JPS62226856A - Manufacture of polycrystal body of fibrous alkali metal titanate - Google Patents

Manufacture of polycrystal body of fibrous alkali metal titanate

Info

Publication number
JPS62226856A
JPS62226856A JP6822186A JP6822186A JPS62226856A JP S62226856 A JPS62226856 A JP S62226856A JP 6822186 A JP6822186 A JP 6822186A JP 6822186 A JP6822186 A JP 6822186A JP S62226856 A JPS62226856 A JP S62226856A
Authority
JP
Japan
Prior art keywords
alkali metal
fibrous
compound
amorphous
titanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6822186A
Other languages
Japanese (ja)
Other versions
JPH0688834B2 (en
Inventor
昌彦 島田
忠 遠藤
次雄 佐藤
永山 博之
西内 紀八郎
鈴江 正義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Original Assignee
Otsuka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd filed Critical Otsuka Chemical Co Ltd
Priority to JP61068221A priority Critical patent/JPH0688834B2/en
Publication of JPS62226856A publication Critical patent/JPS62226856A/en
Publication of JPH0688834B2 publication Critical patent/JPH0688834B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は繊維状チタン酸アルカリ金属塩からなる多結晶
体の製造法に関する。繊維状チタン酸アルカリ金属塩は
、高い曲げ強度などの機械的性質に優れるほか、高い電
気的絶縁性、熱的、ないし化学的な安定性、負の熱電導
率一温度係数特性などの特徴を備えた材料である。従っ
て、プラスチック強化材料、減摩材料、バッテリーの隔
膜、断熱用枯造材料、シ濾過材料、吸着材料、触媒やそ
の担体、顔料などの用途に幅広く用いられる。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing a polycrystalline body comprising a fibrous alkali metal titanate. Fibrous alkali metal titanates have excellent mechanical properties such as high bending strength, as well as high electrical insulation, thermal and chemical stability, and negative thermal conductivity and temperature coefficient characteristics. It is a material that has been prepared. Therefore, it is widely used in applications such as plastic reinforcement materials, anti-friction materials, battery diaphragms, heat-insulating drying materials, filtration materials, adsorption materials, catalysts and their carriers, and pigments.

(従来の技術) 非晶質酸化チタン繊維の製造法に関しては、K ruc
zynskiら(N azure 291巻399頁(
1981) )による報告がなされている。その方法は
、四塩化チタン水溶液を水酸化カリウムで中和すること
がら酸化チタンのヒドロデルを作り、凍結乾燥によって
艮いta維東からなる酸化チタン非晶体を製造すること
に関するものである。
(Prior art) Regarding the manufacturing method of amorphous titanium oxide fiber, K ruc
zynski et al. (Nazure, Vol. 291, p. 399)
(1981)). The method involves preparing a titanium oxide hydrodel by neutralizing an aqueous solution of titanium tetrachloride with potassium hydroxide, and producing an amorphous titanium oxide consisting of titanium oxide by freeze-drying.

また、結晶質チタン酸アルカリ金属繊維の製造法はすで
にいろいろな方法が提案されている。即ち焼成法、溶融
法、水熱法、ブラックス法及び融体法などが知られてい
る。一般的にはいずれの方法においてもその原料として
は酸化チタンと塩基性酸素含有アルカリ金属化合物を採
用している例が多い。
Furthermore, various methods have already been proposed for producing crystalline alkali metal titanate fibers. Namely, the sintering method, the melting method, the hydrothermal method, the Brax method, the melting method, and the like are known. Generally, in any of the methods, titanium oxide and a basic oxygen-containing alkali metal compound are often used as raw materials.

例えば特公昭42−27264号にはチタン源として含
水チタニア、鋭ffz:1Tio□、顔料、電子材料粉
あるいは触媒などを製造するための市販硫酸塩法におけ
る1”i02生成物、よく精製した鋭錐石顔料、粉砕し
たルチル鉱石および市販イルメナイトなどが開示されて
いる。又塩基性酸素含有アルカリ金属化合物としては水
酸化アルカリ金属や炭酸アルカリ金属などが開示されて
いる。上記特公昭42−27264号は前記チタン源と
塩基性酸素含有アルカリ金属化合物との非液体性混合物
を2O0〜1150℃で焼成し、繊維状チタン酸アルカ
リ金属塩るものであり、■径が0.005〜0.1ミク
ロンで長さが径の少なくとも10倍の粒子寸法をもつコ
ロイド型に富むものを製造する場合は2O0−850℃
で焼成し、■径が0.1〜0.6ミクロンで良さが径の
10〜100倍の粒子寸法をもつ顔料型に富むものを製
造する場合は850〜975℃で焼成し、また■径が0
.6〜3ミクロンで長さが径の100〜1000倍の粒
子寸法をもつ絶縁型に富むものを製造する場合は975
〜1150℃で焼成すれば所望のM&維状状チタン酸ア
ルカリ金属得られることが記載されている。又、原料の
非液体性混合物にハロゲン化アルカリ金属を加えて焼成
する91遺法もIWi示されている。
For example, Japanese Patent Publication No. 42-27264 describes hydrous titania as a titanium source, sharp ffz: 1Tio□, 1"i02 product in a commercial sulfate process for producing pigments, electronic material powders, catalysts, etc., and well-purified sharp apertures. Stone pigments, crushed rutile ore, commercially available ilmenite, etc. are disclosed. Also, as basic oxygen-containing alkali metal compounds, alkali metal hydroxides, alkali metal carbonates, etc. are disclosed. The non-liquid mixture of the titanium source and the basic oxygen-containing alkali metal compound is fired at 2O0 to 1150°C to form a fibrous alkali metal titanate, and the diameter is 0.005 to 0.1 micron. 2O0-850°C when producing colloid-rich particles with particle dimensions whose length is at least 10 times the diameter.
■ If you want to produce pigment-rich pigments with a diameter of 0.1 to 0.6 microns and a quality of 10 to 100 times the diameter, calcining at 850 to 975°C; is 0
.. 975 when producing highly insulated particles with a particle size of 6 to 3 microns and a length of 100 to 1000 times the diameter.
It is described that the desired M&fibrous alkali metal titanate can be obtained by firing at ~1150°C. IWi also shows a 91 method in which an alkali metal halide is added to a non-liquid mixture of raw materials and fired.

ところで、上記のような方法で得られた非晶質ないしは
結晶質繊維の酸化チタンは、一定の形状に成形、焼成し
て焼結体となすことは非常に難しいと考えられる。つま
り、#IA維状酸化チタンの多(は、機械的強度の点で
優れているため、例えば成形工程で繊維が折れたり、折
れないまでも繊維同士が絡み合う結果、加圧下でなけれ
ば焼結しない、適当な焼結助剤が必要であるなどの点が
挙1rられ、実質的な製造法に問題7αが多いと考えら
れている。加えて、多孔体構造の焼結体は、前述のよう
な広範囲の用途があるにもががわらず再現性ある製造方
法が確立されていない。
By the way, it is considered that it is very difficult to form the amorphous or crystalline fiber titanium oxide obtained by the above method into a certain shape and fire it into a sintered body. In other words, #IA fibrous titanium oxide has excellent mechanical strength, so for example, the fibers may break during the molding process, or even if they do not break, the fibers become entangled with each other, resulting in sintering unless under pressure. It is thought that there are many problems with the actual manufacturing method, such as the need for a suitable sintering aid and the need for a suitable sintering aid.In addition, the sintered body with a porous structure is Despite its wide range of uses, no reproducible manufacturing method has been established.

(発明が解決しようとする問題点) 本発明の目的は、アスペクト比が大きく、且つ曲げ強度
、引張強度などの機械的強度も大である繊維状チタン酸
アルカリ金属塩の多結晶体の製造法を提供することにあ
る。
(Problems to be Solved by the Invention) An object of the present invention is to produce a polycrystalline fibrous alkali metal titanate having a large aspect ratio and high mechanical strength such as bending strength and tensile strength. Our goal is to provide the following.

また本発明の目的は、繊維状チタン酸アルカリ金属塩の
形や太ささなどを、非晶体の結晶化、焼結化条件から制
御し、所定の繊維組織、多孔体構造をもったものとして
製造することにある。
Another object of the present invention is to control the shape, thickness, etc. of fibrous alkali metal titanate from the crystallization and sintering conditions of the amorphous material, and to manufacture it with a predetermined fiber structure and porous structure. It's about doing.

(問題点を解決するための手段) 本発明はチタン源化合物及び含酸素アルカリ金属化合物
の混合物を約600−1100℃の温度で焼成して非晶
体となした後に、これを加圧成形し、更に約900〜1
350℃で再焼成することを特徴とする繊維状チタン酸
アルカリ金属塩の多結晶体の製造法に係る。
(Means for Solving the Problems) The present invention involves firing a mixture of a titanium source compound and an oxygen-containing alkali metal compound at a temperature of about 600 to 1100°C to form an amorphous body, and then press-molding the mixture, About 900 to 1 more
The present invention relates to a method for producing a polycrystalline fibrous alkali metal titanate, which is characterized by re-firing at 350°C.

本発明のチタン源化合物は実質的にTiO2を含有した
化合物であり、具体的には酸化チタン、ルチル鉱石、水
酸化チタンウェットケーキ、含水チタニアなどを挙げる
ことができる。その粒子形状はなるべ(微粒子が好まし
い。例えば酸化チタンにおいては7ナタ一ゼ型微粒子が
、ルチル鉱石においては粒子を高速に衝突させて粉砕し
た、所謂“ジェット粉砕品”が好ましい。粒径は2O0
〜425メツシユの範囲が適当である。
The titanium source compound of the present invention is a compound substantially containing TiO2, and specific examples include titanium oxide, rutile ore, titanium hydroxide wet cake, and hydrous titania. The particle shape is preferably fine particles.For example, for titanium oxide, 7-natase type fine particles are preferable, and for rutile ore, so-called "jet pulverized products" in which particles are pulverized by high-speed collision are preferable.The particle size is 2O0
A range of ~425 meshes is suitable.

本発明で使用する含酸素アルカリ金属化合物は焼成時に
M2O(Mはアルカリ金属)を生じる化合物であり、例
えばカリウム、ナトリウム、セシウム、ルビジウムの酸
化物、水酸化物、炭酸塩、重炭酸塩、修酸塩、硝酸塩な
どを例示できる。このような化合物の例としてはに2O
.KOH。
The oxygen-containing alkali metal compound used in the present invention is a compound that generates M2O (M is an alkali metal) during firing, such as potassium, sodium, cesium, rubidium oxides, hydroxides, carbonates, bicarbonates, Examples include acid salts and nitrates. Examples of such compounds include 2O
.. KOH.

K2Co、、K HCo1、K2O,OいKNO,、N
a2O,Na0HSNa2CO=、NaHCO,、Na
2C2On、NaN0−1Cs、O,CsOH。
K2Co,,K HCo1,K2O,OiKNO,,N
a2O, Na0HSNa2CO=, NaHCO,, Na
2C2On, NaN0-1Cs, O, CsOH.

Cs z−CO:l、CsHCO2、C92C2O41
1CsN O、、Rb2C%Rb0Ir1Rb、Co、
、RbHCO,、Rb2C,Oい RbN0.などを挙
げることができる。
Cs z-CO:l, CsHCO2, C92C2O41
1CsN O,, Rb2C%Rb0Ir1Rb, Co,
, RbHCO, , Rb2C, O RbN0. etc. can be mentioned.

これらのうちでもアルカリ金属の硝酸塩が特に好ましい
Among these, alkali metal nitrates are particularly preferred.

チタン源化合物と含酸素アルカリ金属化合物との混合比
率はT i O2/ M 2O (Mはアルカリ金属)
換露のモル比で0.4〜1.5の範囲が好ましい。
The mixing ratio of the titanium source compound and the oxygen-containing alkali metal compound is T i O2/M 2O (M is an alkali metal)
The molar ratio of dew is preferably in the range of 0.4 to 1.5.

本発明においてチタン源化合物及1合酸素アルカリ金属
化合物はそのまま混合しても良く、或いは水を加えてス
ラリー状とし、噴霧乾燥したちのを用いても良い。原料
の)U合物の:fA製法は上記に限定されることはない
が、スラリー状原料を噴霧乾燥して得られた原料混合物
は、チタン源化合物の粒子表面に含酸素アルカリ金属が
均−且つ微細に付着した造粒体となり、この造粒体は反
応性が極めて高いので特に好ましい。
In the present invention, the titanium source compound and the oxygen alkali metal compound may be mixed as they are, or they may be mixed with water to form a slurry and then spray-dried. Although the manufacturing method of the (raw material) U compound is not limited to the above, the raw material mixture obtained by spray-drying the slurry raw material has an oxygen-containing alkali metal uniformly distributed on the particle surface of the titanium source compound. In addition, finely adhered granules are formed, and this granule has extremely high reactivity, which is particularly preferable.

本発明ではこれらの混合された原料を約600・〜11
00℃の温度、好ましくは約850〜tooo℃の温度
で、通常約2〜2O時間焼成し、非晶質のチタン酸アル
カリ金属塩を得る。
In the present invention, these mixed raw materials are about 600.
The amorphous alkali metal titanate is obtained by firing at a temperature of 00° C., preferably about 850° C. to about 850° C., usually for about 2 to 20 hours.

得られた非晶質チタン酸アルカリは和塊であるので冷水
中に投入し、例えば約30分の間、超音波処理を行うな
どの方法により、個々の粒子を分散させる。この操作に
よって、過剰量のアルカリの滓出が確認できる。しかし
、分散するに要する時間が短縮できるからと言って、こ
の操作を酸を用いて行ってはならない。つまり、たとえ
弱酸性であっても結果的に、非晶質チタン酸アルカリ金
属塩の構造、組成を変化してしまうことは明らかである
Since the obtained amorphous alkali titanate is a lump, it is poured into cold water, and the individual particles are dispersed, for example, by ultrasonication for about 30 minutes. Through this operation, it is possible to confirm that an excessive amount of alkali has oozed out. However, this operation should not be carried out using acids, even though the time required for dispersion may be reduced. In other words, it is clear that even if it is weakly acidic, the structure and composition of the amorphous alkali metal titanate will change as a result.

更に、蒸留水により洗浄、乾燥させるのが好ましい。こ
の工程で得られた非晶質生成物を成形するために、通常
的10〜2O0MPaの加圧条件でプレス成形を行う。
Furthermore, it is preferable to wash and dry with distilled water. In order to shape the amorphous product obtained in this step, press molding is typically performed under pressure conditions of 10 to 200 MPa.

この毘作の段階で、上記生成物に若干の有機系糊剤、界
面活性剤などを加え、成形後の嵩密度を自在に変化させ
ることも可能である。
It is also possible to freely change the bulk density after molding by adding some organic sizing agent, surfactant, etc. to the above-mentioned product at this manufacturing stage.

次に上記成形体を約900〜1350℃の広い温度範囲
で焼成することによって、一般式M2O・nTioz(
Mはアルカリ金属、nは4,6.8の整数あるいはこれ
らの混合物である)で表わされるa維質多結晶体を前記
非晶体から徐々に結晶化させることによって得ることが
できる。
Next, by firing the above molded body in a wide temperature range of about 900 to 1350°C, the general formula M2O・nTioz (
M is an alkali metal, n is an integer of 4, 6.8, or a mixture thereof), and a fibrous polycrystalline body can be obtained by gradually crystallizing the amorphous body.

多結晶体内の繊維組織は昇温速度、降温速度、焼成時間
などに影響される。配向性ある結晶組織を得るには、核
形成の段階で注f:深い制御が要求される。従って、核
形成を制御する目的から非晶体を製造する11焼成段階
において、含酸素鉄化合物を微量添加しておく方法も有
効であることが明らかになった。含酸素鉄化合物として
は例えば鉄の硝酸塩、硫酸塩、塩化物、酸化物、水酸化
物等を挙げることができる。
The fiber structure within the polycrystalline body is affected by the temperature rise rate, temperature fall rate, firing time, etc. To obtain an oriented crystal structure, deep control is required at the nucleation stage. Therefore, it has become clear that a method of adding a small amount of an oxygen-containing iron compound in the 11th firing step for producing an amorphous material for the purpose of controlling nucleation is also effective. Examples of oxygen-containing iron compounds include iron nitrates, sulfates, chlorides, oxides, and hydroxides.

非晶質成形体では、表面で形成される温度勾配により表
面からの結晶化が起こり易い。従って、非晶体全体にW
綱結晶を析出するには、lO℃/分〜2O℃/分の昇温
速度、45分〜10時間、所定の温度に保持するのが好
ましい。更に600℃付近までは2〜b 好ましい。特に温度勾配法により、一方向の結晶化など
を図る場合には、熱的な応力歪みを緩和しつつ適当な時
間内の冷却速度が要i1+1される。急冷することによ
るam状結晶には、徐冷法と比較して平均繊維長/径の
比であるアスペクト比で差異が認められる。
In an amorphous molded article, crystallization from the surface is likely to occur due to a temperature gradient formed at the surface. Therefore, W throughout the amorphous body
In order to precipitate steel crystals, it is preferable to maintain the temperature at a predetermined temperature for 45 minutes to 10 hours at a heating rate of 10° C./min to 20° C./min. Furthermore, temperatures of 2 to b are preferred up to around 600°C. In particular, when unidirectional crystallization is performed using the temperature gradient method, a cooling rate within an appropriate time is required while relaxing thermal stress strain. A difference in the aspect ratio, which is the ratio of average fiber length/diameter, is observed in am-shaped crystals produced by rapid cooling compared to those produced by slow cooling.

本発明においては第1焼成反応において得られた非晶質
のチタン酸アルカリ金属塩を再焼成して、結晶質のチタ
ン酸アルカリ金属塩からなる繊維状多結晶体を製造する
ことを特徴としている。更に、焼成温度によって、得ら
れるチタン酸アルカリ金属塩の組成は、一般式M2O・
nTiO2(Mはアルカリ金属、口は4.G、8の実数
あるいはこれらの混合物)で表される焼結体となり、且
つ気孔率が45%程度までの多孔構造を持った焼結体を
製造することも可能である。
The present invention is characterized in that the amorphous alkali metal titanate obtained in the first firing reaction is re-fired to produce a fibrous polycrystalline body made of crystalline alkali metal titanate. . Furthermore, depending on the firing temperature, the composition of the alkali metal titanate obtained can be determined by the general formula M2O.
Produce a sintered body represented by nTiO2 (M is an alkali metal, mouth is 4.G, a real number of 8 or a mixture thereof) and has a porous structure with a porosity of up to about 45%. It is also possible.

(実 施 例) 以下、実施例により詳しく説明する。(Example) Hereinafter, this will be explained in detail with reference to Examples.

実施例1 市販の試薬酸化チタン(アナターゼ型)と硝酸カリウム
をTiO□/に2Oのモル比で1.3になるように計量
し、十分な時間機械的に粉砕混合を行う。
Example 1 Commercially available reagents titanium oxide (anatase type) and potassium nitrate were weighed so that the molar ratio of TiO□/2O was 1.3, and mechanically pulverized and mixed for a sufficient period of time.

次いで、この原料粉末をアルミナ製ルツボに充填し、加
熱炉の中に配置した。昇温速度を10℃/分とし、10
00℃で6時間保持した。その後、炉内徐冷する。得ら
れた団塊を粗砕し水中に一夜浸漬させた後、シ戸別乾燥
し、非晶質チタン酸カリウムを得た。このようにして得
たものを径60+au+の金型にて75MPaの圧力下
で成形した。次に、再びアルミナツボに入れマツフル炉
中で、昇温速度を10℃/分とし、1050℃で10時
間保持した。10℃/分の降温速度で約600″Cまで
徐冷し、繊維状6チタン酸カリウム多結晶体を得た。
Next, this raw material powder was filled into an alumina crucible and placed in a heating furnace. The heating rate was 10°C/min, and 10
The temperature was maintained at 00°C for 6 hours. After that, it is slowly cooled in the furnace. The resulting nodules were crushed, immersed in water overnight, and then dried separately to obtain amorphous potassium titanate. The product thus obtained was molded in a mold with a diameter of 60+au+ under a pressure of 75 MPa. Next, it was placed in an alumina crucible again and held at 1050°C for 10 hours in a Matsufuru furnace at a temperature increase rate of 10°C/min. The mixture was gradually cooled down to about 600''C at a cooling rate of 10°C/min to obtain a fibrous polycrystalline potassium hexatitanate.

この多結晶体の相対密度は95%で、平均径が1〜3μ
曽、長さが2〜8g+−で、最大600近いアスペクト
比をもつ結晶質i維であることが密度測定、実体顕微鏡
及び走査型電子顕微鏡観察から判った。
The relative density of this polycrystal is 95%, and the average diameter is 1 to 3μ.
It was found by density measurements, stereoscopic microscopy, and scanning electron microscopy that it was a crystalline i-fiber with a length of 2 to 8 g+- and a maximum aspect ratio of nearly 600.

実施例2 水酸化チタンと硝酸カリウムをTiO2/KzOのモル
比で1.0になるように計量し、機械的混合を十分に行
う。これを実施例1と同様、アルミナ製ルツボに充填し
加熱炉の中に配置した。昇温速度を15℃/分とし、9
50℃で10時間保持した。その後、直ちに加熱電源を
切り、急冷操作を行い反応を完結した。炉より取り出さ
れたルツボには、繊維状非晶質団塊が析出しでいた。団
塊を温水に約2時間浸漬し、超音波による分散を約30
分行った。非易体を乳鉢中で十分粉砕した後に2O0M
Paの圧力条件で径60鴫輸、厚さ301IImの円板
にプレス成形する。次いで、当該成形体を900℃のマ
ツフル炉中にて7時間反応させた。降温速度を5℃/分
として約600℃まで徐冷操作を施した後、炉より取り
出し空冷する。
Example 2 Titanium hydroxide and potassium nitrate were weighed so that the molar ratio of TiO2/KzO was 1.0, and mechanically mixed thoroughly. As in Example 1, this was filled into an alumina crucible and placed in a heating furnace. The heating rate was 15°C/min, and 9
It was held at 50°C for 10 hours. Thereafter, the heating power was immediately turned off and a rapid cooling operation was performed to complete the reaction. Fibrous amorphous nodules were precipitated in the crucible taken out from the furnace. The nodules were immersed in warm water for about 2 hours, and then dispersed by ultrasonic waves for about 30 minutes.
I went for a minute. After thoroughly crushing the non-easy body in a mortar, 200M
It is press-formed into a disc with a diameter of 60 cm and a thickness of 301 II m under pressure conditions of Pa. Next, the molded body was reacted in a Matsufuru furnace at 900° C. for 7 hours. After performing a slow cooling operation to about 600° C. at a temperature decreasing rate of 5° C./min, the product was taken out of the furnace and cooled in air.

X線回折及び化学分析の結果からは、このam貿多結品
体は相対密度が92%の4チタン酸カリウムであり、且
つ一方向の繊維状結晶成長であることが破断面から観察
できた。
From the results of X-ray diffraction and chemical analysis, it was observed from the fracture surface that this am trade polycrystalline body was potassium tetratitanate with a relative density of 92%, and unidirectional fibrous crystal growth. .

実施例3 酸化チタン、硝酸ナトリウム及び硝酸第2鉄を各々’r
’ io 2/ N a2Oのモル比で1.4及1/ 
F czo 3/Tie:のモル比で0.5になるよう
に秤量し、機械的に十分混合する。これを実施例1と同
様、アルミナ製ルツボに充填し加熱炉の中に配置した。
Example 3 Titanium oxide, sodium nitrate and ferric nitrate were each
'io2/N a2O molar ratio of 1.4 and 1/
Weigh so that the molar ratio of F czo 3/Tie: is 0.5, and mix thoroughly mechanically. As in Example 1, this was filled into an alumina crucible and placed in a heating furnace.

昇温速度を7℃/分とし、1000℃で6時間保持した
The temperature increase rate was 7°C/min, and the temperature was maintained at 1000°C for 6 hours.

その後、直ちに加熱電源を切り、急冷操作を行い反応を
停止した。炉より取り出されたルツボには、非晶質の8
チタン酸ナトリウムが鬼になって内壁に付着していた。
Thereafter, the heating power was immediately turned off, and a rapid cooling operation was performed to stop the reaction. The crucible taken out from the furnace contains amorphous 8
Sodium titanate had turned into a monster and was attached to the inner wall.

団塊の中の非晶質生成物を粗砕し水中に浸漬した後、加
温浴中に2時間静置し、I別乾燥を行った。
The amorphous product in the nodules was crushed and immersed in water, and then left in a heating bath for 2 hours to perform separate drying.

次いでこれを150M P aの圧力で成形し、径60
 to +a、厚さ30mmの円板に成形し1000℃
で約6時間焼成する。反応が終結した後は、約、5℃/
分の冷却速度で650℃まで徐冷し、炉内より取り出し
た。得られた繊維状多結晶体は8チタン酸ナトリウム繊
維から構成される焼結体で、86%の相対密度を示した
This was then molded at a pressure of 150 MPa to a diameter of 60
to +a, molded into a 30mm thick disk and heated to 1000℃
Bake for about 6 hours. After the reaction is completed, the temperature is approximately 5℃/
The mixture was gradually cooled to 650° C. at a cooling rate of 10 minutes, and then taken out from the furnace. The obtained fibrous polycrystalline body was a sintered body composed of sodium octitanate fibers and exhibited a relative density of 86%.

実施例4 水酸化チタンスラリー(化学分析値TiO229,9%
、I−1260,4,17%)を高速撹拌機を備えた容
器中に入れ、水酸化チタンスラリー中に含まれる112
801分の中和用水酸化ナトリウムを加えた後、硝酸ナ
トリウムをTiO2/Na2Oのモル比力弓、Oになる
ようにTI4整して十分に混合溶解した。次いで、当該
スラリーをスプレードライヤー〔大川原加工8!(株)
、OC−16型〕方式にて乾燥させ、流動性の良い顆粒
状の乾燥原料を得た。この原料をアルミナ製ルツボに入
れ、実施例3と同じ条件で非晶体の形成、非晶体からの
結晶化処理を行った。
Example 4 Titanium hydroxide slurry (chemical analysis value TiO229.9%
, I-1260, 4,17%) in a container equipped with a high-speed stirrer, and the 112 contained in the titanium hydroxide slurry.
After adding 801 minutes of sodium hydroxide for neutralization, sodium nitrate was adjusted to a molar specific force of TiO2/Na2O, TI4, and thoroughly mixed and dissolved. Next, the slurry was applied to a spray dryer [Okawara Machining 8! (KK)
, OC-16 type] method to obtain a granular dry raw material with good fluidity. This raw material was placed in an alumina crucible, and an amorphous material was formed and the amorphous material was crystallized under the same conditions as in Example 3.

得られた生成物は、8チタン酸ナトリウム繊維からなる
多結晶体であり、平均繊維長4〜6Iの結晶から構成さ
れていた。相対密度は87%であった。
The obtained product was a polycrystalline body composed of sodium octitanate fibers, and was composed of crystals with an average fiber length of 4 to 6I. The relative density was 87%.

実施例5 酸化チタン(アナターゼ型)、硝酸カリ′クム及び硝酸
第2鉄を各々TiO□/に、Oのモル比で1.2及びF
 e2O−/ T io 2のモル比で0.1になるよ
うに秤量し、十分な時間8!械的な粉砕混合を行う。次
いで、この原料粉末をアルミナ製ルツボに充填し、加熱
炉の中に配置する。昇温速度を7℃/分とし、900℃
で5時間保持した。その後、急冷するために加熱電源を
切った。炉より取り出されたルツボの中には淡黄色の非
晶体が観察された。次いでポリビニルアルコールを約2
5重量%加えて、100MPaの条件でプレス成形した
。これを1000℃で15時間焼成する。反応終了後、
5℃/分の降温速度で徐冷し、6チタン酸カリウムと8
チタン酸カリウムの混合物からなる繊維質多孔体を得た
。この多結晶体は4〜71$lIの結晶質繊維から構成
される気孔率が約33%の多孔体構造であることが明ら
かになった。
Example 5 Titanium oxide (anatase type), potassium cum nitrate, and ferric nitrate were each added to TiO□/ in a molar ratio of O of 1.2 and F
Weigh out so that the molar ratio of e2O-/Tio2 is 0.1, and wait for enough time 8! Perform mechanical grinding and mixing. Next, this raw material powder is filled into an alumina crucible and placed in a heating furnace. Temperature increase rate is 7℃/min, 900℃
It was held for 5 hours. Then, the heating power was turned off for rapid cooling. A pale yellow amorphous substance was observed in the crucible taken out from the furnace. Next, add about 20% polyvinyl alcohol.
5% by weight was added, and press molding was carried out under conditions of 100 MPa. This is baked at 1000°C for 15 hours. After the reaction is complete,
It was slowly cooled at a cooling rate of 5°C/min, and potassium 6 titanate and 8
A fibrous porous body made of a mixture of potassium titanate was obtained. It was revealed that this polycrystalline body had a porous structure with a porosity of about 33% and was composed of crystalline fibers of 4 to 71 $lI.

なお、同様な多孔体構造を得るため、ポリビニルアルコ
ールの代わりにカルボキシメチルセルロース、アルギン
酸ナトリワム、ポリアクリル酸ナトリウム、ポリアクリ
ル酸エステルなどの合成高分子を用いても同じ効果が得
られた。
The same effect was also obtained by using synthetic polymers such as carboxymethylcellulose, sodium alginate, sodium polyacrylate, and polyacrylic ester instead of polyvinyl alcohol in order to obtain a similar porous structure.

(発明の効果) 本発明の方法によれば生成した多結晶体は、繊維長の長
い結晶質チタン酸アルカリ繊維から構成され、0〜45
%の気孔率をもった多孔体構造を有する。
(Effects of the Invention) The polycrystalline body produced according to the method of the present invention is composed of crystalline alkali titanate fibers with a long fiber length, and has a fiber length of 0 to 45
It has a porous structure with a porosity of %.

(以 上)(that's all)

Claims (4)

【特許請求の範囲】[Claims] (1)チタン源化合物及び含酸素アルカリ金属化合物の
混合物を約600〜1100℃の温度で焼成して非晶体
となした後に、これを加圧成形し、更に約900〜13
50℃で再焼成することを特徴とする繊維状チタン醗ア
ルカリ金属塩の多結晶体の製造法。
(1) After firing a mixture of a titanium source compound and an oxygen-containing alkali metal compound at a temperature of about 600 to 1100°C to form an amorphous body, this is pressure-molded and further
A method for producing a polycrystalline fibrous titanium alkali metal salt, which comprises re-firing at 50°C.
(2)チタン源化合物と含酸素アルカリ金属化合物の混
合比がTiO_2/M_2O(Mはアルカリ金属を示す
)のモル比で0.4〜1.5である特許請求の範囲第1
項記載の製造法。
(2) Claim 1, wherein the mixing ratio of the titanium source compound and the oxygen-containing alkali metal compound is a molar ratio of TiO_2/M_2O (M represents an alkali metal) of 0.4 to 1.5.
Manufacturing method described in section.
(3)含醗素アルカリ金属化合物がアルカリ金属の硝酸
塩である特許請求の範囲第1項記載の製造法。
(3) The production method according to claim 1, wherein the alkali metal compound containing alkali metal is an alkali metal nitrate.
(4)繊維状チタン酸アルカリ金属塩が一般式M_2O
・nTiO_2(Mはアルカリ金属、nは4、6、8の
整数あるいはこれらの混合物である)で示される化合物
である特許請求の範囲第1項記載の製造法。
(4) The fibrous alkali metal titanate has the general formula M_2O
- The manufacturing method according to claim 1, which is a compound represented by nTiO_2 (M is an alkali metal, n is an integer of 4, 6, 8, or a mixture thereof).
JP61068221A 1986-03-26 1986-03-26 Method for producing polycrystalline compact of fibrous alkali metal titanate Expired - Lifetime JPH0688834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61068221A JPH0688834B2 (en) 1986-03-26 1986-03-26 Method for producing polycrystalline compact of fibrous alkali metal titanate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61068221A JPH0688834B2 (en) 1986-03-26 1986-03-26 Method for producing polycrystalline compact of fibrous alkali metal titanate

Publications (2)

Publication Number Publication Date
JPS62226856A true JPS62226856A (en) 1987-10-05
JPH0688834B2 JPH0688834B2 (en) 1994-11-09

Family

ID=13367533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61068221A Expired - Lifetime JPH0688834B2 (en) 1986-03-26 1986-03-26 Method for producing polycrystalline compact of fibrous alkali metal titanate

Country Status (1)

Country Link
JP (1) JPH0688834B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6121915A (en) * 1984-07-06 1986-01-30 Kubota Ltd Manufacture of titanium compound fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6121915A (en) * 1984-07-06 1986-01-30 Kubota Ltd Manufacture of titanium compound fiber

Also Published As

Publication number Publication date
JPH0688834B2 (en) 1994-11-09

Similar Documents

Publication Publication Date Title
JP3393276B2 (en) Composite titanium compound powder and method for producing the same
US4652439A (en) Process for preparing fibrous alkali metal titanate
JPS62226856A (en) Manufacture of polycrystal body of fibrous alkali metal titanate
JP3799485B2 (en) Zirconia powder and method for producing the same
US4774068A (en) Method for production of mullite of high purity
JP3190060B2 (en) Method for producing fine ceria solid solution tetragonal zirconia powder
JPH0640763A (en) Preparation of highly crystalline article
JPH0527571B2 (en)
JPH11278832A (en) Production of yttrium oxide powder
JPH0811692B2 (en) Method for producing polycrystalline body formed of fibrous alkali metal titanate
JPS6357383B2 (en)
JPS63252927A (en) Production of fine particle powder of sodium hexatitanate
JPS60210529A (en) Production of fibrous alkali metal titanate
JPH0574525B2 (en)
JPH0568408B2 (en)
JPS62226896A (en) Production of long fibrous alkali metal salt of titanic acid
JPH03122013A (en) Cocoon-like basic magnesium sulfate and production thereof
RU2366609C1 (en) Method for preparation of crystalline potassium titanate
JP2724695B2 (en) Method for producing potassium titanate whisker
JPS61270217A (en) Production of crystalline zirconium oxide fine powder
JP2838802B2 (en) Synthesis method of zircon powder
JPH05124810A (en) Starting material for mullite sintered compact, mullite sintered compact and its production
JPS62128924A (en) Production of zirconium oxide series fine powder
JPS63166714A (en) Production of aluminum silicate fine powder
JPH10139418A (en) Needle crystal of pure magnesium pyroborate and production of fibrous magnesium pyroborate