JPS62227901A - Solvent-resistant porous fine particle of uniform particle diameter and its production - Google Patents

Solvent-resistant porous fine particle of uniform particle diameter and its production

Info

Publication number
JPS62227901A
JPS62227901A JP7224286A JP7224286A JPS62227901A JP S62227901 A JPS62227901 A JP S62227901A JP 7224286 A JP7224286 A JP 7224286A JP 7224286 A JP7224286 A JP 7224286A JP S62227901 A JPS62227901 A JP S62227901A
Authority
JP
Japan
Prior art keywords
crosslinked polymer
fine particles
monomer
particle size
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7224286A
Other languages
Japanese (ja)
Inventor
Tadashi Asano
浅野 匡司
Toshihiko Tomita
俊彦 富田
Yutaka Moroishi
裕 諸石
Mareyoshi Sawada
澤田 希能
Ken Noguchi
野口 謙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP7224286A priority Critical patent/JPS62227901A/en
Publication of JPS62227901A publication Critical patent/JPS62227901A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)

Abstract

PURPOSE:To produce the titled porous fine particles excelling in solvent resistance and having a uniform particle diameter, by extracting solvent-soluble matter from a specified precursor of porous fine crosslinked polymer particles. CONSTITUTION:An aqueous dispersion of uncrosslinked fine polymer particles of a particle diameter of 0.5-2mum and a standard deviation of a particle distribution <=0.1mum is obtained by repeating the polymerization of initial seed particles comprising an uncrosslinked polymer obtained by polymerizing a noncrosslinking monomer in an aqueous medium at least twice. To this aqueous dispersion a monomer mixture comprising 99-99.95wt% noncrosslinking monomer and 1-0.05wt% crosslinking monomer is added and polymerized to obtain a crosslinkable fine polymer particles. 100-3,000pts.wt. monomer mixture comprising 50-90wt% noncrosslinkable monomer and 50-10wt% crosslinkable monomer is absorbed by 100pts.wt. above-produced fine particles and copolymerized in an aqueous medium to obtain a precursor of porous fine crosslinked polymer particles. Solvent-soluble matter is extracted from this precursor to obtain solvent-resistant porous fine particles having a uniform diameter, a particle diameter of 2-30mum and a standard deviation of a particle size distribution <=1mum.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、低架橋密゛度の架橋重合体と高架橋密度の架
橋重合体からなる多孔性架橋重合体微粒子よりなり、粒
径が2〜30μmnで粒径分布の標準偏差が1μm1以
下であり、耐溶剤性でかつ多孔性の均一粒径微粒子及び
その製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is a porous cross-linked polymer fine particle composed of a cross-linked polymer with a low cross-link density and a cross-linked polymer with a high cross-link density, and has a particle size of 2 to 30 μm. The present invention relates to solvent-resistant, porous, uniformly sized fine particles having a standard deviation of particle size distribution of 1 μm1 or less, and a method for producing the same.

従来の技術 不透明化剤、つや消し剤、有機顔料ないし充填材、厚み
間隙調整材、クロマトグラフィ用担体などとして利用さ
れる高分子微粒子には、その粒径が均一であることが強
(要求される。また、厚み間隙調整材やクロマトグラフ
ィ用担体などとして利用するときのように、各種の溶剤
に分散させた状態で適用される場合には、その溶剤に溶
解ないし膨潤しないことが要求される。さらに、クロマ
トグラフィ用担体などとして利用するときのように表面
梼の大きいことが有利に機能する用途にあっては、多孔
性であることも望まれる。
Conventional Technology Polymer fine particles used as opacifying agents, matting agents, organic pigments or fillers, thickness and gap adjusting materials, carriers for chromatography, etc. are strongly required to have uniform particle diameters. In addition, when used in a dispersed state in various solvents, such as when used as a thickness gap adjustment material or a carrier for chromatography, it is required that it does not dissolve or swell in the solvent.Furthermore, Porous properties are also desired in applications where a large surface pore is advantageous, such as when used as a chromatography carrier.

従来、耐溶剤性の均一粒径微粒子としては、架橋状態に
ある高分子微粒子をシード粒子とし、これに非架橋性単
量体あるいは架橋しうる単量体混合物を吸収させ、重合
処理したものが知られていた(特開昭59−18705
号公報、英国特許第728508号、英国特許第111
6800号)。
Conventionally, solvent-resistant fine particles with a uniform particle size have been produced by polymerizing seed particles of crosslinked polymer particles, absorbing a non-crosslinkable monomer or a mixture of crosslinkable monomers into the seed particles, and then polymerizing them. It was known (Japanese Unexamined Patent Publication No. 59-18705)
British Patent No. 728508, British Patent No. 111
No. 6800).

一方、多孔性の均一粒径微粒子としては、用いる単量体
は溶かすが反応生成物は溶かさない有機溶剤の存在下に
、親水性ビニル系単量体とアクリル酸等とを、あるいは
フェニル基含有疎水性単量体と親水性単量体とを水性懸
濁下に重合させたのち該有機溶剤を除去したものが知ら
れていたく特開昭58−88657号公報、特開昭58
−83260号公報)。
On the other hand, as porous particles with a uniform particle size, hydrophilic vinyl monomers and acrylic acid, etc., or phenyl group-containing particles are prepared by combining hydrophilic vinyl monomers and acrylic acid, etc., in the presence of an organic solvent that dissolves the monomers used but does not dissolve the reaction products. There are known methods in which a hydrophobic monomer and a hydrophilic monomer are polymerized in aqueous suspension and then the organic solvent is removed.
-83260).

発明が解決しようとする問題点 しかしながら、上記した単に耐溶剤性のものを得るだけ
の場合にあっても、得られたものは粒径の均一性に劣る
という問題点があった。
Problems to be Solved by the Invention However, even when simply obtaining the above-mentioned solvent-resistant particles, there is a problem in that the particles obtained have poor uniformity in particle size.

また、多孔11のものを得るための水性懸濁重合方式に
あっても得られる粒子の粒径分布が幅広く(数ミクロン
−数十ミクロン)その均一性に劣る問題点があった。
Further, even when using an aqueous suspension polymerization method to obtain the porous 11, there is a problem that the particle size distribution of the obtained particles is wide (several microns to several tens of microns) and is poor in uniformity.

このように、従来方法では粒径の均一性に優れる微粒子
を得ることが困難であった。そのため、重合後に分級処
理して粒径の均一化をはかっているのが現状である。し
かし、粒径が2〜3hmの範囲において粒径分布の標準
偏差が1μm以下となるように分級処理するまでには至
っていない。
As described above, it has been difficult to obtain fine particles with excellent uniformity in particle size using conventional methods. Therefore, the current practice is to perform a classification process after polymerization to make the particle size uniform. However, classification processing has not yet been carried out so that the standard deviation of the particle size distribution is 1 μm or less in the particle size range of 2 to 3 hm.

従って、粒径が2〜30μ…で粒径分布の標準偏差が1
νm以下であり、耐溶剤性でかつ多孔性の均一粒径微粒
子はこれまでに知られていない。
Therefore, the standard deviation of the particle size distribution is 1 when the particle size is 2 to 30μ...
νm or less, solvent-resistant, and porous uniform particle size particles have not been known so far.

問題点を解決するための手段 本発明者らは上記の問題点を克服し、粒径が2〜30 
p u+で粒径分布の標準偏差が1μI以下であり、耐
溶剤性でかつ多孔性の均一粒径微粒子を開発するために
鋭意研究を重ねた結果、シード重合方式で粒径を成長さ
せた非架橋高分子微粒子を先ず、架橋11単量体の含有
濃度が低い単量体混合物で処理して架橋系の高分子微粒
子とし、次にこれを架橋性単量体の含有濃度が高い単量
体混合物の吸収下に共重合処理して多孔性架橋重合体微
粒子の前駆体とし、得られた前駆体より溶剤可溶物質を
除去して多孔性架橋重合体微粒子とすることによりその
目的を達成しうろことを見出し、本発明をなすに至った
Means for Solving the Problems The present inventors have overcome the above problems, and have
As a result of intensive research to develop fine particles with a uniform particle size that is solvent resistant and porous, with a standard deviation of particle size distribution of 1 μI or less in p u The crosslinked polymer fine particles are first treated with a monomer mixture containing a low concentration of crosslinking monomer 11 to form crosslinked polymer fine particles, and then these are treated with a monomer mixture containing a high crosslinking monomer concentration. The purpose is achieved by copolymerizing the mixture while absorbing it to obtain a precursor of porous crosslinked polymer particles, and removing solvent-soluble substances from the obtained precursor to obtain porous crosslinked polymer particles. They discovered scales and came up with the present invention.

すなわち、本発明は、架橋性単量体を0.05〜1重量
%含む単量体混合物を共重合処理して得た低架橋密度の
架橋重合体と、架橋性単量体を10〜50重量%含む単
量体混合物を共重合処理して得た高架橋密度の架橋重合
体とからなる多孔性架橋重合体微粒子よりなり、粒径が
2〜3h…で粒径分布の標準偏差が1μm以下であり、
耐溶剤性でかつ多孔性の均一粒径微粒子、及び(A)シ
ード粒子の水分散液に水、非架橋11単量体を加えて重
合処理し、得られた粒子を次のシード粒子として用いて
さらに径を成長させる操作を、非架橋性単量体を水媒中
で処理して得た非架橋重合体を初期のシード粒子として
2回以上繰り返して得た、粒径が0.5〜2umで粒径
分布の標準偏差が0.1μfO以下の非架橋高分子微粒
子の水分散液に、非架橋性単量体99〜99.95重量
%と架橋性単量体1〜0.05重量%からなる単量体混
合物を加えて重合処理し、得られた架橋系の高分子微粒
子中に、非架橋性単量体50〜90重量%と架橋性単量
体50〜10重量%からなる単量体混合物を吸収させ、
水媒中でこれを共重合処理して多孔性架橋重合体微粒子
の前駆体を得る工程、(B)前記工程で得た多孔性架橋
重合体微粒子の前駆体より溶剤可溶物質を抽出する工程
からなる粒径が2〜30umで粒径分布の標準偏差が1
μm以下であり、耐溶剤性でかつ多孔性の均一粒径微粒
子の製造方法を提供するものである。
That is, the present invention uses a crosslinked polymer with a low crosslinking density obtained by copolymerizing a monomer mixture containing 0.05 to 1% by weight of a crosslinkable monomer, and a crosslinked polymer containing 10 to 50% by weight of a crosslinkable monomer. It consists of porous crosslinked polymer fine particles consisting of a crosslinked polymer with a high crosslinking density obtained by copolymerizing a monomer mixture containing % by weight, and the particle size is 2 to 3 h... and the standard deviation of the particle size distribution is 1 μm or less and
Solvent resistant and porous uniform particle size particles and (A) water and a non-crosslinked 11 monomer are added to an aqueous dispersion of seed particles and polymerized, and the resulting particles are used as the next seed particle. The operation of further growing the diameter was repeated two or more times using a non-crosslinked polymer obtained by treating a non-crosslinkable monomer in an aqueous medium as initial seed particles, and the particle size was 0.5 to 0.5. 99 to 99.95% by weight of non-crosslinkable monomer and 1 to 0.05% by weight of crosslinkable monomer to an aqueous dispersion of non-crosslinked polymer fine particles having a diameter of 2 um and a standard deviation of particle size distribution of 0.1 μfO or less. A monomer mixture consisting of 50 to 90% by weight of non-crosslinkable monomers and 50 to 10% by weight of crosslinkable monomers is added in the resulting crosslinked polymer fine particles. absorb the monomer mixture,
A step of copolymerizing this in an aqueous medium to obtain a precursor of porous crosslinked polymer fine particles, (B) a step of extracting a solvent-soluble substance from the precursor of porous crosslinked polymer fine particles obtained in the above step. The particle size is 2 to 30 um, and the standard deviation of the particle size distribution is 1.
The present invention provides a method for producing fine particles having a uniform particle size of .mu.m or less, which is solvent resistant and porous.

以下、本発明の均一粒径微粒子の一例をその製造方法に
基づいて説明する。
Hereinafter, an example of the uniform particle diameter fine particles of the present invention will be explained based on its manufacturing method.

本発明方法においては、先ずシード重合方式で得た非架
橋高分子微粒子を架橋性単量体の含有濃度が低い単量体
混合物で処理し、得られた架橋系の高分子微粒子中に架
橋性単量体の含有濃度が高い単量体混合物を吸収させ、
これを共重合処理して多孔性架橋重合体微粒子の前駆体
を得る(A工程)。
In the method of the present invention, first, non-crosslinked polymer fine particles obtained by a seed polymerization method are treated with a monomer mixture containing a low concentration of crosslinkable monomers, and the resulting crosslinked polymer fine particles contain crosslinkable polymer particles. Absorbs a monomer mixture with a high concentration of monomers,
This is copolymerized to obtain a precursor of porous crosslinked polymer fine particles (Step A).

その際、非架橋高分子微粒子としては非架橋性単量体を
用いたシード重合を2回以上繰り返して得た、粒径が0
.5〜2μmで粒径分布の標準偏差が0、lun以下、
好ましくは0.05um以下のものが用いられる。すな
わち、シード粒子の水分散液に水、非架橋性単量体、さ
らには必要に応じて反応の安定化に要する量の乳化剤(
表面張力が55ダイン/ cm以上となるようにするこ
とが好ましい。)及び重合開始剤を加えて重合処理し、
得られた粒子を次のシード粒子として用いてさらに径を
成長させる操作を2回以上繰り返して所定の大きさとし
たものが用いられる。初期のシード粒子としては、非架
橋性単量体を水媒中で処理して得た非架橋重合体が用い
られる。すなわち、例えば非架橋性単量体を通例の乳化
重合方式等で処理して得たエマルジョンにおける非架橋
重合体などが用いられる。
At that time, the non-crosslinked polymer fine particles were obtained by repeating seed polymerization using a non-crosslinkable monomer two or more times, and had a particle size of 0.
.. 5 to 2 μm, standard deviation of particle size distribution is 0, lun or less,
Preferably, one with a thickness of 0.05 um or less is used. That is, an aqueous dispersion of seed particles is mixed with water, a non-crosslinking monomer, and, if necessary, an amount of emulsifier (
It is preferable that the surface tension is 55 dynes/cm or more. ) and polymerization treatment by adding a polymerization initiator,
The obtained particles are used as the next seed particle and the operation of growing the diameter is repeated two or more times to obtain a predetermined size. As the initial seed particles, a non-crosslinked polymer obtained by treating a non-crosslinkable monomer in an aqueous medium is used. That is, for example, a non-crosslinked polymer in an emulsion obtained by processing a non-crosslinkable monomer by a conventional emulsion polymerization method or the like is used.

このような条件を満足する非架橋高分子微粒子を用いる
ことにより、最終目的物における粒径と粒径分布の標準
偏差及び多孔性が実現される。
By using non-crosslinked polymer fine particles that satisfy these conditions, the particle size, standard deviation of particle size distribution, and porosity in the final target product can be achieved.

前記した非架橋高分子微粒子は、架橋性単量体の含有c
a度が低い単量体混合物による処理に供される。すなわ
ち、非架橋高分子微粒子は、その水分散液に非架橋性単
量体99〜99.95重量?6、好ましくは99.5〜
99.9重量%と架橋性単量体1〜0.05重量?6、
好ましくは0.5〜0.1重量%からなる単量体混合物
を加え、これを非架橋高分子微粒子中に吸収させて共重
合処理し、架橋系の高分子微粒子とされる。これにより
、後で用いられる架橋性単量体の含有濃度の高い単量体
混合物ないしその構成単量体で膨潤しうるちのが得られ
ると共に、最終目的物における低架橋密度の架橋重合体
が形成され、かつ一般に真球状性に優れる最終目的物の
均一粒径微粒子とすることができる。前記混合割合の単
量体混合物を用いて得られる架橋系の高分子微粒子の膨
潤度(膨潤前後における粒子の容積比〉は、通常8〜1
00である。この程度の膨潤度のものが本発明方法にお
いては好ましい。従って、前記した架tA系の高分子微
粒子を得る際に用いる単量体混合物における架橋性単量
体の含有量が少な過ぎると膨潤度の過大なものが得られ
ることとなり、最終目的物である均一粒径微粒子の耐溶
剤性が充分でないなど本発明の目的が達成されにくい。
The above-mentioned non-crosslinked polymer fine particles contain a crosslinkable monomer c
It is subjected to treatment with a monomer mixture having a low degree of a. That is, the non-crosslinked polymer fine particles contain 99 to 99.95% by weight of the non-crosslinkable monomer in the aqueous dispersion. 6, preferably 99.5~
99.9% by weight and 1 to 0.05% by weight of crosslinkable monomer? 6,
A monomer mixture preferably consisting of 0.5 to 0.1% by weight is added, and this is absorbed into non-crosslinked polymer fine particles and copolymerized to obtain crosslinked polymer fine particles. As a result, a monomer mixture with a high concentration of crosslinkable monomers used later or a monomer that is swollen with its constituent monomers is obtained, and a crosslinked polymer with a low crosslink density is formed in the final target product. The final target product can be made into fine particles with a uniform particle size and generally excellent sphericity. The swelling degree (volume ratio of particles before and after swelling) of the crosslinked polymer fine particles obtained using the monomer mixture at the above mixing ratio is usually 8 to 1.
It is 00. A material with a degree of swelling of this level is preferable in the method of the present invention. Therefore, if the content of the crosslinkable monomer in the monomer mixture used to obtain the above-mentioned crosslinked tA-based polymer fine particles is too small, a product with an excessive swelling degree will be obtained. The purpose of the present invention is difficult to achieve because the solvent resistance of uniform particle size particles is insufficient.

一方、架橋性単量体の含を量が多過ぎると膨潤度の過小
(架橋密度過多)なものが得られることとなり、後で用
いる単量体混合物が粒子中に充分に拡散できず、粒子中
での重合が不充分となり、また粒径のバラツキの原因と
なる新たな粒子が生成しやすくなって、本発明方法の目
的が充分に達成されに(い。
On the other hand, if the content of the crosslinking monomer is too large, particles with too small a degree of swelling (excessive crosslinking density) will be obtained, and the monomer mixture used later will not be able to sufficiently diffuse into the particles. The purpose of the method of the present invention may not be fully achieved because the polymerization in the particles becomes insufficient and new particles are likely to be generated which causes variation in particle size.

前記した非架橋高分子微粒子より架橋系の高分子微粒子
を得るための処理における単量体混合物の使用量は、限
定するものでないが、非架橋高分子微粒子100重量部
あたり2000重量部以下、就中1000重量部以下が
好ましい。その使用量が過剰であると得られる架橋系の
高分子ii粒子の粒径分布が幅広(なる場合があり、本
発明方法の目的が達成されない場合がある。
The amount of the monomer mixture used in the treatment for obtaining crosslinked polymer fine particles from the non-crosslinked polymer fine particles described above is not limited, but is preferably 2000 parts by weight or less per 100 parts by weight of non-crosslinked polymer fine particles. It is preferably 1000 parts by weight or less. If the amount used is excessive, the resulting crosslinked polymer II particles may have a wide particle size distribution, and the purpose of the method of the present invention may not be achieved.

なお、単量体混合物を非架橋高分子微粒子の水分散液に
加える際には、非架橋高分子微粒子中に吸収されやすく
するため乳化液として加えてもよい。この場合、重合開
始剤は油溶性のものを単量体混合物に溶解せしめて用い
るとより好ましい。
In addition, when adding the monomer mixture to the aqueous dispersion of non-crosslinked polymer fine particles, it may be added as an emulsion to facilitate absorption into the non-crosslinked polymer fine particles. In this case, it is more preferable to use an oil-soluble polymerization initiator dissolved in the monomer mixture.

前記単量体混合物に基づ(低架橋密度の架橋重合体によ
り非業ha高分子微粒子が変化したものとしての架橋系
の高分子微粒子は、架橋性単量体の含有濃度が高い単量
体混合物の反応へ−スとして利用される。すなわち、架
橋系の高分子微粒子中に架橋性単量体の含有濃度が高い
単量体混合物を吸収させてこれを重合開始剤の存在下、
共重合処理する操作に供される。これにより、低架橋密
度の架橋重合体を有する架橋系の高分子微粒子の少なく
とら内部に、架橋性単量体の含有濃度が高い単量体混合
物に基づ(高架(19密度の架橋重合体を有し、粒径が
拡張した多孔性架橋重合体微粒子の前駆体が得られる。
Based on the monomer mixture (non-conducting polymer fine particles modified with a cross-linked polymer having a low cross-link density), the cross-linked polymer fine particles are composed of a monomer having a high concentration of cross-linkable monomers. It is used as a reaction base for mixtures.In other words, a monomer mixture containing a high concentration of crosslinkable monomers is absorbed into crosslinked polymer fine particles, and then this is absorbed in the presence of a polymerization initiator.
It is subjected to a copolymerization process. As a result, at least some of the crosslinked polymer fine particles having a crosslinked polymer with a low crosslinking density are filled with a monomer mixture containing a high concentration of crosslinkable monomer (high crosslinked polymer with a density of 19). A precursor of porous crosslinked polymer fine particles having an expanded particle size is obtained.

架橋系の高分子微粒子中に単量体混合物を吸収させる処
理は、架橋系の高分子微粒子の分散液、殊に乳化重合液
としての水分散液に、単量体混合物を加えて撹拌する方
式が一般である。この方式によれば、架橋系の高分子微
粒子の調製液を利用して共重合処理を一連に行える利点
がある。ただし、これに限定するものでなく、結果的に
該吸収状態が形成される方式であればよい。また、吸収
処理に際しては、吸収速度をあげるために加熱してもよ
いし、アセトンやエタノールなどの水溶性溶剤を加えて
もよい。さらに、単量体混合物をあらかじめ乳化して加
えてもよい。なお、溶剤を用いる方式にあってはその溶
剤を重合開始前に除去しておくことが好ましい。
The process of absorbing the monomer mixture into crosslinked polymer fine particles is a method in which the monomer mixture is added to a dispersion of crosslinked polymer fine particles, especially an aqueous dispersion as an emulsion polymerization liquid, and the mixture is stirred. is common. This method has the advantage that the copolymerization process can be carried out in a series using a preparation solution of crosslinked polymer fine particles. However, the method is not limited to this, and any method may be used as long as the absorption state is formed as a result. Further, during the absorption treatment, heating may be performed to increase the absorption rate, or a water-soluble solvent such as acetone or ethanol may be added. Furthermore, the monomer mixture may be emulsified in advance and added. In addition, in a method using a solvent, it is preferable to remove the solvent before starting the polymerization.

多孔性架橋重合体微粒子の前駆体を得るための処理にお
ける単量体混合物の使用量は、架橋系の高分子微粒子1
00重量部あたり100〜3000重量部が適当である
。その使用量が100重量部未満であると得られる均一
粒径微粒子の耐溶剤性が不充分となり、3000重量部
を超えると架橋系の高分子微粒子外での重合が進行しや
すくなって好ましくない。
The amount of the monomer mixture used in the treatment to obtain the precursor of the porous crosslinked polymer fine particles is 1% of the crosslinked polymer fine particles.
100 to 3000 parts by weight per 00 parts by weight is suitable. If the amount used is less than 100 parts by weight, the solvent resistance of the resulting uniform particle size particles will be insufficient, and if it exceeds 3,000 parts by weight, polymerization outside the crosslinked polymer particles will tend to proceed, which is undesirable. .

前記処理において用いられる単量体混合物における非架
橋性単量体と架橋性単量体との混合割合は、非架橋性単
量体50〜90重量%、架橋性単量体50〜10重量%
が適当である。架橋性単量体の混合割合が50重量%を
超えると得られる架橋重合体の架橋密度が過多となり、
10重量%未満であると架橋密度が過少となって本発明
の目的が達成されにくくなる。
The mixing ratio of the non-crosslinkable monomer and the crosslinkable monomer in the monomer mixture used in the treatment is 50 to 90% by weight of the non-crosslinkable monomer and 50 to 10% by weight of the crosslinkable monomer.
is appropriate. When the mixing ratio of the crosslinkable monomer exceeds 50% by weight, the crosslinking density of the resulting crosslinked polymer becomes excessive,
If it is less than 10% by weight, the crosslinking density will be too low, making it difficult to achieve the object of the present invention.

多孔性架橋重合体微粒子の前駆体を得るための共重合処
理は、適宜な媒体を用いて通例の重合処理条件で行うこ
とができる。水媒系による場合、重合開始剤としては通
常の油溶性のラジカル系開始剤が好ましく用いられる。
The copolymerization treatment for obtaining a precursor of porous crosslinked polymer fine particles can be carried out using an appropriate medium under usual polymerization treatment conditions. When using an aqueous medium, a common oil-soluble radical initiator is preferably used as the polymerization initiator.

水溶性のものであると新たな粒子が生成するときがあっ
て不都合を生じる場合がある。なお、油溶性の重合開始
剤は単量体混合物に0.1〜3重量%溶解させて用いる
方式が、架橋系の高分子微粒子中での重合を円滑に行わ
しめるうえで望ましい。
If it is water-soluble, new particles may be generated, which may cause problems. Note that it is desirable to use the oil-soluble polymerization initiator dissolved in the monomer mixture in an amount of 0.1 to 3% by weight in order to smoothly carry out the polymerization in the crosslinked polymer fine particles.

なお、共重合処理に際しては乳化剤、重合安定剤を用い
て粒子を安定化せしめることが望ましい。
Incidentally, during the copolymerization treatment, it is desirable to stabilize the particles using an emulsifier or a polymerization stabilizer.

その使用量は多孔性架橋重合体微粒子の前駆体以外に新
たな粒子が生成しない量とすることが適当である。
It is appropriate that the amount used is such that no new particles are generated other than the precursor of the porous crosslinked polymer fine particles.

本発明方法において非架橋高分子微粒子を得るための非
架橋性単量体、あるいは架橋系の高分子微粒子、多孔性
架橋重合体微粒子の前駆体を得るための単量体混合物に
おける単量体としては、そのものないしその重合体が水
に難溶性のものないし溶解しないものが好ましく用いら
れる。水に溶解しやすいものであると、水中で重合が進
行してシード粒子等の粒径が成長しにくかったり、新た
な粒子ができやすくなったり、あるいは非架橋高分子微
粒子中、架橋系の高分子微粒子中に吸収されにくかった
りして好ましくない。
As a non-crosslinkable monomer for obtaining non-crosslinked polymer fine particles in the method of the present invention, or as a monomer in a monomer mixture for obtaining a precursor of crosslinked polymer fine particles or porous crosslinked polymer fine particles. It is preferable to use those which themselves or their polymers are poorly soluble or insoluble in water. If the material is easily soluble in water, polymerization will proceed in water, making it difficult for the particle size of seed particles to grow, making it easier to form new particles, or increasing the crosslinked polymer content in non-crosslinked polymer fine particles. This is not preferable because it may be difficult to absorb into molecular fine particles.

好ましく用いうろ非架橋性単量体としては、例えばスチ
レン、メチルスチレン、エチルスチレンのようなスチレ
ン系単量体、アクリル酸ブチル、メタクリル酸ブチル、
アクリル酸2−エチルヘキシル、メタクリル酸2−エチ
ルへキシルのような炭素数が4以上のアルキル基を有す
るアクリル酸、メタクリル酸のエステル系単量体などを
あげることができる。
Preferably used non-crosslinkable monomers include styrene monomers such as styrene, methylstyrene, and ethylstyrene, butyl acrylate, butyl methacrylate,
Examples include ester monomers of acrylic acid and methacrylic acid having an alkyl group having 4 or more carbon atoms, such as 2-ethylhexyl acrylate and 2-ethylhexyl methacrylate.

好ましく用いうる架橋性単量体としては、例えばトリメ
チロールプロパントリメタクリレート、ジエチレングリ
コールジメタクリレート、ジビニルベンゼンのようなエ
チレン性二重結合を2以上有する単量体などをあげるこ
とができる。
Examples of crosslinkable monomers that can be preferably used include monomers having two or more ethylenic double bonds, such as trimethylolpropane trimethacrylate, diethylene glycol dimethacrylate, and divinylbenzene.

非架橋性単量体、架橋性単量体の使用は1種のみであっ
てもよいし、2種以上であってもよい。
The number of non-crosslinkable monomers and crosslinkable monomers may be one, or two or more.

目的物の用途に応じて決定される。例えば、厚み間隙調
整材、クロマトグラフィ用担体として使用する場合には
耐圧性が要求されるので、重合体のガラス転移点が高い
スチレン系単量体を非架橋性単量体として用い、水への
溶解性の低いジビニルベンゼンを架橋性単量体として用
いることが好ましい。なお、スチレン系単量体は共重合
処理において凝集することな(安定に処理を進めつる利
点などら有している。
Determined according to the intended use of the object. For example, when used as a thickness gap adjustment material or a carrier for chromatography, pressure resistance is required. It is preferable to use divinylbenzene, which has low solubility, as the crosslinking monomer. Incidentally, styrene monomers have the advantage of not agglomerating during copolymerization (the process can proceed stably).

上記のようにして共重合処理することにより、低架橋密
度の架橋重合体からなる架橋系の高分子微粒子の内部に
高架橋密度の架橋重合体を有する構造の、粒径が2〜3
0νm1好ましくは2〜20νmで、粒径分布の標準偏
差が1四以下、旺ましくは0.5μm以下であり、一般
に真球状性に優れる多孔性架橋重合体微粒子の前駆体が
得られる。なお、多孔性架橋重合体微粒子の前駆体中に
おける高架橋密度の架橋重合体は前駆体と化学的に結合
していてもよいし、していなくてもよい。また、多孔性
架橋重合体微粒子の前駆体の表面に高架橋密度の架橋重
合体を有していてもよい。
By performing the copolymerization treatment as described above, the particle size of the crosslinked polymer fine particles having a crosslinked polymer having a high crosslinking density inside the crosslinked polymer fine particles having a crosslinked polymer having a low crosslinking density becomes 2 to 3.
0 νm1 is preferably 2 to 20 νm, the standard deviation of the particle size distribution is 14 or less, preferably 0.5 μm or less, and a precursor of porous crosslinked polymer fine particles having generally excellent sphericity can be obtained. Note that the crosslinked polymer having a high crosslink density in the precursor of the porous crosslinked polymer fine particles may or may not be chemically bonded to the precursor. Further, the surface of the precursor of the porous crosslinked polymer fine particles may have a crosslinked polymer having a high crosslink density.

本発明方法において前記の工程で得られた多孔性架橋重
合体微粒子の前駆体は次に、溶剤可溶物質の抽出工程に
おかれる(B工程)。これにより、多孔性が付与された
架橋重合体微粒子からなる目的物としての均一粒径微粒
子が得られる。
In the method of the present invention, the precursor of the porous crosslinked polymer fine particles obtained in the above step is then subjected to a step of extracting a solvent-soluble substance (step B). As a result, uniform particle size particles can be obtained, which are made of crosslinked polymer particles imparted with porosity.

溶剤可溶物質の抽出は、例えば次の方式により行うこと
ができる。
Extraction of solvent-soluble substances can be performed, for example, by the following method.

すなわち、上記A工程で得られた多孔性架橋重合体微粒
子の前駆体を含む水分散液における分散媒としての水を
、より極性の低い媒体へと徐々に置換して、使用した非
架橋性単量体ないしその重合体とSP値(溶解性パラメ
ータ)が類似した媒体に最終的に置換し、この媒体で洗
浄を繰り返して多孔性架橋重合体微粒子の前駆体中の溶
剤可溶物質を抽出除去する。
That is, water as a dispersion medium in the aqueous dispersion containing the precursor of porous crosslinked polymer fine particles obtained in the above step A is gradually replaced with a less polar medium, and the non-crosslinked monomer used is Finally, the polymer is replaced with a medium that has a similar SP value (solubility parameter) to the polymer, and washing is repeated with this medium to extract and remove the solvent-soluble substances in the precursor of the porous crosslinked polymer fine particles. do.

置換媒体としては、究極には微粒子中より除去されるこ
とが望まれるので、揮発性の低沸点溶剤が一般に好まし
く用いられる。その代表例としてはメタノール、エタノ
ールのようなアルコール類、アセトンのようなケトン類
、その他アセトニトリル、クロロホルム、テトラヒドロ
フラン、ベンゼン、トルエン、キシレン、エチルベンゼ
ンなどをあげることができる。置換媒体は、水との温媒
体あるいは2種以上の溶剤を用いた温媒体などであって
もよい。
As the substitution medium, it is generally desirable to use a volatile low boiling point solvent, since it is ultimately desired to remove it from the fine particles. Typical examples include alcohols such as methanol and ethanol, ketones such as acetone, acetonitrile, chloroform, tetrahydrofuran, benzene, toluene, xylene, and ethylbenzene. The displacement medium may be a hot medium with water or a hot medium using two or more types of solvents.

抽出処理は、多孔性架橋重合体微粒子の前駆体を置換媒
体中に分散させて処理する方式が動量的である場合もあ
る。その場合には、例えば超音波による分散方式を適用
することも可能である。
The extraction process may be carried out dynamically by dispersing the precursor of the porous crosslinked polymer fine particles in a displacement medium. In that case, it is also possible to apply a dispersion method using ultrasonic waves, for example.

なお、抽出処理後の多孔性架橋重合体微粒子中に残存す
る置換媒体の除去は、例えばスプレードライヤー等によ
る方式などで容易に行うことができる。
Incidentally, the substitution medium remaining in the porous crosslinked polymer fine particles after the extraction treatment can be easily removed by, for example, a method such as a spray dryer.

上記のようにして、低架橋密度の架橋重合体の内部に高
架橋密度の架橋重合体を含む構造を一般に有する多孔性
架橋重合体微粒子よりなり、耐溶剤性に優れて粒径が2
〜30 u +n、好ましくは2〜20μmで、粒径分
布の標準偏差が1μm以下、好ましくは0 、5 p+
n以下の均一粒径微粒子が得られる。この均一粒径微粒
子は、一般に真球状性にも優れており、50+J /g
以下、就中30nf/g以下の比表面積を有している。
As described above, it is made of porous crosslinked polymer fine particles that generally have a structure containing a crosslinked polymer with a high crosslinking density inside a crosslinked polymer with a low crosslinking density, and has excellent solvent resistance and a particle size of 2.
~30 u+n, preferably 2-20 μm, with a standard deviation of particle size distribution of 1 μm or less, preferably 0,5 p+
Fine particles with a uniform particle size of n or less can be obtained. These uniform particle size particles generally have excellent sphericity and have a particle size of 50+J/g.
In particular, it has a specific surface area of 30 nf/g or less.

なお、本発明の均一粒径微粒子は、例えば多孔性架橋重
合体微粒子の前駆体を得る際に後の抽出工程で除去しう
ろ孔調整剤を併用する方法、あるいはさらに非架橋高分
子微粒子に代えて直接シード重合方式等により調製した
、粒径の均一性に優れる低架橋密度の高分子微粒子を多
孔性架橋重合体微粒子の前駆体を得るための粒子として
用い、かつ前記した孔調整剤ら用いる方法等で、孔径な
いし比表面積の大型化あるいは巨大網状多孔構造化等を
はかったものなどであってもよい。
In addition, the uniform particle diameter fine particles of the present invention can be obtained by, for example, a method in which a precursor of porous crosslinked polymer fine particles is obtained by removing it in a subsequent extraction step and using a pore control agent together, or by further replacing it with non-crosslinked polymer fine particles. Polymer fine particles with low crosslinking density and excellent particle size uniformity prepared by direct seed polymerization method etc. are used as particles to obtain a precursor of porous crosslinked polymer fine particles, and the above-mentioned pore control agent is used. It may be possible to increase the pore diameter or specific surface area or create a giant network-like porous structure by other methods.

また、本発明の均一粒径微粒子をイオン交換基等の官能
基を有するものとして、イオン交換樹脂等とすることも
可能である。
Further, the uniform particle diameter fine particles of the present invention can be made into an ion exchange resin or the like by having a functional group such as an ion exchange group.

発明の効果 本発明の均一粒径微粒子は、低架橋密度の架橋重合体と
高架橋密度の架橋重合体からなる多孔性架橋重合体微粒
子よりなるので耐溶剤性に優れており、かつ多孔性に基
づいて大きい比表面積を有している。また、粒径の均一
性にも優れている。
Effects of the Invention The uniform particle diameter fine particles of the present invention are composed of porous crosslinked polymer fine particles consisting of a crosslinked polymer with a low crosslinking density and a crosslinked polymer with a high crosslinking density, so they have excellent solvent resistance. It has a large specific surface area. It also has excellent particle size uniformity.

一方、本発明の方法によれば、前記の均一粒径微粒子を
分級処理することなく実用途に供しうる状態て、高収率
に(りることかできる。
On the other hand, according to the method of the present invention, it is possible to obtain the above-mentioned uniform-sized fine particles in a high yield in a state where they can be used for practical purposes without being subjected to classification treatment.

実施例 参考例 ラウリル硫酸ナトリウム0.6部(重量部、以下同様)
を溶解させたイオン交換水70部にスチレン28部を分
散さぜた後、これを撹拌しながら窒素気流下で70°C
に昇温させ、ついで過硫酸カリウム0.03部を溶解さ
せたイオン交換水5部を加え、70℃に8時間保持して
初期シード粒子としての非架橋重合体の水分散液を得た
。この非架橋重合体の粒径は0.04μIn 1粒径分
布の標準偏差は0.01部mであった。
Examples Reference Examples Sodium lauryl sulfate 0.6 parts (parts by weight, the same applies hereinafter)
After dispersing 28 parts of styrene in 70 parts of ion-exchanged water, the mixture was heated at 70°C under a nitrogen stream while stirring.
Then, 5 parts of ion-exchanged water in which 0.03 part of potassium persulfate was dissolved was added, and the mixture was kept at 70°C for 8 hours to obtain an aqueous dispersion of a non-crosslinked polymer as initial seed particles. The particle size of this non-crosslinked polymer was 0.04 μIn, and the standard deviation of the particle size distribution was 0.01 part m.

次に、得られた初期シード粒子の水分散液10部とイオ
ン交換水65部を混合して708Cに昇温したのちスチ
レン28部を加えて1時間撹拌し、ついで過硫酸カリウ
ム0.03部を溶解させたイオン交換水5部を加えて7
0℃に8時間保持し、粒径が0.138μIn。
Next, 10 parts of the aqueous dispersion of the obtained initial seed particles and 65 parts of ion-exchanged water were mixed and heated to 708C, then 28 parts of styrene was added and stirred for 1 hour, followed by 0.03 part of potassium persulfate. Add 5 parts of ion-exchanged water dissolved in 7
Maintained at 0°C for 8 hours, particle size 0.138μIn.

粒径分布の標準偏差が0.012部mの2次シード粒子
の水分散液を得た。そして、さらに前記に準じて2次シ
ード粒子より3次シード粒子を、3次シード粒子より4
次シード粒子を、4次シード粒子より5次シード粒子を
、5次シード粒子より6次シード粒子を表に示す組成で
順次調製した。
An aqueous dispersion of secondary seed particles with a standard deviation of particle size distribution of 0.012 part m was obtained. Further, according to the above, the tertiary seed particles are replaced with the secondary seed particles, and the tertiary seed particles are replaced with 4 times the tertiary seed particles.
Secondary seed particles were sequentially prepared from 4th seed particles to 5th seed particles, and from 5th seed particles to 6th seed particles with the compositions shown in the table.

実施例1 参考例で得た4次シード粒子を非架橋高分子微粒子とし
て用い、その調製液としての水分散1夜10部にイオン
交換水120部とケン化度88%のポリビニルアルコー
ルの100重量部6水溶液10を加えて均一(こ撹拌し
たのち、スチレン99.7重量部6、ジビニルベンゼン
0.3重量06の単量体混合物12部に過酸化ヘンジイ
ル0.2部を溶解させてこれにイオン交換水150部、
ラウリル硫酸ナトリウム0.015部を混合し超音波処
理下に乳化液としたものを加え、撹拌しながら窒素気流
下80℃で9時間重合処理し、架橋系の高分子微粒子を
含む水分散液を得た。この架橋系の高分子微粒子の粒径
は1.12111粒径分布の標準偏差は0.06部m、
スチレンに対する膨潤度は11であった。
Example 1 The quaternary seed particles obtained in Reference Example were used as non-crosslinked polymer fine particles, and the prepared solution was a water dispersion overnight of 10 parts, 120 parts of ion-exchanged water, and 100 parts by weight of polyvinyl alcohol with a degree of saponification of 88%. Part 6 Added 10 parts of aqueous solution and stirred homogeneously, then dissolved 0.2 parts of hendiyl peroxide in 12 parts of a monomer mixture of 99.7 parts by weight of styrene, 6 parts by weight of divinylbenzene, and 0.3 parts by weight of divinylbenzene. 150 parts of ion exchange water,
Add 0.015 parts of sodium lauryl sulfate to make an emulsion under ultrasonic treatment, and polymerize at 80°C for 9 hours under a nitrogen stream while stirring to obtain an aqueous dispersion containing crosslinked polymer fine particles. Obtained. The particle size of this crosslinked polymer fine particle is 1.12111, the standard deviation of the particle size distribution is 0.06 part m,
The degree of swelling with respect to styrene was 11.

次に、得られた架橋系の高分子微粒子の水分散)良32
部にイオン交換水100部と上記したポリビニルアルコ
ール水溶IrJt20部を加えて均一に撹拌したのち、
スチレン70重量%、ジビニルベンゼン30重量%の単
量体混合物30部に過酸化ベンゾイル0.4部を溶解さ
せてこれにイオン交換水200部、ラウリル硫酸ナトリ
ウム0.018部を混合し超音波処理下に乳化液とした
ものを加え、撹拌しながら窒素気流下60℃で2時間、
続いて80℃に昇温しで6時間共重合処理し、多孔性架
橋重合体微粒子の前駆体を含む水分散液を得た。この前
駆体の粒径は2.81’lll %粒径分布の標準偏差
は0.12+lll1であった。
Next, water dispersion of the obtained crosslinked polymer fine particles)
After adding 100 parts of ion-exchanged water and 20 parts of the above polyvinyl alcohol aqueous IrJt to the mixture and stirring uniformly,
0.4 parts of benzoyl peroxide is dissolved in 30 parts of a monomer mixture of 70% by weight of styrene and 30% by weight of divinylbenzene, and 200 parts of ion-exchanged water and 0.018 parts of sodium lauryl sulfate are mixed therein and treated with ultrasound. Add the emulsified liquid to the bottom, and stir at 60°C under a nitrogen stream for 2 hours.
Subsequently, the temperature was raised to 80° C. and a copolymerization treatment was performed for 6 hours to obtain an aqueous dispersion containing a precursor of porous crosslinked polymer fine particles. The particle size of this precursor was 2.81'lll%, and the standard deviation of the particle size distribution was 0.12+lll1.

次に、この水分散液における分散媒を水よりメタノール
、エタノール、アセトン、アセトン、/トルエン(1/
1)混溶剤、トルエンへと順次置換してトルエン分散液
とし、その沸点温度で40時間加温した。その後、トル
エン分散液より微粒子を分離してさらにトルエンで洗浄
し、ついで前記とは逆の順序で分散媒を置換して水分散
液とした。
Next, methanol, ethanol, acetone, acetone/toluene (1/
1) A mixed solvent and toluene were substituted in order to obtain a toluene dispersion, and the mixture was heated at its boiling point temperature for 40 hours. Thereafter, fine particles were separated from the toluene dispersion and further washed with toluene, and then the dispersion medium was replaced in the reverse order to prepare an aqueous dispersion.

得られた水分散液より抽出処理後の多孔性架橋重合体微
粒子を分離し、これをスプレードライヤにより処理して
乾燥させた。
The porous crosslinked polymer fine particles after the extraction treatment were separated from the obtained aqueous dispersion, and treated and dried using a spray dryer.

得られた多孔性架橋重合体微粒子としての均一粒径微粒
子は、その粒径が2.8μ11粒径分布の標準偏差がO
,12+JI11であり、前記した前駆体としての場合
と変わりはなかった。また、抽出処理後における微粒子
の重量減少、すなわち多孔性架橋重合体微粒子の前駆体
に対し、これを抽出処理して得た多孔性架橋重合体微粒
子としての均一粒径微粒子の重量減少分は2.2%であ
った。さらに、B、E。
The obtained porous crosslinked polymer fine particles with a uniform particle size have a particle size of 2.8μ11 and a standard deviation of particle size distribution of 0.
, 12+JI11, which was the same as in the case of the precursor described above. In addition, the weight loss of fine particles after extraction treatment, that is, the weight loss of uniform particle size fine particles as porous crosslinked polymer fine particles obtained by extraction treatment with respect to the precursor of porous crosslinked polymer fine particles, is 2 It was .2%. Furthermore, B, E.

T法(窒素カス吸着)により求めた比表面積は、3 、
211i/ gであり、これより多孔性であることがわ
かった。なお、走査型電子顕微鏡による観察の結果、真
球状性に優れることもわかった。
The specific surface area determined by the T method (nitrogen residue adsorption) is 3,
211i/g, and was found to be more porous than this. Furthermore, as a result of observation using a scanning electron microscope, it was also found that the sphericity was excellent.

実施例2 参考例で得た5次シード粒子を非架橋高分子微粒子とし
て用い、その調製液としての水分散1((10部にイオ
ン交換水120部と上記したポリビニルアルコール水溶
液10部を加えて均一に撹拌したのち、ステ1299.
フ5重量%、ジビニルベンゼン0.25重量%の単量体
混合物9部に過酸化ベンゾイル0.15部を溶解させて
これにイオン交換水140部、ラウリル硫酸ナトリウム
0.014部を混合し超音波処理下に乳化液としたもの
を加え、撹拌しながら窒素気流下80℃で9時間重合処
理し、架橋系の高分子微粒子を含む水分散液を得た。こ
の架橋系の高分子微粒子の粒径は2.18μ−、粒径分
布の標準偏差は0.09μm1スチレンに対する膨潤度
は10であった。
Example 2 The 5th seed particles obtained in Reference Example were used as non-crosslinked polymer fine particles, and water dispersion 1 ((120 parts of ion-exchanged water and 10 parts of the above polyvinyl alcohol aqueous solution were added to 10 parts of the above-mentioned polyvinyl alcohol aqueous solution to 10 parts) After stirring uniformly, step 1299.
0.15 parts of benzoyl peroxide was dissolved in 9 parts of a monomer mixture containing 5% by weight of divinylbenzene and 0.25% by weight of divinylbenzene. The emulsion was added to the emulsion under sonication, and polymerization was carried out at 80° C. under a nitrogen stream for 9 hours while stirring to obtain an aqueous dispersion containing crosslinked polymer fine particles. The crosslinked polymer fine particles had a particle size of 2.18 .mu.m, a standard deviation of particle size distribution of 0.09 .mu.m, and a swelling degree of 10 for 1 styrene.

次に、得られた架橋系の高分子微粒子の水分散液24部
にイオン交換水60部と上記したポリビニルアルコール
水溶液10部を加えて均一に撹拌したのち、スチレン7
0重量%、ジビニルベンゼン30重量%の単量体混合物
18部に過酸化ベンゾイル0.2部を溶解させてこれに
イオン交換水100部、ラウリル硫酸ナトリウム0.0
06部を混合し超音波処理下7 に乳化液としたものを
加え、撹拌しながら窒素気流下60℃で2時間、続いて
80℃に昇温しで6時間共重合処理し、多孔性架橋重合
体微粒子の前駆体を含む水分散液を得た。この前駆体の
粒径は5.64μm1粒径分布の標準偏差は0.lhm
であった。
Next, 60 parts of ion-exchanged water and 10 parts of the above-mentioned polyvinyl alcohol aqueous solution were added to 24 parts of the obtained aqueous dispersion of crosslinked polymer fine particles, and after uniformly stirring, 7 parts of styrene
0.2 parts of benzoyl peroxide is dissolved in 18 parts of a monomer mixture containing 0% by weight of divinylbenzene and 30% by weight of divinylbenzene, and 100 parts of ion-exchanged water and 0.0 parts of sodium lauryl sulfate are dissolved therein.
0.6 parts were mixed and treated with ultrasonic waves to form an emulsion, which was then copolymerized at 60°C for 2 hours under a nitrogen stream while stirring, and then heated to 80°C for 6 hours to form a porous crosslinking agent. An aqueous dispersion containing a precursor of polymer fine particles was obtained. The particle size of this precursor is 5.64 μm, and the standard deviation of the particle size distribution is 0. lhm
Met.

次に、実施例1と同様に抽出処理し、乾燥処理して多孔
性架橋重合体微粒子を得た。
Next, extraction treatment and drying treatment were carried out in the same manner as in Example 1 to obtain porous crosslinked polymer fine particles.

得られた多孔性架橋重合体微粒子としての均一粒径微粒
子は、その粒径が5.64部ms粒径分布の標準偏差が
0 、19部mであり、前記した前駆体としての場合と
変わりはなかった。また、抽出処理後における微粒子の
重量減少分は2.4%であった。さらに、B、E、T法
(窒素ガス吸着)により求めた比表面積は、6.5J/
gでり、多孔性であることがわかった。なお、走査型電
子顕微鏡による観察の結果、真球状性に優れることもわ
かった。
The obtained porous crosslinked polymer fine particles having a uniform particle size have a particle size of 5.64 parts ms and a standard deviation of particle size distribution of 0.19 parts m, which is different from that of the precursor described above. There was no. Furthermore, the weight loss of the fine particles after the extraction treatment was 2.4%. Furthermore, the specific surface area determined by the B, E, T method (nitrogen gas adsorption) is 6.5 J/
It was found that the material was porous. Furthermore, as a result of observation using a scanning electron microscope, it was also found that the sphericity was excellent.

実施例3 参考例で得た6次シード粒子を非架橋高分子微粒子とし
て用い、その調製液としての水分散液10部にイオン交
換水120部と上記したポリビニルアルコール水溶液1
0部を加えて均一に撹拌したのち、スチレン99.7S
ffi量%、ジビニルベンゼン0.25ffi量%の単
量体混合物1o部に過酸化ベンゾイル0615部を溶解
させてこれにイオン交換水140部、ラウリル硫酸ナト
リウム0.01部を混合し超音波処理下に乳化液とした
ものを加え、撹拌しなから窒素気流下80℃で9時間重
合処理し、架橋系の高分子微粒子を含む水分散液を得た
。この架橋系の高分子微粒子の粒径は4.39μm1粒
径分布の標準偏差は0.10ν+n 、スチレンに対す
る膨潤度は10.5であった。
Example 3 The sixth seed particles obtained in Reference Example were used as non-crosslinked polymer fine particles, and 120 parts of ion-exchanged water and the above polyvinyl alcohol aqueous solution 1 were added to 10 parts of an aqueous dispersion as a preparation liquid.
After adding 0 parts and stirring uniformly, add styrene 99.7S.
0.615 parts of benzoyl peroxide was dissolved in 10 parts of a monomer mixture of ffi amount% and divinylbenzene 0.25 ffi amount%, and 140 parts of ion-exchanged water and 0.01 part of sodium lauryl sulfate were mixed therewith and subjected to ultrasonic treatment. An emulsion was added to the mixture, and polymerization was carried out at 80° C. under a nitrogen stream for 9 hours without stirring to obtain an aqueous dispersion containing crosslinked polymer fine particles. The particle size of this crosslinked polymer fine particle was 4.39 μm, the standard deviation of the particle size distribution was 0.10 ν+n, and the degree of swelling with respect to styrene was 10.5.

次に、得られた架橋系の高分子微粒子の水分散液43部
にイオン交換水100部と上記したポリビニルアルコー
ル水溶FtlB部を加えて均一に撹拌したのち、スチレ
ン70重量%、ジビニルベンゼン30重量%の単量体混
合物32部に過酸化ベンゾイル0.4部を溶解させてこ
れにイオン交換水180部、ラウリル硫酸ナトリウム0
.012部を混合し超音波処理下に乳化液としたものを
加え、撹拌しながら窒素気流下60℃で2時間、続いて
80’Cに昇温して6時間共重合処理し、多孔性架橋重
合体微粒子の前駆体を含む水分散液を得た。この前駆体
の粒径は11.3μm、粒径分布の標準偏差は0,30
帽0てあった。
Next, 100 parts of ion-exchanged water and the above-mentioned part of polyvinyl alcohol aqueous FtlB were added to 43 parts of the obtained aqueous dispersion of crosslinked polymer particles, and after uniformly stirring, 70% by weight of styrene and 30% by weight of divinylbenzene were added. Dissolve 0.4 part of benzoyl peroxide in 32 parts of a monomer mixture of
.. 012 parts were mixed and an emulsion was added under ultrasonic treatment, and the mixture was copolymerized at 60°C for 2 hours under a nitrogen stream while stirring, and then the temperature was raised to 80'C for 6 hours to form a porous crosslinker. An aqueous dispersion containing a precursor of polymer fine particles was obtained. The particle size of this precursor is 11.3 μm, and the standard deviation of the particle size distribution is 0.30 μm.
There was no hat.

次に、実施例1と同様に抽出処理し、乾燥処理して多孔
性架橋重合体微粒子を得た。
Next, extraction treatment and drying treatment were carried out in the same manner as in Example 1 to obtain porous crosslinked polymer fine particles.

得られた多孔性架橋重合体微粒子としての均一粒径微粒
子は、その粒径が11.3μm1粒径分布の標準偏差が
0.30μm口であり、前記した前駆体としての場合と
変わりはなかった。また、抽出処理後における微粒子の
重量減少分は2.2%であった。さらに、B、E、T法
(窒素ガス吸着)により求めた比表面積は、13.1+
J / gでり、多孔性であることがわかった。なお、
走査型電子顕微鏡による観察の結果、真球状性に優れる
こともわかった。
The obtained porous crosslinked polymer fine particles with a uniform particle size had a particle size of 11.3 μm and a standard deviation of particle size distribution of 0.30 μm, which was the same as that of the precursor described above. . Furthermore, the weight loss of the fine particles after the extraction treatment was 2.2%. Furthermore, the specific surface area determined by the B, E, T method (nitrogen gas adsorption) is 13.1+
J/g and was found to be porous. In addition,
As a result of observation using a scanning electron microscope, it was also found that it has excellent sphericity.

比較参考例 イオン交換水700部とケン化度88%のポリビニルア
ルコールの0.6重量%水溶液4部を加えて均一に撹拌
したのち、スチレン99.7重量%、ジビニルベンゼン
0.3重量06の単量体混合物80部に過酸化ベンゾイ
ル2部を溶解させたちのを加え、ホモシェナイザーで1
0,000rpm下1時間撹拌したのち窒素気流下80
°Cで9時間重合処理し、低架橋密度の高分子微粒子を
得た。
Comparative Reference Example 700 parts of ion-exchanged water and 4 parts of a 0.6% aqueous solution of polyvinyl alcohol with a degree of saponification of 88% were added and stirred uniformly. Add 2 parts of benzoyl peroxide dissolved in 80 parts of the monomer mixture, and mix with a homogenizer to 1 part.
After stirring for 1 hour at 0,000 rpm, the
Polymerization treatment was carried out at °C for 9 hours to obtain polymer fine particles with a low crosslinking density.

(すられた高分子微粒子は粒径が2〜15μmにも及ぶ
ものであった。さらに、これを湿式分級処理して平均粒
径を9 、4 rtflとしたちのにおいてもその粒径
分布の標準偏差は2μmを超えるものであった。
(The particle size of the slicked polymer particles ranged from 2 to 15 μm. Furthermore, the particles were subjected to wet classification to have an average particle size of 9.4 rtfl, which is the standard particle size distribution in China. The deviation was more than 2 μm.

なお、該高分子微粒子のスチレンに対する膨潤度は14
であった。
The degree of swelling of the polymer fine particles with respect to styrene is 14.
Met.

比較例1 粒径が5部m1粒径分布の標準偏差が1.0μm、スチ
レンに対する膨潤度が10の架橋系の高分子微粒子の水
分散液10部(固形分30重量%)にイオン交換水10
0部と上記したポリビニルアルコールの10重量%水溶
液15部を加えて均一に撹拌したのち、スヂレン70重
量%、ジビニルベンゼン30重!、 Q/の単量体混合
物45部に過酸化ヘンジイル0.5部を溶解させてこれ
にイオン交換水250部、ラウリル硫酸ナトリCクム0
.018部を混合し超音波処理下に乳化液としたものを
加え、撹拌しながら窒素気流下60℃で2時間、続いて
80℃に昇温して6時間共重合処理し、多孔性架橋重合
体微粒子の前駆体を含む水分散液を得た。
Comparative Example 1 Ion-exchanged water was added to 10 parts (solid content 30% by weight) of an aqueous dispersion of crosslinked polymer fine particles having a particle size of 5 parts m1, a standard deviation of particle size distribution of 1.0 μm, and a degree of swelling with respect to styrene of 10. 10
After adding 0 parts and 15 parts of a 10% by weight aqueous solution of polyvinyl alcohol mentioned above and stirring uniformly, 70% by weight of styrene and 30% by weight of divinylbenzene were added! , 0.5 parts of hendiyl peroxide was dissolved in 45 parts of the monomer mixture of
.. 018 parts were mixed together to make an emulsion under ultrasonication, and the mixture was copolymerized at 60°C for 2 hours under a nitrogen stream while stirring, and then heated to 80°C for 6 hours to form a porous crosslinked polymer. An aqueous dispersion containing a precursor of coalesced fine particles was obtained.

しかしながら、この前駆体の粒径は12.2部mである
が、その粒径分布の標準偏差は2.1μmにも及ぶらの
であった。
However, although the particle size of this precursor was 12.2 parts m, the standard deviation of its particle size distribution was as high as 2.1 μm.

Claims (1)

【特許請求の範囲】 1、架橋性単量体を0.05〜1重量%含む単量体混合
物を共重合処理して得た低架橋密度の架橋重合体と、架
橋性単量体を10〜50重量%含む単量体混合物を共重
合処理して得た高架橋密度の架橋重合体とからなる多孔
性架橋重合体微粒子よりなり、粒径が2〜30μmで粒
径分布の標準偏差が1μm以下であり、耐溶剤性でかつ
多孔性の均一粒径微粒子。 2、(A)シード粒子の水分散液に水、非架橋性単量体
を加えて重合処理し、得られた粒子を次のシード粒子と
して用いてさらに径を成長させる操作を、非架橋性単量
体を水媒中で処理して得た非架橋重合体を初期のシード
粒子として2回以上繰り返して得た、粒径が0.5〜2
μmで粒径分布の標準偏差が0.1μm以下の非架橋高
分子微粒子の水分散液に、非架橋性単量体99〜99.
95重量%と架橋性単量体1〜0.05重量%からなる
単量体混合物を加えて重合処理し、得られた架橋系の高
分子微粒子中に、非架橋性単量体50〜90重量%と架
橋性単量体50〜10重量%からなる単量体混合物を吸
収させ、水媒中でこれを共重合処理して多孔性架橋重合
体微粒子の前駆体を得る工程、 (B)前記工程で得た多孔性架橋重合体微 粒子の前駆体より溶剤可溶物質を抽出する工程からなる
粒径が2〜30μmで粒径分布の標準偏差が1μm以下
であり、耐溶剤性でかつ多孔性の均一粒径微粒子の製造
方法。 3、乳化剤を用いる特許請求の範囲第2項記載の方法。 4、架橋系の高分子微粒子100重量部あたり架橋性単
量体を50〜10重量%含む単量体混合物を100〜3
000重量部用いる特許請求の範囲第2項記載の方法。 5、架橋性単量体を50〜10重量%含む単量体混合物
が重合開始剤を含むものである特許請求の範囲第2項記
載の方法。 6、架橋性単量体を50〜10重量%含む単量体混合物
を乳化状態で架橋系の高分子微粒子の水分散液に加える
特許請求の範囲第2項記載の方法。
[Claims] 1. A crosslinked polymer with a low crosslinking density obtained by copolymerizing a monomer mixture containing 0.05 to 1% by weight of a crosslinkable monomer, and 10% by weight of a crosslinkable monomer. It consists of porous crosslinked polymer fine particles consisting of a crosslinked polymer with a high crosslinking density obtained by copolymerizing a monomer mixture containing ~50% by weight, and the particle size is 2 to 30 μm and the standard deviation of the particle size distribution is 1 μm. Fine particles with a uniform particle size that are as follows, solvent resistant and porous. 2. (A) Adding water and a non-crosslinking monomer to an aqueous dispersion of seed particles and polymerizing them, and using the resulting particles as the next seed particle to further grow the diameter, is a non-crosslinking method. A non-crosslinked polymer obtained by treating a monomer in an aqueous medium is used as an initial seed particle twice or more, and the particle size is 0.5 to 2.
A non-crosslinking monomer of 99 to 99 mm is added to an aqueous dispersion of non-crosslinked polymer fine particles having a standard deviation of particle size distribution of 0.1 μm or less in μm.
A monomer mixture consisting of 95% by weight and 1 to 0.05% by weight of a crosslinkable monomer is added and polymerized, and 50 to 90% of a non-crosslinkable monomer is added to the resulting crosslinked polymer fine particles. a step of absorbing a monomer mixture consisting of 50 to 10% by weight of a crosslinkable monomer and copolymerizing it in an aqueous medium to obtain a precursor of porous crosslinked polymer fine particles, (B) The particle size is 2 to 30 μm, the standard deviation of the particle size distribution is 1 μm or less, and the porous crosslinked polymer particles are solvent resistant and porous. A method for producing fine particles of uniform particle size. 3. The method according to claim 2, which uses an emulsifier. 4. A monomer mixture containing 50 to 10% by weight of a crosslinkable monomer per 100 parts by weight of crosslinked polymer fine particles.
2. The method according to claim 2, wherein 000 parts by weight are used. 5. The method according to claim 2, wherein the monomer mixture containing 50 to 10% by weight of the crosslinkable monomer contains a polymerization initiator. 6. The method according to claim 2, wherein a monomer mixture containing 50 to 10% by weight of a crosslinkable monomer is added in an emulsified state to an aqueous dispersion of crosslinked polymer fine particles.
JP7224286A 1986-03-29 1986-03-29 Solvent-resistant porous fine particle of uniform particle diameter and its production Pending JPS62227901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7224286A JPS62227901A (en) 1986-03-29 1986-03-29 Solvent-resistant porous fine particle of uniform particle diameter and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7224286A JPS62227901A (en) 1986-03-29 1986-03-29 Solvent-resistant porous fine particle of uniform particle diameter and its production

Publications (1)

Publication Number Publication Date
JPS62227901A true JPS62227901A (en) 1987-10-06

Family

ID=13483624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7224286A Pending JPS62227901A (en) 1986-03-29 1986-03-29 Solvent-resistant porous fine particle of uniform particle diameter and its production

Country Status (1)

Country Link
JP (1) JPS62227901A (en)

Similar Documents

Publication Publication Date Title
JPH0198606A (en) Polymer particle and preparation thereof
KR101977195B1 (en) Method for Preparing Porous Polymer Composite Particles
JPS61215604A (en) Production of polymer particle
JPS6379065A (en) Filler for liquid chromatography
EP1242490A1 (en) Single stage seed polymerisation for the production of large polymer particles with a narrow size distribution
JP2002542318A (en) Method for producing monodisperse polymer particles
KR100729173B1 (en) Monodisperse seed particles and preparation method of monodisperse crosslinked polymer bead using it
JPS62227901A (en) Solvent-resistant porous fine particle of uniform particle diameter and its production
JPS6372713A (en) Production of solvent-resistant fine particle of uniform particle diameter
JPS6372715A (en) Production of solvent-resistant, porous fine particle of uniform-particle diameter
JPH0572923B2 (en)
JPS62227902A (en) Production of solvent-resistant porous fine particle of uniform particle diameter
JPS62227903A (en) Production of solvent-resistant porous fine particle of uniform particle diameter
KR100519661B1 (en) Method for Preparing Monodisperse Macro-Porous Polymer Particle
JP2559894B2 (en) Composite hollow particles
JPH01134A (en) Porous hollow particles and their manufacturing method
JPS62223201A (en) Solvent-resistant porous fine particle of uniform particle diameter and its production
JPS62223202A (en) Production of solvent-resistant porous fine particle of uniform particle diameter
JPS6372712A (en) Production of solvent-resistant fine particle of uniform-particle diameter
CN115466346B (en) Preparation method of polymer thickener in polar solvent
KR101400322B1 (en) Monodisperse Particles and Preparation Method Thereof
JPS6379064A (en) Filler for gel permeation chromatography
JPH01133A (en) Porous composite particles and their manufacturing method
JPH0562605B2 (en)
JPS6379066A (en) Filler for gas chromatography