。Detailed Description of the Invention: Industrial Application Field The present invention provides a porous crosslinked polymer comprising non-crosslinked polymer fine particles, a pore control agent, a crosslinked polymer with a low crosslink density, and a crosslinked polymer with a high degree of B. A method for producing fine particles of uniform particle size that are 2 to 30 μm in diameter, have a standard deviation of particle size distribution of 1 μm or less, are solvent resistant, and are porous, and are characterized by removing solvent-soluble substances from a precursor of the fine particles. Regarding the manufacturing method.
従来の技術
不透明化剤、つや消し剤、有機顔料ないし充填材、厚み
間隙調整材、クロマトグラフィ用担体などとして利用さ
れる高分子微粒子には、その粒径が均一であることが強
く要求される。また、厚み間隙調整材やクロマトグラフ
ィ用担体などとじて利用するときのように、各種の溶剤
に分散させた状態で適用される場合には、その溶剤に溶
解ないし膨潤しないことが要求される。さらに、クロマ
トグラフィ用担体ないし各種物質の担持体などとして利
用するときのように表面積の大きいことが有利に機能す
る用途にあっては、多孔性であることも望まれる。BACKGROUND OF THE INVENTION Polymer fine particles used as opacifying agents, matting agents, organic pigments or fillers, thickness and gap adjusting agents, carriers for chromatography, etc. are strongly required to have uniform particle diameters. Furthermore, when used in a dispersed state in various solvents, such as when used as a thickness gap adjustment material or a carrier for chromatography, it is required that the material does not dissolve or swell in the solvent. Furthermore, in applications where a large surface area is advantageous, such as when used as a carrier for chromatography or a carrier for various substances, porous properties are also desirable.
従来、耐溶剤性の微粒子の製造方法としては、架橋状態
にある高分子微粒子をシート粒子とし、これに非架橋性
単量体あるいは架橋しうる単量体混合物を吸収させて重
合処理する方法が知られていた(特開昭59−1870
5号公報、英国特許第728508号、英国特許第11
16800号)。Conventionally, as a method for producing solvent-resistant fine particles, there has been a method in which crosslinked polymer fine particles are made into sheet particles, and a non-crosslinkable monomer or a crosslinkable monomer mixture is absorbed into the sheet particles for polymerization treatment. It was known (Japanese Patent Publication No. 59-1870)
Publication No. 5, British Patent No. 728508, British Patent No. 11
No. 16800).
一方、多孔性の微粒子の製造方法としては、用いる単量
体は溶かすが反応生成物は溶かさない有機溶剤の存在下
に、親水性ビニル系単量体とアクリル酸等とを、あるい
はフェニル基含有疎水性単量体と親水性単量体とを水性
懸濁下に重合させたのち該有機溶剤を除去する方法が知
られていたく特開昭58−88657号公報、特開昭5
8−83260号公報)。On the other hand, as a method for producing porous fine particles, hydrophilic vinyl monomers and acrylic acid, etc., or phenyl group-containing A method for removing the organic solvent after polymerizing a hydrophobic monomer and a hydrophilic monomer in aqueous suspension is known, as disclosed in JP-A-58-88657 and JP-A-5.
8-83260).
発明が解決しようとする問題点
しかしながら、上記した単に耐溶剤性のものを得るだけ
のいずれの方法にあっても、得られる微粒子が粒径の均
一性に劣るという問題点があった。Problems to be Solved by the Invention However, in any of the above-mentioned methods for simply obtaining solvent-resistant particles, there is a problem in that the resulting fine particles have poor uniformity in particle size.
また、多孔性のものを得るための水性懸濁重合方法にあ
っても、得られる粒子の粒径分布が幅広く(数ミクロン
−数十ミクロン)その均一性に劣る問題点があった。Further, even in the aqueous suspension polymerization method for obtaining porous materials, there is a problem that the particle size distribution of the resulting particles is wide (several microns to several tens of microns) and is poor in uniformity.
このように、従来方法では粒径の均一性に優れる微粒子
を得るこ七が困難であった。そのため、重合後に分級処
理して粒径の均一化をはかっているのが現状である。し
かし、粒径が2〜30μIの範囲において粒径分布の標
準偏差が1μ醜以下となるように分級処理するまでには
至っていない。As described above, it has been difficult to obtain fine particles with excellent uniformity of particle size using conventional methods. Therefore, the current practice is to perform a classification process after polymerization to make the particle size uniform. However, classification processing has not yet been carried out so that the standard deviation of the particle size distribution is 1 μl or less in the particle size range of 2 to 30 μl.
従って、粒径が2〜30−で粒径分布の標準偏差が1趨
以下であり、耐溶剤性でかつ多孔性の均一粒径微粒子を
製造する方法はこれまでに知られていない。Therefore, no method has been known to date for producing solvent-resistant, porous, uniformly sized fine particles having a particle size of 2 to 30 mm and a standard deviation of particle size distribution of 1 or less.
問題点を解決するための手段
本発明者らは上記の問題点を克服し、粒径が2〜30μ
鴎で粒径分布の標準偏差が1趨以下であり、耐溶剤性で
かつ多孔性の均一粒径微粒子を分級処理することな(得
ることができる製造方法を開発するために鋭意研究を重
ねた結果、シート重合方式で粒径を成長させた非架橋高
分子微粒子を先ず、架橋性単量体の含有濃度が低い単量
体混合物で処理し、ついで得られた架橋系の高分子微粒
子中に、孔調整剤を浸入させてこれを膨潤粒子とし、そ
の後この膨潤粒子に架橋性単量体の含有濃度が高い単量
体混合物を浸入させて共重合処理し、得られた多孔性架
橋重合体微粒子の前駆体より溶剤可溶物質を抽出除去す
ることによりその目的を達成しうろことを見出し、本発
明をなすに至った。Means for Solving the Problems The present inventors have overcome the above problems, and the particle size is 2 to 30 μm.
We have conducted extensive research to develop a manufacturing method that allows us to obtain solvent-resistant, porous, uniformly sized fine particles with a standard deviation of one line or less in the particle size distribution without the need for classification. As a result, non-crosslinked polymer fine particles whose particle size had been grown using a sheet polymerization method were first treated with a monomer mixture containing a low concentration of crosslinkable monomers, and then added to the crosslinked polymer fine particles obtained. A porous crosslinked polymer obtained by impregnating a pore control agent to form swollen particles, and then infiltrating the swollen particles with a monomer mixture containing a high concentration of crosslinkable monomer for copolymerization treatment. The present inventors have discovered that the objective can be achieved by extracting and removing solvent-soluble substances from the precursor of fine particles, and have accomplished the present invention.
すなわち、本発明は、(A)シート粒子の水分散液に水
、非架橋性単量体を加えて重合処理し、得られた粒子を
次のシート粒子として用いてさらに径を成長させる操作
を、非架橋性単量体を水媒中で処理して得た非架橋重合
体を初期のシート粒子として2回以上繰り返して得た、
粒径が0.5〜2μ請で粒径分布の標準偏差が0.1μ
I以下の非架橋高分子微粒子の水分散液に、非架橋性単
量体99〜99.95重量%と架橋性単量体1〜0.0
5重量%からなる単量体混合物を加えて重合処理し、得
られた架橋系の高分子微粒子中に孔調整剤を吸収させて
膨潤粒子としたのち、この膨潤粒子中に非架橋性単量体
50〜90重量%と架橋性単量体50〜10重量%から
なる単量体混合物を吸収させ、水媒中でこれを共重合処
理して多孔性架橋重合体微粒子の前駆体を得る工程、(
B)前記工程で得た多孔性架橋重合体微粒子の前駆体よ
り溶剤可溶物質を・抽出する工程からなる粒径が2〜3
0μ■で粒径分布の標準偏差が1u−以下であり、耐溶
剤性でかつ多孔性の均一粒径微粒子の製造方法を提供す
るものである。That is, the present invention includes (A) adding water and a non-crosslinking monomer to an aqueous dispersion of sheet particles, polymerizing them, and using the obtained particles as the next sheet particle to further grow the diameter. , obtained by repeating a non-crosslinked polymer obtained by treating a non-crosslinkable monomer in an aqueous medium twice or more as initial sheet particles,
The particle size is 0.5-2μ and the standard deviation of particle size distribution is 0.1μ.
99 to 99.95% by weight of a non-crosslinking monomer and 1 to 0.0% of a crosslinking monomer to an aqueous dispersion of non-crosslinked polymer fine particles of I or less.
A monomer mixture consisting of 5% by weight is added and polymerized, and a pore control agent is absorbed into the resulting crosslinked polymer fine particles to form swollen particles. A step of absorbing a monomer mixture consisting of 50 to 90% by weight of polymer and 50 to 10% by weight of crosslinkable monomer, and copolymerizing this in an aqueous medium to obtain a precursor of porous crosslinked polymer fine particles. ,(
B) A step of extracting a solvent-soluble substance from the precursor of the porous crosslinked polymer fine particles obtained in the above step, with a particle size of 2 to 3
The present invention provides a method for producing fine particles of uniform particle size that are solvent resistant and porous and have a standard deviation of particle size distribution of 1 u- or less at 0 μι.
本発明方法においては、先ずシート重合方式で得た非架
橋高分子微粒子を架橋性単量体の含有濃度が低い単量体
混合物で処理し、得られた架橋系の高分子微粒子中に孔
調整剤を吸収させて膨潤粒子としたのち、この膨潤粒子
に架橋性単量体の含有濃度が高い単量体混合物を吸収さ
せ、これを共重合処理して多孔性架橋重合体微粒子の前
駆体を得る(A工程)。In the method of the present invention, first, non-crosslinked polymer fine particles obtained by a sheet polymerization method are treated with a monomer mixture containing a low crosslinking monomer concentration, and pores are adjusted in the crosslinked polymer fine particles obtained. After absorbing the agent to form swollen particles, the swollen particles are made to absorb a monomer mixture containing a high concentration of crosslinkable monomers, and this is copolymerized to form a precursor of porous crosslinked polymer fine particles. obtained (Step A).
その際、非架橋高分子微粒子としてはシート重合を2回
以上繰り返して得た、粒径が0.5〜2u+aで粒径分
布の標準偏差が0.1μ鴎以下、好ましくは0.05μ
s以下のものが用いられる。すなわち、シート粒子の水
分散液に水、非架橋性単量体、さらには必要に応じて反
応の安定化に要する量の乳化剤(表面張力が55ダイン
/惰以上となるようにすることが好ましい。)及び重合
開始剤を加えて重合処理し、得られた粒子を次のシート
粒子として用いてさらに径を成長させる操作を2回以上
繰り返して所定の大きさとしたものが用いられる。初期
のシート粒子としては、非架橋性単量体を水媒中で処理
して得た非架橋重合体が用いられる。すなわち、例えば
非架橋性単量体を通例の乳化重合方式等で処理して得た
エマルジョンにおける非架橋重合体などが用いられる。In this case, the non-crosslinked polymer fine particles are obtained by repeating sheet polymerization twice or more, have a particle size of 0.5 to 2u+a, and have a standard deviation of particle size distribution of 0.1μ or less, preferably 0.05μ.
s or less is used. That is, water, a non-crosslinking monomer, and, if necessary, an emulsifier in an amount necessary to stabilize the reaction (preferably so that the surface tension is 55 dynes/inertia or higher) are added to the aqueous dispersion of sheet particles. ) and a polymerization initiator, polymerization treatment is performed, and the obtained particles are used as the next sheet particle to further grow the diameter. The operation is repeated two or more times to obtain a predetermined size. As the initial sheet particles, a non-crosslinked polymer obtained by treating a non-crosslinkable monomer in an aqueous medium is used. That is, for example, a non-crosslinked polymer in an emulsion obtained by processing a non-crosslinkable monomer by a conventional emulsion polymerization method or the like is used.
このような条件を満足する非架橋高分子微粒子を用いる
ことにより、最終目的物における粒径と粒径分布の標準
偏差が実現される。By using non-crosslinked polymer fine particles that satisfy these conditions, the standard deviation of the particle size and particle size distribution in the final target product can be achieved.
前記した非架橋高分子微粒子は、架橋性単量体の含有濃
度が低い単量体混合物による処理に供される。すなわち
、非架橋高分子微粒子は、その水分散液に非架橋性単量
体99〜99.95重量%、好ましくは99.5〜99
.9重量%と架橋性単量体1〜0.05重量%、好まし
くは0.5〜0.1重量%からなる単量体混合物を加え
、これを非架橋高分子微粒子中に吸収させて重合処理し
、架橋系の高分子微粒子とされる。これにより、後で用
いられる架橋性単量体の含有濃度の高い単量体混合物な
いしその構成単量体で膨潤しうるちのとすることができ
る。また、一般に真球状性に優れる最終目的物を得るこ
とができる。前記混合割合の単量体混合物を用いて得ら
れる架橋系の高分子微粒子の膨潤度(膨潤前後における
粒子の容積比)は、通常4〜150である。この程度の
膨潤度のものが、好ましくは8〜100の膨潤度のもの
が本発明方法においては好ましい。従って、前記の処理
の際に用いる単量体混合物における架橋性単量体の含有
量が少な過ぎると膨潤度の過大なものが得られることと
なり、最終目的物である均一粒径微粒子の耐溶剤性が充
分でないなど本発明の目的が達成されに(い。一方、架
橋性単量体の含有量が多過ぎると膨潤度の過小(架橋密
度過多)なものが得られることとなり、後で用いる単量
体混合物が粒子中に充分に拡散できず、粒子中での重合
が不充分となり、また粒径のバラツキの原因となる新た
な粒子が生成しやすくなって、本発明方法の目的が充分
に達成されにくい。The non-crosslinked polymer fine particles described above are subjected to treatment with a monomer mixture containing a low concentration of crosslinkable monomers. That is, the non-crosslinked polymer fine particles contain 99 to 99.95% by weight, preferably 99.5 to 99.95% by weight of the non-crosslinkable monomer in the aqueous dispersion.
.. A monomer mixture consisting of 9% by weight and a crosslinkable monomer of 1 to 0.05% by weight, preferably 0.5 to 0.1% by weight is added, and this is absorbed into non-crosslinked polymer fine particles to polymerize. It is processed to form cross-linked polymer fine particles. This makes it possible to swell with a monomer mixture containing a high crosslinking monomer content or its constituent monomers to be used later. In addition, it is possible to obtain a final target product that generally has excellent sphericity. The swelling degree (the volume ratio of the particles before and after swelling) of the crosslinked polymer fine particles obtained using the monomer mixture having the above-mentioned mixing ratio is usually 4 to 150. A material with a swelling degree of this level, preferably a swelling degree of 8 to 100, is preferred in the method of the present invention. Therefore, if the content of the crosslinkable monomer in the monomer mixture used in the above treatment is too low, a product with an excessive degree of swelling will be obtained, and the solvent resistance of the final target product, uniform particle size fine particles, will be reduced. On the other hand, if the content of the crosslinkable monomer is too high, the degree of swelling (excessive crosslinking density) will be obtained, which will be used later. The monomer mixture cannot be sufficiently diffused into the particles, resulting in insufficient polymerization in the particles, and new particles are likely to be generated, which causes variation in particle size. difficult to achieve.
前記した非架橋高分子微粒子を架橋系の高分子微粒子と
するための処理における単量体混合物の使用量は、限定
するものでないが、非架橋高分子微粒子100重量部あ
たり2000!量部以下、就中1000重量部以下が好
ましい。その使用量が過剰であると得られる架橋系の高
分子微粒子の粒径分布が幅広(なる場合があり、本発明
の目的が達成されない場合がある。The amount of the monomer mixture used in the treatment for converting the non-crosslinked polymer fine particles into crosslinked polymer fine particles is not limited, but is 2000 parts by weight per 100 parts by weight of the non-crosslinked polymer fine particles. It is preferably at most 1000 parts by weight, especially at most 1000 parts by weight. If the amount used is excessive, the resulting crosslinked polymer fine particles may have a wide particle size distribution, and the object of the present invention may not be achieved.
なお、単量体混合物を非架橋高分子微粒子の水分散液に
加える際には、非架橋高分子微粒子中に吸収されやす(
するため乳化液として加えてもよい。この場合、重合開
始剤は油溶性のものを単量体混合物に溶解せしめて用い
るとより好ましい。Note that when adding the monomer mixture to the aqueous dispersion of non-crosslinked polymer particles, it should be noted that the monomer mixture is easily absorbed into the non-crosslinked polymer particles (
It may also be added as an emulsion. In this case, it is more preferable to use an oil-soluble polymerization initiator dissolved in the monomer mixture.
前記単量体混合物に基づ(低架橋密度の架橋重合体によ
り非架橋高分子微粒子が変化したものとしての架橋系の
高分子微粒子は、架橋性単量体の含有濃度が高い単量体
混合物の反応ベースとして利用される。すなわち、架橋
系の高分子微粒子中に孔調整剤と該単量体混合物を吸取
させてこれを重合開始剤の存在下、共重合処理する操作
に供される。これにより、低架橋密度の架橋重合体を有
する架橋系の高分子微粒子が変化したものとしての、架
橋性単量体の含有濃度が高い単量体混合物に基づく高架
橋密度の架橋重合体と孔調整剤を少なくとも内部に有し
、粒径が拡張した多孔性架橋重合体微粒子の前駆体が得
られ、比表面積の大きい最終目的物とすることができる
。Based on the monomer mixture (non-crosslinked polymer fine particles are modified with a crosslinked polymer having a low crosslink density), the crosslinked polymer fine particles are a monomer mixture with a high concentration of crosslinkable monomers. That is, the pore-adjusting agent and the monomer mixture are absorbed into cross-linked polymer fine particles, and then copolymerized in the presence of a polymerization initiator. As a result, a crosslinked polymer with a high crosslinking density based on a monomer mixture with a high concentration of crosslinking monomer and pore adjustment are obtained, as a modified crosslinked polymer fine particle having a crosslinked polymer with a low crosslinking density. A precursor of porous crosslinked polymer fine particles having an agent at least inside and having an expanded particle size can be obtained, and a final target product having a large specific surface area can be obtained.
架橋系の高分子微粒子中に孔調整剤を吸収させて膨潤粒
子を得る処理は、架橋系の高分子微粒子の分散液、殊に
乳化重合液としての水分散液に、乳化液とした孔調整剤
を加えて撹拌する方式が好ましい。この方式によれば、
架橋系の高分子微粒子中に吸収させる孔調整剤の量を容
易にコントロールすることができると共に、後で加える
単量体混合物を吸収速度よくスムースに吸収させること
ができる利点がある。もちろん、膨潤粒子を得る方式は
前記に限定されず、結果的に孔調整剤が吸収されて膨潤
粒子が形成される方式であればよい。The process of obtaining swollen particles by absorbing a pore-adjusting agent into cross-linked polymer fine particles involves adding a pore-adjusting agent to a dispersion of cross-linked polymer fine particles, especially an aqueous dispersion as an emulsion polymerization liquid, and making it into an emulsion. A method in which the agent is added and stirred is preferred. According to this method,
This has the advantage that the amount of the pore control agent absorbed into the crosslinked polymer fine particles can be easily controlled, and the monomer mixture added later can be absorbed smoothly at a high absorption rate. Of course, the method for obtaining swollen particles is not limited to the above, and any method may be used as long as the pore-adjusting agent is absorbed and swollen particles are formed as a result.
なお、吸収処理に際しては、吸収速度をあげるために加
熱してもよいし、アセトンやエタノールなどの水溶性溶
剤を加えてもよい。Note that during the absorption treatment, heating may be performed to increase the absorption rate, or a water-soluble solvent such as acetone or ethanol may be added.
孔調整剤を吸収して膨潤粒子となった架橋系の高分子微
粒子には、次に架橋性単量体の含有濃度が高い単量体混
合物が吸収させられる。The crosslinked polymer fine particles, which have become swollen particles by absorbing the pore control agent, are then made to absorb a monomer mixture containing a high concentration of crosslinkable monomers.
その処理方式としては、膨潤粒子の分散液に、乳化液と
した単量体混合物を加える方式が好ましい。A preferable treatment method is to add an emulsified monomer mixture to a dispersion of swollen particles.
単量体混合物の使用量は、架橋系の高分子微粒子100
重量部あたり100〜3000重量部が適当である。The amount of monomer mixture used is 100% of crosslinked polymer fine particles.
100 to 3000 parts by weight per part by weight is suitable.
その使用量が100重量部未満であると得られる均一粒
径微粒子の耐溶剤性が不充分となり、3000重量部を
超えると架橋系の高分子微粒子外での重合が進行しやす
(なって好ましくない。If the amount used is less than 100 parts by weight, the solvent resistance of the resulting uniform particle size particles will be insufficient, and if it exceeds 3,000 parts by weight, polymerization outside the crosslinked polymer particles will tend to proceed (this is preferable). do not have.
該単量体混合物における非架橋性単量体と架橋性単量体
との混合割合は、非架橋性単量体50〜90重量%、架
橋性単量体50〜10重量%が適当である。The appropriate mixing ratio of the non-crosslinkable monomer and the crosslinkable monomer in the monomer mixture is 50 to 90% by weight of the non-crosslinkable monomer and 50 to 10% by weight of the crosslinkable monomer. .
架橋性単量体の混合割合が50重量%を超えるとその架
橋重合体の架橋密度が過多となり、10重量%未満であ
ると架橋密度が過少となって本発明の目的が達成されに
くくなる。If the mixing ratio of the crosslinkable monomer exceeds 50% by weight, the crosslinking density of the crosslinked polymer will be too high, and if it is less than 10% by weight, the crosslinking density will be too low, making it difficult to achieve the object of the present invention.
本発明において非架橋高分子微粒子を得るための非架橋
性単量体、あるいは架橋系の高分子微粒子、多孔性架橋
重合体微粒子の前駆体を得るための単量体混合物におけ
る単量体としては、そのものないしその重合体が水に難
溶性のものないし溶解しないものが好ましく用いられる
。水に溶解しやすいものであると、水中で重合が進行し
てシート粒子等の粒径が成長しにくかったり、新たな粒
子ができやすくなったり、あるいは非架橋高分子微粒子
中、架橋系の高分子微粒子中に吸収されにくかったりし
て好ましくない。In the present invention, the monomer in the non-crosslinking monomer for obtaining non-crosslinked polymer fine particles, or the monomer mixture for obtaining the precursor of crosslinked polymer fine particles or porous crosslinked polymer fine particles is , those which themselves or their polymers are poorly soluble or insoluble in water are preferably used. If the material is easily soluble in water, polymerization will proceed in water, making it difficult for the particle size of sheet particles to grow, making it easier to form new particles, or increasing the crosslinked polymer content in non-crosslinked polymer fine particles. This is not preferable because it may be difficult to absorb into molecular fine particles.
好ましく用いうる非架橋性単量体としては、例えばスチ
レン、メチルスチレン、エチルスチレンのようなスチレ
ン系単量体、アクリル酸ブチル、メタクリル酸ブチル、
アクリル酸2−エチルヘキシル、メタクリル酸2−エチ
ルヘキシルのような炭素数が4以上のアルキル基を有す
るアクリル酸、メタクリル酸のエステル系単量体などを
あげることができる。Examples of non-crosslinkable monomers that can be preferably used include styrene monomers such as styrene, methylstyrene, and ethylstyrene, butyl acrylate, butyl methacrylate,
Examples include acrylic acid and methacrylic acid ester monomers having an alkyl group having 4 or more carbon atoms, such as 2-ethylhexyl acrylate and 2-ethylhexyl methacrylate.
好ましく用いうる架橋性単量体としては、例えばトリメ
チロールプロパントリメタクリレート、ジエチレングリ
コールジメタクリレート、ジビニルベンゼンのようなエ
チレン性二重結合を2以上有する単量体などをあげるこ
とができる。Examples of crosslinkable monomers that can be preferably used include monomers having two or more ethylenic double bonds, such as trimethylolpropane trimethacrylate, diethylene glycol dimethacrylate, and divinylbenzene.
非架橋性単量体、架橋性単量体の使用は1種のみであっ
てもよいし、2種以上であってもよい。The number of non-crosslinkable monomers and crosslinkable monomers may be one, or two or more.
目的物の用途に応じて決定される。例えば、厚み間隙調
整材、クロマトグラフィ用担体として使用する場合には
耐圧性が要求されるので、重合体のガラス転移点が高い
スチレン系単量体を非架橋性単量体として用い、水への
溶解性の低いジビニルベンゼンを架橋性単量体として用
いることが好ましい。なお、スチレン系単量体は共重合
処理において凝集することな(安定に処理を進めうる利
点なども有している。Determined according to the intended use of the object. For example, when used as a thickness gap adjustment material or a carrier for chromatography, pressure resistance is required. It is preferable to use divinylbenzene, which has low solubility, as the crosslinking monomer. The styrene monomer also has the advantage of not agglomerating during the copolymerization process (the process can proceed stably).
孔調整剤の使用量は、架橋系の高分子微粒子100重量
部あたり100〜6000重量部が適当である。一般に
は、用いる架橋性単量体の含有濃度の高い単量体混合物
に基づいて決定され、単量体の種類によっても異なるが
通常、前記単量体混合物に対し10〜350重量%、好
ましくは50〜250重量%が適当である。その使用量
が10重量%未満であると形成される孔が過小となって
、得られる均一粒径微粒子がその多孔性としての特性に
乏しいものとなる場合があり、350重量%を超えると
形成される孔が過大となって、得られる均一粒径微粒子
の内部が空洞化し中空物となる場合があり、多孔性の観
点よりは好ましくない
孔調整剤としては、後続の抽出処理過程で溶剤可溶物質
として除去可能なものが用いられる。一般には、水に対
する溶解度が室温において1重量%以下(水不溶性)で
あり、用いる非架橋性単量体又は/及び架橋性単量体に
可溶のものが用いられる。その溶解度がIIt量%を超
えるものでは、架橋系の高分子微粒子中に吸収されずに
水媒中に残存して多孔性の形成に寄与しなかったり、反
応系の安定を阻害したりする場合がある。The appropriate amount of the pore regulator used is 100 to 6,000 parts by weight per 100 parts by weight of the crosslinked polymer fine particles. In general, it is determined based on the monomer mixture with a high concentration of crosslinkable monomer used, and although it varies depending on the type of monomer, it is usually 10 to 350% by weight, preferably 10 to 350% by weight based on the monomer mixture. 50-250% by weight is suitable. If the amount used is less than 10% by weight, the pores formed may be too small, resulting in the resulting uniform particle size fine particles having poor porous properties; if the amount used exceeds 350% by weight, pores may be formed. In some cases, the pores formed become too large, and the inside of the resulting fine particles of uniform particle size becomes hollow, resulting in a hollow substance. Therefore, from the viewpoint of porosity, pore control agents that are undesirable include solvents that can be used in the subsequent extraction process. A removable substance is used as the dissolved substance. Generally, those having a solubility in water of 1% by weight or less at room temperature (water-insoluble) and soluble in the non-crosslinkable monomer and/or crosslinkable monomer used are used. If the solubility exceeds IIt%, it may remain in the aqueous medium without being absorbed into the crosslinked polymer fine particles, and may not contribute to the formation of porosity or inhibit the stability of the reaction system. There is.
孔調整剤の具体例としては、ヘキサン、ヘプタン、イソ
オクタン等の飽和炭化水素類、トルエン、キシレン、エ
チルベンゼン等の芳香族炭化水素類、n−ヘキシルアル
コール、n−オクチルアルコール、2−エチルヘキシル
アルコール等のアルコール類、ポリスチレン、流動パラ
フィン等の線状高分子類などをあげることができる。孔
調整剤は1種のみを用いてもよいし、2種以上を併用し
てもよい。Specific examples of pore control agents include saturated hydrocarbons such as hexane, heptane, and isooctane, aromatic hydrocarbons such as toluene, xylene, and ethylbenzene, and n-hexyl alcohol, n-octyl alcohol, and 2-ethylhexyl alcohol. Examples include linear polymers such as alcohols, polystyrene, and liquid paraffin. Only one type of pore adjusting agent may be used, or two or more types may be used in combination.
多孔性架橋重合体微粒子の前駆体を得るための共重合処
理は、適宜な媒体を用いて通例の重合処理条件で行うこ
とができる。水媒系による場合、重合開始剤としては通
常の油溶性のラジカル系開始剤が好ましく用いられる。The copolymerization treatment for obtaining a precursor of porous crosslinked polymer fine particles can be carried out using an appropriate medium under usual polymerization treatment conditions. When using an aqueous medium, a common oil-soluble radical initiator is preferably used as the polymerization initiator.
水溶性のものであると新たな粒子が生成するときがあっ
て不都合を生じる場合がある。なお、油溶性の重合開始
剤は単量体混合物に0.1〜5重量%溶解させて用いる
方式が、架橋系の高分子微粒子中での重合を円滑に行わ
しめるうえで望ましい。If it is water-soluble, new particles may be generated, which may cause problems. Note that it is preferable to use the oil-soluble polymerization initiator dissolved in the monomer mixture in an amount of 0.1 to 5% by weight in order to smoothly carry out the polymerization in the crosslinked polymer fine particles.
なお、共重合処理に際しては乳化剤、重合安定剤を用い
て粒子を安定化せしめることが望ましい。Incidentally, during the copolymerization treatment, it is desirable to stabilize the particles using an emulsifier or a polymerization stabilizer.
その使用量は多孔性架橋重合体微粒子の前駆体以外に新
たな粒子が生成しない量とすることが適当である。It is appropriate that the amount used is such that no new particles are generated other than the precursor of the porous crosslinked polymer fine particles.
上記のようにして共重合処理することにより、架橋系の
高分子微粒子の内部に孔調整剤と、高架橋密度の架橋重
合体を有する構造の、粒径が2〜30趨、好ましくは2
〜20μmで、粒径分布の標準偏差が1 n以下、好ま
しくは0.5μm以下であり、一般に真球状性に優れる
多孔性架橋重合体微粒子の前駆体が得られる。なお、多
孔性架橋重合体微粒子の前駆体中における高架橋密度の
架橋重合体は前駆体と化学的に結合していてもよいし、
していな(でもよい。また、多孔性架橋重合体微粒子の
前駆体の表面に高架橋密度の架橋重合体を有していても
よい。By carrying out the copolymerization treatment as described above, particles having a structure having a pore control agent and a crosslinked polymer with a high crosslink density inside the crosslinked polymer fine particles have a particle size in the range of 2 to 30, preferably 2.
~20 μm, the standard deviation of the particle size distribution is 1 n or less, preferably 0.5 μm or less, and a precursor of porous crosslinked polymer fine particles that generally has excellent sphericity can be obtained. Note that the crosslinked polymer having a high crosslinking density in the precursor of the porous crosslinked polymer fine particles may be chemically bonded to the precursor,
It is also possible to have a crosslinked polymer with a high crosslinking density on the surface of the precursor of the porous crosslinked polymer fine particles.
本発明方法において前記の工程で得られた多孔性架橋重
合体微粒子の前駆体は次に、溶剤可溶物質の抽出工程に
おかれる(B工程)。これにより、多孔性が付与された
架橋重合体微粒子からなる目的物としての均一粒径微粒
子が得られる。この均−粒径微粒子は一般に機械的強度
に優れている。In the method of the present invention, the precursor of the porous crosslinked polymer fine particles obtained in the above step is then subjected to a step of extracting a solvent-soluble substance (Step B). As a result, uniform particle size particles can be obtained, which are made of crosslinked polymer particles imparted with porosity. These uniformly sized fine particles generally have excellent mechanical strength.
溶剤可溶物質の抽出は、例えば次の方式により行うこと
ができる。Extraction of solvent-soluble substances can be performed, for example, by the following method.
すなわち、上記A工程で得られた多孔性架橋重合体微粒
子の前駆体を含む水分散液における分散媒としての水を
、より極性の低い媒体へと徐々に置換して、使用した非
架橋性単量体ないしその重合体、孔調整剤とSP値(溶
解性パラメータ)が類似した媒体に最終的に置換し、こ
の媒体で洗浄を繰り返して多孔性架橋重合体微粒子の前
駆体中の溶剤可溶物質を抽出する。That is, water as a dispersion medium in the aqueous dispersion containing the precursor of porous crosslinked polymer fine particles obtained in the above step A is gradually replaced with a less polar medium, and the non-crosslinked monomer used is Finally, the polymer or its polymer is replaced with a medium having a similar SP value (solubility parameter) to that of the pore control agent, and washing is repeated with this medium to make the precursor of the porous crosslinked polymer fine particles soluble in the solvent. Extract the substance.
置換媒体としては、究極には微粒子中より除去されるこ
とが望まれるので、揮発性の低沸点溶剤が一般に好まし
く用いられる。その代表例としてはメタノール、エタノ
ールのようなアルコール類、アセトンのようなケトン類
、その他アセトニトリル、クロロホルム、テトラヒドロ
フラン、ベンゼン、トルエン、キシレン、エチルベンゼ
ンなどをあげることができる。置換媒体は、水との温媒
体あるいは2部1以上の溶剤を用いた温媒体などであっ
てもよい。As the substitution medium, it is generally desirable to use a volatile low boiling point solvent, since it is ultimately desired to remove it from the fine particles. Typical examples include alcohols such as methanol and ethanol, ketones such as acetone, acetonitrile, chloroform, tetrahydrofuran, benzene, toluene, xylene, and ethylbenzene. The displacement medium may be a hot medium containing water or a hot medium using 2 parts 1 or more of a solvent.
抽出処理は、多孔性架橋重合体微粒子の前駆体を置換媒
体中に分散させて処理する方式が効率的である場合もあ
る。その場合には、例えば超音波による分散方式を適用
することも可能である。In some cases, it is efficient to carry out the extraction process by dispersing the precursor of the porous crosslinked polymer particles in a replacement medium. In that case, it is also possible to apply a dispersion method using ultrasonic waves, for example.
なお、抽出処理後の多孔性架橋重合体微粒子中に残存す
る置換媒体の除去は、例えば減圧乾燥方式、スプレード
ライヤー等による方式などで容易に行うことができる。Note that the substitution medium remaining in the porous crosslinked polymer fine particles after the extraction treatment can be easily removed by, for example, a vacuum drying method, a spray dryer, or the like.
上記のようにして、粒径が2〜30μm、好ましくは2
〜201で、粒径分布の標準偏差が1μ醜以下、好まし
くは0.5μ論以下で耐溶剤性に優れ、かつ多孔性の均
一粒径微粒子が得られる。この均一粒径微粒子は一般に
、低架橋密度の架橋重合体の内部に高架橋密度の架m重
合体を含み、かつ巨大な別状の多孔性構造を有する架橋
重合体微粒子よりなり、その比表面積は30j/g以上
、好ましくは50〜1o00+J / g 、より好ま
しくは100〜5007 / gで、真球状性、機械的
強度に優れている。As described above, the particle size is 2 to 30 μm, preferably 2 μm.
~201, the standard deviation of the particle size distribution is 1 micron or less, preferably 0.5 micron or less, and excellent solvent resistance and porous uniform particle size can be obtained. These uniform particle size particles generally contain a cross-linked polymer with a high cross-link density inside a cross-linked polymer with a low cross-link density, and are composed of cross-linked polymer particles having a huge separate porous structure, and have a specific surface area of 30J. /g or more, preferably 50 to 1000+J/g, more preferably 100 to 5007/g, and has excellent sphericity and mechanical strength.
なお、前記の均一粒径微粒子をイオン交換基等の官能基
を有するものとして、イオン交換樹脂等とすることも可
能である。In addition, it is also possible to use an ion exchange resin or the like as the uniform particle size fine particles having a functional group such as an ion exchange group.
発明の効果
本発明によれば、粒径の均一性に優れる非架橋高分子微
粒子を先ず、低架橋密度の架橋重合体を有する架橋系の
高分子微粒子とし、次にこれに孔調整剤を吸収させて膨
潤粒子とし、ついで膨潤粒子に架橋性単量体の含有濃度
が高い単量体混合物を吸収させる方式としたので、架橋
系の高分子微粒子中への孔調整剤の吸収愚のコントロー
ルが容易であり、さらに後で加える単量体混合物をスム
ースに吸収させることができる−0
そして、孔調整剤と単量体混合物とで処理した多孔性架
橋重合体微粒子の前駆体より溶剤可溶物質を除去する方
式としたので、粒径の均一性に優れる均一粒径微粒子を
分級処理することなく実用途に供しうる状態で、高収率
に得ることができると共に、得られた均一粒径微粒子は
優れた耐溶剤性と、多孔性に基づく大きい比表面積を有
している。Effects of the Invention According to the present invention, non-crosslinked polymer fine particles with excellent particle size uniformity are first made into crosslinked polymer fine particles having a crosslinked polymer with a low crosslink density, and then a pore control agent is absorbed into these fine particles. This method allows the swollen particles to be made into swollen particles, and then allows the swollen particles to absorb a monomer mixture containing a high concentration of crosslinking monomers, making it possible to control the absorption of the pore control agent into the crosslinked polymer fine particles. It is easy to use, and the monomer mixture added later can be smoothly absorbed. Since this method removes the particles, it is possible to obtain uniform-sized fine particles with excellent particle size uniformity in a state that can be used for practical purposes without classification treatment, and in a high yield. has excellent solvent resistance and a large specific surface area due to its porosity.
実施例
参考例
ラウリル硫酸ナトリウム0.6部(重量部、以下同様)
を溶解させたイオン交換水65部にスチレン30部を分
散させた後これを撹拌しながら窒素気流下で70℃に昇
温させ、ついで過M酸カリウム0.03部を溶解させた
イオン交換水5部を加え、70℃に8時間保持して初期
シート粒子としての非架橋重合体の水分散液を得た。こ
の非架橋重合体の粒径は0.045u醜、粒径分布の標
準偏差は0.01ha+以下であった。Examples Reference Examples Sodium lauryl sulfate 0.6 parts (parts by weight, the same applies hereinafter)
30 parts of styrene was dispersed in 65 parts of ion-exchanged water in which 30 parts of styrene was dissolved, and the temperature was raised to 70°C under a nitrogen stream while stirring, followed by ion-exchanged water in which 0.03 part of potassium permate was dissolved. 5 parts were added and maintained at 70° C. for 8 hours to obtain an aqueous dispersion of a non-crosslinked polymer as initial sheet particles. The particle size of this non-crosslinked polymer was 0.045 u, and the standard deviation of the particle size distribution was 0.01 ha+ or less.
次に、得られた初期シート粒子の水分散液10部とイオ
ン交換水65部を混合して70℃に昇温したのちスチレ
ン27部を加えて1時間撹拌し、ついで過硫酸カリウム
0.1部を溶解させたイオン交換水5部を加えて70℃
に8時間保持し、粒径が0.162μm1粒径分布の標
準偏差が0.014μmの2次シート粒子の水分散液を
得た。そして、さらに前記に準じて2次シート粒子より
3次シート粒子を、3次シート粒子より4次シート粒子
を、4次シート粒子より5次シート粒子を表に示す組成
で順次調製した。Next, 10 parts of the aqueous dispersion of the obtained initial sheet particles and 65 parts of ion-exchanged water were mixed, heated to 70°C, 27 parts of styrene was added and stirred for 1 hour, and then 0.1 parts of potassium persulfate was added. Add 5 parts of ion-exchanged water and heat to 70°C.
An aqueous dispersion of secondary sheet particles having a particle size of 0.162 μm and a standard deviation of 1 particle size distribution of 0.014 μm was obtained. Further, in accordance with the above procedure, tertiary sheet particles were prepared from secondary sheet particles, quaternary sheet particles from tertiary sheet particles, and 5th sheet particles from quaternary sheet particles with the compositions shown in the table.
実施例1
参考例で得た4次シート粒子を非架橋高分子微粒子とし
て用い、その調製液としての水分散液10部にイオン交
換水100部とケン化度88%のポリビニルアルコール
の10重量%水溶液5.0部を加えて均一に撹拌したの
ち、スチレン99.85重量%、ジビニルベンゼン0.
15重量%の単量体混合物16部に過酸化ベンゾイル0
.2部を溶解させてこれにイオン交換水120部、ラウ
リル硫酸ナトリウム0.015部を混合し超音波処理下
に乳化液としたものを加え、撹拌しながら窒素気流下8
0℃で8時間重合処理し、架橋系の高分子微粒子を含む
水分散液を得た。この架橋系の高分子微粒子の粒径は1
.217n、粒径分布の標準偏差は0.060 IJl
、スチレンに対する膨潤度は11であった。Example 1 The quaternary sheet particles obtained in Reference Example were used as non-crosslinked polymer fine particles, and 100 parts of ion-exchanged water and 10% by weight of polyvinyl alcohol with a degree of saponification of 88% were added to 10 parts of an aqueous dispersion as a preparation liquid. After adding 5.0 parts of an aqueous solution and stirring uniformly, 99.85 parts by weight of styrene and 0.0 parts of divinylbenzene were added.
0 benzoyl peroxide in 16 parts of a 15% by weight monomer mixture.
.. 2 parts were dissolved, 120 parts of ion-exchanged water and 0.015 parts of sodium lauryl sulfate were mixed thereto, an emulsion was added under ultrasonication, and the mixture was heated under a nitrogen stream for 8 hours while stirring.
Polymerization was carried out at 0° C. for 8 hours to obtain an aqueous dispersion containing crosslinked polymer fine particles. The particle size of this crosslinked polymer fine particle is 1
.. 217n, standard deviation of particle size distribution is 0.060 IJl
The degree of swelling with respect to styrene was 11.
次に、得られた架橋系の高分子微粒子の水分散液12部
にイオン交換水50部と上記したポリビニルアルコール
水溶液5部を加えて均一に撹拌したのち、これにn−ヘ
キシルアルコール14部とイオン交換水100部とラウ
リル硫酸ナトリウム0.012部を混合して超音波処理
下に乳化液としたものを加えると共に、吸収促進剤とし
てアセトン10部を加えて室温で24時間撹拌し、架橋
系の高分子微粒子からなる膨潤粒子の水分散液を得た。Next, 50 parts of ion-exchanged water and 5 parts of the above-mentioned polyvinyl alcohol aqueous solution were added to 12 parts of the obtained aqueous dispersion of crosslinked polymer fine particles and stirred uniformly. A mixture of 100 parts of ion-exchanged water and 0.012 parts of sodium lauryl sulfate was added to make an emulsion under ultrasonic treatment, and 10 parts of acetone was added as an absorption promoter, and the mixture was stirred at room temperature for 24 hours to form a crosslinked system. An aqueous dispersion of swollen particles consisting of fine polymer particles was obtained.
ついで、この水分散液にスチレン65重量%、ジビニル
ベンゼン35重量%の単量体混合物16.8部と過酸化
ベンゾイル0.8部を溶解させてこれにイオン交換水1
30部、ラウリル硫酸ナトリウム0.012部を混合し
超音波処理下に乳化液としたものを加え、撹拌しながら
窒素気流下55℃で2時間、続いて80℃に昇温して6
時間共重合処理し、多孔性架橋重合体微粒子の前駆体を
含む水分散液を得た。この前駆体の粒径は3.2On、
粒径分布の標準偏差は0.15nであった。Next, 16.8 parts of a monomer mixture of 65% by weight of styrene and 35% by weight of divinylbenzene and 0.8 parts of benzoyl peroxide were dissolved in this aqueous dispersion, and 1 part of ion-exchanged water was added to this.
30 parts of sodium lauryl sulfate and 0.012 parts of sodium lauryl sulfate were mixed together and treated with ultrasonic waves to make an emulsion. The mixture was heated to 55°C under a nitrogen stream for 2 hours with stirring, and then heated to 80°C for 6 hours.
A time copolymerization treatment was performed to obtain an aqueous dispersion containing a precursor of porous crosslinked polymer fine particles. The particle size of this precursor is 3.2 On,
The standard deviation of the particle size distribution was 0.15n.
次に、この水分散液における分散媒を水よりメタノール
、エタノール、アセトン、アセトン/トルエン(1/1
)混溶剤、トルエンへと順次置換してトルエン分散液と
し、その沸点温度で40時間加温した。その後、トルエ
ン分散液より微粒子を分離してさらにトルエンで洗浄し
、ついで前記とは逆の順序で分散媒を置換して水分散液
とした。Next, the dispersion medium in this aqueous dispersion was changed from water to methanol, ethanol, acetone, acetone/toluene (1/1
) and toluene to prepare a toluene dispersion, which was then heated at its boiling point temperature for 40 hours. Thereafter, fine particles were separated from the toluene dispersion and further washed with toluene, and then the dispersion medium was replaced in the reverse order to prepare an aqueous dispersion.
得られた水分散液より抽出処理後の多孔性架橋重合体微
粒子を分離し、これを減圧乾燥処理した。The extracted porous crosslinked polymer fine particles were separated from the obtained aqueous dispersion and dried under reduced pressure.
得られた多孔性架橋重合体微粒子としての均一粒径微粒
子は、その粒径が3.20μm、粒径分布の標準偏差が
0.15μmであり、前記した前駆体としての場合と変
わりはなかった。また、抽出処理後における微粒子の重
量減少、すなわち多孔性架橋重合体微粒子の前駆体に対
し、これを抽出処理して得た多孔性架橋重合体微粒子と
しての均一粒径微粒子の重量減少分は40%であった。The obtained porous crosslinked polymer fine particles with a uniform particle size had a particle size of 3.20 μm and a standard deviation of particle size distribution of 0.15 μm, which was the same as that of the precursor described above. . In addition, the weight loss of the fine particles after the extraction treatment, that is, the weight loss of the uniform diameter fine particles as the porous crosslinked polymer fine particles obtained by the extraction treatment with respect to the precursor of the porous crosslinked polymer fine particles is 40%. %Met.
さらに、B、E。Furthermore, B, E.
T法(窒素ガス吸着)により求めた比表面積は、205
.6j/gであった。なお、走査型電子顕微鏡による観
察の結果、多孔性であることのほかに、真球状性に優れ
ることもわかった。The specific surface area determined by the T method (nitrogen gas adsorption) is 205
.. It was 6j/g. Furthermore, as a result of observation using a scanning electron microscope, it was found that in addition to being porous, it also had excellent sphericity.
実施例2
参考例で得た5次シート粒子を非架橋高分子微粒子とし
て用い、その調製液としての水分散液10部にイオン交
換水100部と上記したポリビニルアルコール水溶液5
部を加えて均一に撹拌したのち、スチレン99.85重
量%、ジビニルベンゼン0.15重量%の単量体混合物
16部に過酸化ベンゾイル0.2部を溶解させてこれに
イオン交換水120部、ラウリル硫酸ナトリウム0.0
15部を混合し超音波処理下に乳化液としたものを加え
、撹拌しながら窒素気流下80℃で8時間重合処理し、
架橋系の高分子微粒子を含む水分散液を得た。この架橋
系の高分子微粒子の粒径は2.41部1粒径分布の標準
偏差は0.12ussスチレンに対する膨潤度は12で
あった。Example 2 The 5th sheet particles obtained in Reference Example were used as non-crosslinked polymer fine particles, and 100 parts of ion-exchanged water and the above polyvinyl alcohol aqueous solution 5 were added to 10 parts of an aqueous dispersion as a preparation liquid.
After stirring uniformly, 0.2 parts of benzoyl peroxide was dissolved in 16 parts of a monomer mixture of 99.85% by weight of styrene and 0.15% by weight of divinylbenzene, and 120 parts of ion-exchanged water was dissolved therein. , sodium lauryl sulfate 0.0
15 parts were mixed and an emulsion was added under ultrasonic treatment, and the mixture was polymerized at 80°C for 8 hours under a nitrogen stream while stirring.
An aqueous dispersion containing crosslinked polymer fine particles was obtained. The particle size of the crosslinked polymer fine particles was 2.41 parts, the standard deviation of the particle size distribution was 0.12 uss, and the degree of swelling with respect to styrene was 12.
次に、得られた架橋系の高分子微粒子の水分散液5部に
イオン交換水25部と上記したポリビニルアルコール水
溶液3部を加えて均一に撹拌したのち、これにn−ヘキ
シルアルコール7部とイオン交換水50部とラウリル硫
酸ナトリウム0.006部を混合して超音波処理下に乳
化液としたものを加えると共に、吸収促進剤としてアセ
トン5部を加えて室温で24時間撹拌し、架橋系の高分
子微粒子からなる膨潤粒子の水分散液を得た。Next, 25 parts of ion-exchanged water and 3 parts of the above-mentioned polyvinyl alcohol aqueous solution were added to 5 parts of the obtained aqueous dispersion of crosslinked polymer fine particles, and the mixture was stirred uniformly. A mixture of 50 parts of ion-exchanged water and 0.006 parts of sodium lauryl sulfate was added to make an emulsion under ultrasonic treatment, and 5 parts of acetone was added as an absorption promoter, and the mixture was stirred at room temperature for 24 hours to form a crosslinked system. An aqueous dispersion of swollen particles consisting of fine polymer particles was obtained.
ついで、この水分散液にスチレン65重量%、ジビニル
ベンゼン35重量%の単量体混合物8.4部と過酸化ベ
ンゾイル0.4部を溶解させてこれにイオン交換水65
部、ラウリル硫酸ナトリウム0.006部を混合し超音
波処理下に乳化液としたものを加え、撹拌しながら窒素
気流下55℃で2時間、続いて80℃に昇温して6時間
共重合処理し、多孔性架橋重合体微粒子の前駆体を含む
水分散液を得た。この前駆体の粒径は6.80μm、粒
径分布の標準偏差は0.28μ閣であった。Next, 8.4 parts of a monomer mixture of 65% by weight of styrene and 35% by weight of divinylbenzene and 0.4 parts of benzoyl peroxide were dissolved in this aqueous dispersion, and 65% of ion-exchanged water was dissolved in this aqueous dispersion.
1 part and 0.006 part of sodium lauryl sulfate were mixed together to make an emulsion under ultrasonication, and the mixture was copolymerized at 55°C for 2 hours under a nitrogen stream with stirring, and then heated to 80°C for 6 hours. An aqueous dispersion containing a precursor of porous crosslinked polymer fine particles was obtained. The particle size of this precursor was 6.80 μm, and the standard deviation of the particle size distribution was 0.28 μm.
次に、実施例1と同様に抽出処理し、乾燥処理して多孔
性架橋重合体微粒子を得た。Next, extraction treatment and drying treatment were carried out in the same manner as in Example 1 to obtain porous crosslinked polymer fine particles.
得られた多孔性架橋重合体微粒子としての均一粒径微粒
子は、その粒径が6.78μm、粒径分布の標準偏差が
0.28μmであり、前記した前駆体としての場合とほ
とんど変わりはなかった。また、抽出処理後における微
粒子の重量減少分は38%であった。The obtained porous crosslinked polymer fine particles with a uniform particle size had a particle size of 6.78 μm and a standard deviation of particle size distribution of 0.28 μm, which was almost the same as that of the precursor described above. Ta. Furthermore, the weight reduction of the fine particles after the extraction treatment was 38%.
さらに、B、E、T法(窒素ガス吸着)により求めた比
表面積は、112.8j /gであった。なお、走査型
電子顕微鏡による観察の結果、多孔性であることのほか
に、真球状性に優れることもわかった。Further, the specific surface area determined by the B, E, T method (nitrogen gas adsorption) was 112.8j /g. Furthermore, as a result of observation using a scanning electron microscope, it was found that in addition to being porous, it also had excellent sphericity.
実施例3
実施例2と同じ架橋系の高分子微粒子の水分散液5部に
イオン交換水25部と上記したポリビニルアルコール水
溶液3部を加えて均一に撹拌したのち、これにn−ヘキ
シルアルコール70重量%とトルエン30重量%とから
なる孔調整剤(沈殿・膨潤剤N0部、イオン交換水50
部、ラウリル硫酸ナトリウム0.006部を混合して超
音波処理下に乳化液としたものを加えると共に、吸収促
進剤としてアセトン5部を加えて室温で24時間撹拌し
、架橋系の高分子微粒子からなる膨潤粒子の水分散液を
得た。Example 3 25 parts of ion-exchanged water and 3 parts of the above polyvinyl alcohol aqueous solution were added to 5 parts of an aqueous dispersion of the same crosslinked polymer particles as in Example 2, and after uniform stirring, 70 parts of n-hexyl alcohol was added. % by weight and 30% by weight of toluene (precipitating/swelling agent N0 parts, ion-exchanged water 50 parts)
A mixture of 0.006 parts of sodium lauryl sulfate and 0.006 parts of sodium lauryl sulfate was added to make an emulsion under ultrasonic treatment, and 5 parts of acetone was added as an absorption enhancer, and the mixture was stirred at room temperature for 24 hours to form crosslinked polymer fine particles. An aqueous dispersion of swollen particles was obtained.
ついで、この水分散液にスチレン65重量%、ジビニル
ベンゼン35重量%の単量体混合物8.4部と過酸化ベ
ンゾイル0.4部を溶解させてこれにイオン交換水65
部、ラウリル硫酸ナトリウム0.0013部を混合し超
音波処理下に乳化液としたものを加え、撹拌しながら窒
素気流下55℃で2時間、続いて80℃に昇温して6時
間共重合処理し、多孔性架橋重合体微粒子の前駆体を含
む水分散液を得た。この前駆体の粒径は6.78μm1
粒径分布の標準偏差は0.29μ糟であった。Next, 8.4 parts of a monomer mixture of 65% by weight of styrene and 35% by weight of divinylbenzene and 0.4 parts of benzoyl peroxide were dissolved in this aqueous dispersion, and 65% of ion-exchanged water was dissolved in this aqueous dispersion.
1 part and 0.0013 parts of sodium lauryl sulfate were mixed together to form an emulsion under ultrasonic treatment, and the mixture was copolymerized at 55°C for 2 hours under a nitrogen stream with stirring, and then heated to 80°C for 6 hours. An aqueous dispersion containing a precursor of porous crosslinked polymer fine particles was obtained. The particle size of this precursor is 6.78 μm1
The standard deviation of the particle size distribution was 0.29μ.
次に、実施例1と同様に抽出処理し、乾燥処理して多孔
性架橋重合体微粒子を得た。Next, extraction treatment and drying treatment were carried out in the same manner as in Example 1 to obtain porous crosslinked polymer fine particles.
得られた多孔性架橋重合体微粒子としての均一粒径微粒
子は、その粒径が6.78μm1粒径分布の標準偏差が
0.29μmであり、前記した前駆体としての場合と変
わりはなかった。また、抽出処理後における微粒子の重
量減少分は41%であった。さらに、B、E、T法(窒
素ガス吸着)により求めた比表面積は、161.27部
gであった。なお、走査型電子顕微鏡による観察の結果
、多孔性であることのほかに、真球状性に優れることも
わかった。The obtained porous crosslinked polymer fine particles having a uniform particle size had a particle size of 6.78 μm and a standard deviation of the particle size distribution of 0.29 μm, which was the same as that of the precursor described above. Furthermore, the weight reduction of the fine particles after the extraction treatment was 41%. Further, the specific surface area determined by the B, E, T method (nitrogen gas adsorption) was 161.27 parts g. Furthermore, as a result of observation using a scanning electron microscope, it was found that in addition to being porous, it also had excellent sphericity.
実施例4
参考例で得た5次シート粒子を非架橋高分子微粒子とし
て用い、その調製液としての水分散液10部にイオン交
換水100部と上記したポリビニルアルコール水溶液5
部を加えて均一に撹拌したのち、スチレン99.85重
量%、ジビニルベンゼン0.15重量%の単量体混合物
16部に過酸化ベンゾイル0.2部を溶解させてこれに
イオン交換水120部、ラウリル硫酸ナトリウムo、o
ts部を混合し超音波処理下に乳化液としたものを加え
、撹拌しながら窒素気流下80℃で8時間重合処理し、
架橋系の高分子微粒子を含む水分散液を得た。この架橋
系の高分子微粒子の粒径は2.41ules粒径分布の
標準偏差は0.12μ11スチレンに対する膨潤度は1
2であった。Example 4 The 5th sheet particles obtained in Reference Example were used as non-crosslinked polymer fine particles, and 100 parts of ion-exchanged water and the above polyvinyl alcohol aqueous solution 5 were added to 10 parts of an aqueous dispersion as a preparation liquid.
After stirring uniformly, 0.2 parts of benzoyl peroxide was dissolved in 16 parts of a monomer mixture of 99.85% by weight of styrene and 0.15% by weight of divinylbenzene, and 120 parts of ion-exchanged water was dissolved therein. , sodium lauryl sulfate o, o
The ts part was mixed and an emulsion was added under ultrasonic treatment, and the mixture was polymerized at 80°C for 8 hours under a nitrogen stream while stirring.
An aqueous dispersion containing crosslinked polymer fine particles was obtained. The particle size of this crosslinked polymer fine particle is 2.41ules, the standard deviation of the particle size distribution is 0.12μ11, and the degree of swelling with respect to styrene is 1
It was 2.
次に、得られた架橋系の高分子微粒子の水分散液5部に
イオン交換水25部と上記したポリビニルアルコール水
溶液3部を加えて均一に撹拌したのち、これにトル12
10部とイオン交換水50部とラウリル硫酸ナトリウム
0.006部を混合して超音波処理下に乳化液としたも
のを加えると共に、吸収促進剤としてアセトン5部を加
えて室温で24時間撹拌し、架橋系の高分子微粒子から
なる膨潤粒子の水分散液を得た。Next, 25 parts of ion-exchanged water and 3 parts of the above-mentioned polyvinyl alcohol aqueous solution were added to 5 parts of the obtained aqueous dispersion of crosslinked polymer fine particles, and the mixture was stirred uniformly.
10 parts of ion-exchanged water, and 0.006 parts of sodium lauryl sulfate were mixed to form an emulsion under ultrasonication, and 5 parts of acetone was added as an absorption promoter, and the mixture was stirred at room temperature for 24 hours. An aqueous dispersion of swollen particles made of crosslinked polymer fine particles was obtained.
ついで、この水分散液にスチレン65重量%、ジビニル
ベンゼン35重量%の単量体混合物8.4部と過酸化ベ
ンゾイル0.4部を溶解させてこれにイオン交換水65
部、ラウリル硫酸ナトリウム0.006部を混合し超音
波処理下に乳化液としたものを加え、撹拌しながら窒素
気流下55℃で2時間、続いて80℃に昇温して6時間
共重合処理し、多孔性架橋重合体微粒子の前駆体を含む
水分散液を得た。この前駆体の粒径は6.82μm、粒
径分布の標準偏差は0.32u閣であった。Next, 8.4 parts of a monomer mixture of 65% by weight of styrene and 35% by weight of divinylbenzene and 0.4 parts of benzoyl peroxide were dissolved in this aqueous dispersion, and 65% of ion-exchanged water was dissolved in this aqueous dispersion.
1 part and 0.006 part of sodium lauryl sulfate were mixed together to make an emulsion under ultrasonication, and the mixture was copolymerized at 55°C for 2 hours under a nitrogen stream with stirring, and then heated to 80°C for 6 hours. An aqueous dispersion containing a precursor of porous crosslinked polymer fine particles was obtained. The particle size of this precursor was 6.82 μm, and the standard deviation of the particle size distribution was 0.32 μm.
次に、実施例1と同様に抽出処理し、乾燥処理して多孔
性架橋重合体微粒子を得た。Next, extraction treatment and drying treatment were carried out in the same manner as in Example 1 to obtain porous crosslinked polymer fine particles.
得られた多孔性架橋重合体微粒子としての均一粒径微粒
子は、その粒径が6.82μm1粒径分布の標準偏差が
0.32μmであり、前記した前駆体としての場合と変
わりはなかった。また、抽出処理後における微粒子の重
量減少分は40%であった。さらに、B、E、T法(窒
素ガス吸着)により求めた比表面積は、310.9j
/gであった。なお、走査型電子顕微鏡による観察の結
果、多孔性であることのほかに、真球状性に優れること
もわかった。The obtained porous crosslinked polymer fine particles having a uniform particle size had a particle size of 6.82 μm and a standard deviation of the particle size distribution of 0.32 μm, which was the same as that of the precursor described above. Further, the weight reduction of the fine particles after the extraction treatment was 40%. Furthermore, the specific surface area determined by the B, E, T method (nitrogen gas adsorption) is 310.9j
/g. Furthermore, as a result of observation using a scanning electron microscope, it was found that in addition to being porous, it also had excellent sphericity.
Claims (1)
を加えて重合処理し、得られた粒子を次のシート粒子と
して用いてさらに径を成長させる操作を、非架橋性単量
体を水媒中で処理して得た非架橋重合体を初期のシート
粒子として2回以上繰り返して得た、粒径が0.5〜2
μmで粒径分布の標準偏差が0.1μm以下の非架橋高
分子微粒子の水分散液に、非架橋性単量体99〜99.
95重量%と架橋性単量体1〜0.05重量%からなる
単量体混合物を加えて重合処理し、得られた架橋系の高
分子微粒子中に孔調整剤を吸収させて膨潤粒子としたの
ち、この膨潤粒子中に非架橋性単量体50〜90重量%
と架橋性単量体50〜10重量%からなる単量体混合物
を吸収させ、水媒中でこれを共重合処理して多孔性架橋
重合体微粒子の前駆体を得る工程、 (B)前記工程で得た多孔性架橋重合体微 粒子の前駆体より溶剤可溶物質を抽出する工程 からなる粒径が2〜30μmで粒径分布の標準偏差が1
μm以下であり、耐溶剤性でかつ多孔性の均一粒径微粒
子の製造方法。 2、乳化剤を用いる特許請求の範囲第1項記載の方法。 3、孔調整剤が水に不溶性で単量体混合物ないしその構
成単量体に可溶のものである特許請求の範囲第1項記載
の方法。 4、架橋系の高分子微粒子100重量部あたり孔調整剤
を100〜6000重量部、架橋性単量体を50〜10
重量%含む単量体混合物を100〜3000重量部用い
る特許請求の範囲第1項記載の方法。 5、架橋性単量体を50〜10重量%含む単量体混合物
が重合開始剤を含むものである特許請求の範囲第1項記
載の方法。 6、孔調整剤を乳化状態で架橋系の高分子微粒7、架橋
性単量体を50〜10重量%含む単量体混合物を乳化状
態で膨潤粒子の水分散液に加える特許請求の範囲第1項
記載の方法。[Claims] 1. (A) Water and a non-crosslinking monomer are added to an aqueous dispersion of sheet particles and polymerized, and the resulting particles are used as the next sheet particle to further grow the diameter. The operation was repeated two or more times using a non-crosslinked polymer obtained by treating a non-crosslinkable monomer in an aqueous medium as initial sheet particles, and the particle size was 0.5 to 2.
A non-crosslinking monomer of 99 to 99 mm is added to an aqueous dispersion of non-crosslinked polymer fine particles having a standard deviation of particle size distribution of 0.1 μm or less in μm.
A monomer mixture consisting of 95% by weight and 1 to 0.05% by weight of a crosslinkable monomer is added and polymerized, and a pore control agent is absorbed into the resulting crosslinked polymer fine particles to form swollen particles. After that, 50 to 90% by weight of non-crosslinkable monomer is added to the swollen particles.
a step of absorbing a monomer mixture consisting of 50 to 10% by weight of a crosslinkable monomer and copolymerizing it in an aqueous medium to obtain a precursor of porous crosslinked polymer fine particles; (B) the step described above; The particle size is 2 to 30 μm and the standard deviation of the particle size distribution is 1.
A method for producing fine particles having a uniform particle size of .mu.m or less, solvent resistance, and porosity. 2. The method according to claim 1, which uses an emulsifier. 3. The method according to claim 1, wherein the pore regulating agent is insoluble in water and soluble in the monomer mixture or its constituent monomers. 4. 100 to 6000 parts by weight of a pore regulator and 50 to 10 parts by weight of a crosslinkable monomer per 100 parts by weight of crosslinked polymer fine particles.
The method according to claim 1, wherein the monomer mixture containing 100 to 3000 parts by weight is used. 5. The method according to claim 1, wherein the monomer mixture containing 50 to 10% by weight of the crosslinkable monomer contains a polymerization initiator. 6. Adding a pore regulator in an emulsified state to an aqueous dispersion of crosslinked polymer particles 7, and a monomer mixture containing 50 to 10% by weight of a crosslinking monomer in an emulsified state of the swollen particles. The method described in Section 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21611286A JPS6372715A (en) | 1986-09-12 | 1986-09-12 | Production of solvent-resistant, porous fine particle of uniform-particle diameter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21611286A JPS6372715A (en) | 1986-09-12 | 1986-09-12 | Production of solvent-resistant, porous fine particle of uniform-particle diameter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6372715A true JPS6372715A (en) | 1988-04-02 |
Family
ID=16683428
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21611286A Pending JPS6372715A (en) | 1986-09-12 | 1986-09-12 | Production of solvent-resistant, porous fine particle of uniform-particle diameter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6372715A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4952651A (en) * | 1988-03-30 | 1990-08-28 | Japan Synthetic Rubber Co., Ltd. | Highly crosslinked polymer particles and process for producing the same |
JP2006070064A (en) * | 2004-08-31 | 2006-03-16 | Jsr Corp | Magnetic particle and method for producing the same |
JP2012082363A (en) * | 2010-10-14 | 2012-04-26 | Chiyoda Kako Kensetsu Kk | Method for removing and recovering porous forming agent from macro porous type resin |
-
1986
- 1986-09-12 JP JP21611286A patent/JPS6372715A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4952651A (en) * | 1988-03-30 | 1990-08-28 | Japan Synthetic Rubber Co., Ltd. | Highly crosslinked polymer particles and process for producing the same |
JP2006070064A (en) * | 2004-08-31 | 2006-03-16 | Jsr Corp | Magnetic particle and method for producing the same |
JP2012082363A (en) * | 2010-10-14 | 2012-04-26 | Chiyoda Kako Kensetsu Kk | Method for removing and recovering porous forming agent from macro porous type resin |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Arshady | Suspension, emulsion, and dispersion polymerization: A methodological survey | |
AU648293B2 (en) | Process for making controlled, uniform-sized polymer particles | |
JP2614707B2 (en) | Method for producing emulsion polymer having hollow structure | |
EP0763064B1 (en) | A method of manufacturing particles, and particles that can be produced in accordance with the method | |
US5639861A (en) | Crosslinked methacrylic anhydride copolymers | |
Tuncel et al. | Electron microscopic observation of uniform macroporous particles. I. Effect of seed latex type and diluent | |
JP2009041038A (en) | Nanoscale polymerized hydrocarbon particle and methods of making and using such particle | |
JP4049419B2 (en) | Use of substantially monodisperse polymer particles as polymerized seeds, method for producing polymer particles and substantially monodisperse particulate polymer material | |
CN109776708B (en) | Porous polymer material for removing formaldehyde in air at room temperature and preparation method thereof | |
KR101977195B1 (en) | Method for Preparing Porous Polymer Composite Particles | |
JPS6379065A (en) | Filler for liquid chromatography | |
JPS6372715A (en) | Production of solvent-resistant, porous fine particle of uniform-particle diameter | |
JPS61215604A (en) | Production of polymer particle | |
JP2002542318A (en) | Method for producing monodisperse polymer particles | |
JPS62227903A (en) | Production of solvent-resistant porous fine particle of uniform particle diameter | |
JPS62227902A (en) | Production of solvent-resistant porous fine particle of uniform particle diameter | |
KR100729173B1 (en) | Monodisperse seed particles and preparation method of monodisperse crosslinked polymer bead using it | |
JPS62223201A (en) | Solvent-resistant porous fine particle of uniform particle diameter and its production | |
JPS61225254A (en) | Fine particle having uniform particle size and production thereof | |
JPS62223202A (en) | Production of solvent-resistant porous fine particle of uniform particle diameter | |
JPS6372713A (en) | Production of solvent-resistant fine particle of uniform particle diameter | |
Blondeau et al. | Ultrasound suspension polymerization method for preparation of 2-hydroxyethylmethacrylate macroporous copolymers | |
JPS62227901A (en) | Solvent-resistant porous fine particle of uniform particle diameter and its production | |
CN111533839A (en) | Preparation method of porous polymer microspheres | |
JPH01134A (en) | Porous hollow particles and their manufacturing method |