JPS62226628A - Positioning method - Google Patents

Positioning method

Info

Publication number
JPS62226628A
JPS62226628A JP61070143A JP7014386A JPS62226628A JP S62226628 A JPS62226628 A JP S62226628A JP 61070143 A JP61070143 A JP 61070143A JP 7014386 A JP7014386 A JP 7014386A JP S62226628 A JPS62226628 A JP S62226628A
Authority
JP
Japan
Prior art keywords
hologram
mask
wafer
holograms
positioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61070143A
Other languages
Japanese (ja)
Other versions
JPH0546969B2 (en
Inventor
Shigeru Kawai
滋 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61070143A priority Critical patent/JPS62226628A/en
Publication of JPS62226628A publication Critical patent/JPS62226628A/en
Publication of JPH0546969B2 publication Critical patent/JPH0546969B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Holo Graphy (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To perform the positioning between a mask and a wafer with high accuracy of several mum order, by applying diffracted rays from moire fringe generated when holograms regenerating cylindrical waves of different focal length are overlapped thereon. CONSTITUTION:A laser beam 9 is reflected 10 and made an incidence to a reference hologram 5 on a mask 1, and the primary diffracted ray is converged into a photodetector 12 divided into four divisions by moving 3 a mask. The difference between the sum of signals of divided surfaces A, B and C, D is calcurated 16. According to the x-direction shift, a detected signal draws an S curve, and a beam passes the middle point between the surfaces A, B and C, D when the curve passes a point O. As to the y-direction, the difference between the sun of signals of surfaces A, D and B, C is used. A reference hologram 7 wherein the reference hologram 5 is rotated by 90 deg., a photo detector 15 and an operating circuit 19 are provided at the diagonal corner of a wafer. The mask is driven so as to process 2 the signals of (x) and (y) directions and obtain the point O of the S curve, and the poisition is fisced to an equipment. Then the laser beam 9 is applied on a moire fringe generated when the holograms 5 and 7 and the arranging holograms 6 and 8 of the wafer are overlapped thereon. The positioning between the mask and the wafer is performed by moving 4 the wafer and converging the primary diffracted rays from the moire fringe into photodetectors 13 and 14 divided into four divisions.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はIC製造におけるウェハとマスクの位置会わ
せなどを高精度に行う友めの位置決め方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for positioning a wafer and a mask in IC manufacturing with high precision.

〔従来技術とその問題点〕[Prior art and its problems]

VLSIの高密度化に伴い1回路パターンの微細化が進
んでいる。このVLSIを製作するリングラフィ技術に
おいて、クエへとマスクの相対的位置を高精度に決める
必要がある。現在、このような位置決めは、ウェハとマ
スクそれぞnに描かれている多数の直線平行縞を一致さ
せる方法などが行わnている。しかし、この工つな方法
の配置精度は、0.2μm程変であり、エキシマンーザ
やX?tMを用いる工うな、さらに微細なパターンを転
写する目的には適さない。これらのリングラフィでは、
0.01−0.05μmの配置n度が必要であるが現段
階では、この工うな位置決めの確立され次方法はない。
As the density of VLSI increases, the size of a single circuit pattern is becoming smaller. In the phosphorography technique for manufacturing this VLSI, it is necessary to determine the relative positions of the mask and the mask with high precision. Currently, such positioning is performed by a method of matching a large number of straight parallel stripes drawn on each of the wafer and mask. However, the placement accuracy of this easy method varies by about 0.2 μm, and the accuracy of the placement varies by about 0.2 μm. Do not use tM; it is not suitable for transferring even finer patterns. In these phosphorography,
Although a positioning angle of 0.01-0.05 .mu.m is required, there is currently no established method for positioning.

この工うな高精度の配置を実現するために、モアレ縞を
用いた位置決め技術が開発されている。
In order to achieve this highly precise placement, a positioning technology using moiré fringes has been developed.

このモアレ縞を用いた高精度位置決め法に、例えば雑誌
「アプライド・オプティックス(AppliedOpt
ics月、1972年、2455〜2459頁に記載の
論文「モアレ技術を用いたフォトリソグラフィックマス
ク位置付わせ(Photolithographic 
 −Mask Algnment  Uaing Mo
1r6  Technipues ) Jに詳しく述べ
られている。この方法は、異なるピッチを持つ等間隔同
心円編を■ね曾わせ、それらの差周波数として生じるモ
アレ縞の形状を顕微鏡に工って観測し、位置会わせする
ものであり、この場仕は、0.2μmの配置#1度が得
られている。
This high-precision positioning method using moiré fringes has been published in the magazine ``Applied
ics, 1972, pp. 2455-2459, ``Photolithographic Mask Positioning Using Moiré Techniques''.
-Mask Algnment Uaing Mo
1r6 Technipues) J. In this method, equally spaced concentric circles with different pitches are drawn, and the shape of the moiré fringes produced as the difference frequency between them is observed using a microscope and the positions are aligned. An arrangement #1 degree of 0.2 μm is obtained.

しかし、この方法は、縞の形状を認識する必要がある之
め、自動測定には通していない。この方法を改良して、
同じピッチを持つ等間隔直線縞を重ね会わせて生じるモ
アレ縞の回折光を観測して位置会わせする方法が考えら
nた。
However, since this method requires recognizing the shape of the stripes, it has not been applied to automatic measurements. By improving this method,
A method was devised to align equally spaced linear stripes with the same pitch by observing the diffracted light of moiré fringes that are generated.

この方法は、例えば雑誌[ジャーナル・オプ・パキ1−
ムサイエンステクノロジ(Journal  ofVh
ccutne 5cience Technologi
e月、 1983年81−1276〜1279頁に記載
の論文「X+ili!リングラフィ用2重格子位置決め
技術(A Dual GratingAlignmen
t Techniyue  for X−ray Li
thography)Jに詳しく述べられている。この
方法は、ウェノ・とマスクにそれぞれ描画されている同
一の等間隔直線縞を重ね会わせ、相対的な位置関係のす
flK工って変化するモアレ縞にレーザ光を照射しその
±1次回折光の強度変化を観測して位置会わせする方法
である。この方法では、10nmの配ti梢肛が得られ
ており、まに1尤の強度を測定するために高n1度の自
動測定が可能である。
This method can be used, for example, in magazines [Journal of Pakis 1-
Journal of Vh
ccutne 5science Technology
e, 1983, pp. 81-1276-1279.
t Techniue for X-ray Li
thography) J. This method involves overlapping the same equally spaced linear stripes drawn on the mask and irradiating laser light onto the moiré fringes, which change depending on the relative positional relationship. This is a method to align the positions by observing changes in the intensity of the folded light. With this method, a 10 nm dioptric aperture has been obtained, and automatic measurement of high n1 degrees is possible in order to measure the intensity of every 1 degree.

しかし、逆に縞ピッチLりも大きな変位を測定できず、
例えば1μmピッチの@を用いるm会。
However, conversely, even with a fringe pitch of L, large displacements could not be measured.
For example, m-kai uses @ with a pitch of 1 μm.

別の方法で1μmの位置会わせを行った後にこの方法を
用いて高精度の位置合わせを行うことになり、従って2
回の位置決めが必要で、プロセスが複雑となる。
This method is used to perform high-precision alignment after 1 μm alignment using another method, so 2
It requires multiple positioning steps, which complicates the process.

本発明の目的は、こnらの問題を解決し、高精度に位置
合わせのできる位置決め方法を提供することにある。
An object of the present invention is to solve these problems and provide a positioning method that allows highly accurate positioning.

〔問題点を解決する几めの手段〕[Elaborate means to solve problems]

この発明の位It決め方法の構成は、円筒波を再生する
第1のホログラムを有する第1面と、前記第1のホログ
ラムと焦点距離の同一あるいは異なっ友円筒波を再生す
る第2のホログラムt−有する第2面とを重ね会わせて
モアレ縞を生じせちめ、前記第1のホログラムを観測面
に対して位置決めし、前記モアレ縞にコヒーレント光を
照射して生じる回折光が前記観測面の定められ九位置に
生じるように、前記第2面の位置決めを行うことを特徴
とする。
The positioning method of the present invention has a first surface having a first hologram for reproducing cylindrical waves, and a second hologram for reproducing cylindrical waves having the same or different focal length as the first hologram. - the first hologram is positioned with respect to the observation surface, and the diffracted light generated by irradiating the moire fringes with coherent light is generated on the observation surface. The second surface is positioned so that it occurs at nine predetermined positions.

〔発明の作用・原理〕[Function/principle of the invention]

ホログラムを2枚重ね会わせた時に生じるモアレ縞の形
状は)弄析的に求めることができる。例えば焦点距離の
異なっ友円筒波を再生するホログラムを貞ね会わせた時
に生じるモアレ縞は以下の工うになる。基準ホログラム
の中心線をX軸とし、配置するホログラムが基準ホログ
ラムに対して。
The shape of moiré fringes that occur when two holograms are stacked can be determined analytically. For example, the moiré fringes that occur when holograms that reproduce cylindrical waves with different focal lengths are brought together are produced as follows. The center line of the reference hologram is the X axis, and the hologram to be placed is relative to the reference hologram.

X方向にΔXずれているとすると、2つのホログラムは
、それぞれ次式で表わされる。
Assuming that they are shifted by ΔX in the X direction, the two holograms are each expressed by the following equations.

X”=ma”     ・・・・・・・・・・・・ (
1)(X−Δx)”=nb”   =・・・・・・・・
・・ (2)ここで%a、bは最も内側の直線の間隔、
m。
X”=ma”・・・・・・・・・・・・(
1) (X-Δx)”=nb” =・・・・・・・・・
... (2) Here, %a and b are the intervals between the innermost straight lines,
m.

nは正の整数を表わす。モアレ縞は(]) 、 (2)
式の交点として表わされるからL=mfnとおくと、次
式が得られる。
n represents a positive integer. Moiré stripes are (]), (2)
Since it is expressed as the intersection of the equations, by setting L=mfn, the following equation is obtained.

すなわち1円筒波を再生するモアレ縞が生じる。In other words, moiré fringes that reproduce one cylindrical wave are generated.

ここで、Cは、a、b、ΔXの関数であるが、直線の間
隔が相対的に変化するのみで、本質的な項ではない。こ
の場4&、配置するホログラムをX方に異なる場合@ 
 a”/ (b”乎aりが大きくなり。
Here, C is a function of a, b, and ΔX, but it is not an essential term because it only changes the distance between the straight lines relatively. This field 4&, if the holograms to be placed are different in the X direction @
a”/(b”The a is larger.

感度が高くなる。例えは、b=L1aと丁nは、モアレ
縞の中心は、配置するホログラムの移動量の4.8倍移
動する。この方法だけでは、X方向の位置会わせができ
ないが、別の位置にy軸に平行なホログラムを配置し、
同様な方法で位置決めを行えは良い。この方法では、ゾ
ーンプレートのホログラムを2枚重ね合わせて、同心円
モアレ縞を発生させる方法と比較し、ビームが点に集光
しない友めに位置決めを行いにくいが、ホログラムを描
画する除、直線縞であるためにパターンを描きゃ丁い。
Sensitivity increases. For example, when b=L1a and n, the center of the moire fringe moves 4.8 times the amount of movement of the hologram to be placed. This method alone cannot align the positions in the X direction, but by placing a hologram parallel to the y axis in a different position,
It would be better if the positioning could be done in a similar way. Compared to the method of superimposing two zone plate holograms to generate concentric moiré fringes, this method makes it difficult to position the beam so that it does not focus on a point. It's a good idea to draw a pattern for it.

’eた。6c[ホログラムを基準ホログラムに対して9
0回転させて重ね曾わせ友場仕には、以下のLうになる
。第2図に示す工うに基準ホログラム101の中心線を
y軸とし、配置するホログラム102の中心線がy軸か
らX方向にΔXずれているとすると、2つのホログラム
は、それぞれ次式の工うになる。
It was. 6c [Hologram 9 to reference hologram
The following L is used to perform 0 rotations and superimposed rotations. Assuming that the center line of the reference hologram 101 shown in FIG. Become.

y  −ma      ・・・・・・・・・ (4)
(X−ΔX)=na’  ・・・・・・・・・ (5)
ここで、aは最も内側の直線の間隔、m、nは正の整数
を表わす0モアレ縞は(1) 、 (2)式の交点とし
て表わされるから、t=m十〇とおいて次式のように球
面波を再生するモアレ縞を生ずる。
y-ma ・・・・・・・・・ (4)
(X-ΔX)=na' (5)
Here, a is the interval between the innermost straight lines, and m and n are positive integers.0 Moiré fringes are expressed as the intersection of equations (1) and (2), so if t=m10, the following equation This produces moiré fringes that reproduce spherical waves.

(X−ΔX戸士y”=t、a″ ・・・・・・・・・ 
(6)このモアレ縞を観測しt場会、配置ホログラムの
y方向の移動に対してモアレ縞は変化しないが、X方向
に対して、ホログラムの移動値に比例して移動する。従
って、モアレ縞の回折光を観測することにより、X方向
の位置決めが可能である。また%yX方向位置決めを行
うには、別の位置にy軸に中心線を持つホログラムを配
置して、基準ホログラムとすれは良い。この方法では、
感度の高いモアレ縞を発生させることはできないが、描
画の容易な直線縞により、球面波を発生させることがで
き、位置決めの行いやすい集光ビームを作ることができ
る。
(X-ΔX y"=t, a" ・・・・・・・・・
(6) When observing these moire fringes, the moire fringes do not change as the placed hologram moves in the y direction, but move in the x direction in proportion to the hologram's movement value. Therefore, positioning in the X direction is possible by observing the diffracted light of moiré fringes. Furthermore, in order to perform positioning in the %yX direction, a hologram having a center line on the y-axis may be placed at another position and used as a reference hologram. in this way,
Although it is not possible to generate moiré fringes with high sensitivity, it is possible to generate spherical waves by using linear fringes that are easy to draw, and it is possible to create a focused beam that is easy to position.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を説明するブロック図であ
る。始めに、マスク1の一部に描画しである基準ホログ
ラム5に、レーザ9から出射した光をハーフミラ−10
で反射させて照射し、ホログラム5からの+1次回折光
が収束して4分割元検出器12に入射するようにマニピ
ュレータ3を移動させる。この4分割光検出器12は、
元ディスクのレーザヘッドの焦点位置会わせに用いられ
ているものと同じもので、第3図に示す構造を持つ0 この第3図において、4分割面をA、B、C。
FIG. 1 is a block diagram illustrating an embodiment of the present invention. First, the light emitted from the laser 9 is applied to the reference hologram 5, which is drawn on a part of the mask 1, by the half mirror 10.
The manipulator 3 is moved so that the +1st-order diffracted light from the hologram 5 converges and enters the four-division source detector 12. This 4-split photodetector 12 is
It is the same as the one used to align the focus position of the laser head of the original disk, and has the structure shown in Figure 3. In Figure 3, the four-part planes are A, B, and C.

、 Dとし、例えば、X方向の位を会わせを行うには、
演算回路16に工りA面とB面の光検出信号の和と、0
面とD面の・15号の和の差をとる。この時。
, D, and for example, to match the positions in the X direction,
The arithmetic circuit 16 is designed to calculate the sum of the photodetection signals of side A and side B, and 0.
Take the difference between the sums of No. 15 on side and D side. At this time.

信号はマニピュレータのX方向の移動に伴って第4図の
特性図に示す工うにS字状の曲mf描く。
As the manipulator moves in the X direction, the signal draws an S-shaped curve mf as shown in the characteristic diagram of FIG.

ここで0点を通過した時、−、ホログラムの+1次回折
元がA、B面とC,D面の中間位置を通過したことにな
る。同様に、X方向の位置合わせはA面とD面の光検出
1g号の和とB面と0面の光検出信号の和の差信号を用
いて行う。
When passing through the 0 point here, the +1st-order diffraction source of the − and holograms has passed through an intermediate position between the A and B planes and the C and D planes. Similarly, alignment in the X direction is performed using a difference signal between the sum of the photodetection signals of the A side and the D side and the sum of the photodetection signals of the B side and the 0th side.

本実施例では、ウェハの対角線位置に基準ホログラム5
を9011転させて配置し之基準ホログラム7お工び光
検出器15、演算回路19がある。
In this embodiment, a reference hologram 5 is placed diagonally on the wafer.
A reference hologram 7, a photodetector 15, and an arithmetic circuit 19 are arranged by rotating 9011.

これらX方向%y方向の信号は例えば、GP−IBイン
タフェースを装備したパソコンなどのプロセッサ2に入
力さn1両方の1m号が第4図に示したS字状信号の0
点を示す工うに、例えは、梢密ステージとパルス七−夕
およびGP−IB!備のパルスモータ駆動装置を装えた
マニピュレータ3に信号を送ってマスクを移動させる。
These signals in the X direction and %y direction are input to a processor 2 such as a personal computer equipped with a GP-IB interface, and the 1m of both n1 and 0 of the S-shaped signal shown in FIG.
To illustrate the point, examples are the Kozue stage, Pulse Tanabata, and GP-IB! A signal is sent to the manipulator 3 equipped with a pulse motor drive device to move the mask.

こnら両方の16号が0点の位置に仕っ次時、このマス
クは、装置に対して位[8わせできたことになる。この
時、ビーム径の171008度の位置ずれを検出できる
When both Nos. 16 and 16 are placed at the 0 point position, this mask has been placed at position [8] with respect to the device. At this time, a positional deviation of 171008 degrees in beam diameter can be detected.

従って、数μmにビームをしぼることができれば、数十
μm程度の位置ずnを検出できる。
Therefore, if the beam can be narrowed down to several micrometers, a positional deviation n of about several tens of micrometers can be detected.

次に、基準ホログラム5,7とウェハに記録さnている
配置ホログラム6.8を重ね会わせて生じるモアレ縞に
レーザ9から出射した光を照射し、モアレ縞からの+1
次回折元が収束して4分割元検出器13.14に入射す
る工うにマニピュレータ4を移動させる。これら光検出
器13.14に、光検出器12,15と同一のもので、
   。
Next, the light emitted from the laser 9 is irradiated onto the moire fringes generated by overlapping the reference holograms 5 and 7 with the arrangement holograms 6 and 8 recorded on the wafer, and the +1
The manipulator 4 is moved so that the next diffraction source converges and enters the four-split source detector 13,14. These photodetectors 13 and 14 are the same as photodetectors 12 and 15,
.

を装置に対して位置会わせし友手順と同様に、ウェハを
マスクに対して位置会わせできる。
Similar to the alignment procedure, the wafer can be aligned to the mask.

この方法に工nば、(3)式において、モアレ縞が配置
するホログラムの10倍移動するように設計し、このモ
アレ縞にエリ、ビームを数μmにしほることができnば
、モアレ縞の数+μmの移動を検知でき、さらに配置ホ
ログラムの数μmの移動−を検知できることになる。
If this method is modified, in equation (3), the moire fringe is designed to move 10 times as much as the placed hologram, and if the beam can be narrowed to a few μm, the moire fringe can be It is possible to detect a movement of several micrometers, and it is also possible to detect a movement of several micrometers of the arranged hologram.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、この発明の位置決め方法によnは
、モアレ縞の回折光を利用することにより、マスクとウ
ェハを数μmm変度高精度で位置会わせすることができ
る。
As described above in detail, the positioning method of the present invention makes it possible to align the mask and wafer with high precision with a variation of several μmm by utilizing the diffracted light of moiré fringes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図に、この発明の一実施例の構成を説明するブロッ
ク図、第2図は基準ホログラムと配置ホログラムラ事ね
会わせて生じるモアレ縞の一例の平面図、第3図は第1
図の4分割元検出器の構成図、!4図は第1図の4分割
光検出器からの出力信号の特性図である0 1・・・・・・マスク、2・・・・・・ウェハ、3.4
・・・・・・マニピユレータ、5,7,101・・・・
・・基準ホログラム、6.8.102・・・・・・配置
ホログラム、9・・・・・・レーザ。 10・・・・・・ハーフミラ−111・・・・・・ミラ
*  12 p13.14,15・・・・・・光検出器
、16 、17 、18 。
FIG. 1 is a block diagram illustrating the configuration of an embodiment of the present invention, FIG. 2 is a plan view of an example of moiré fringes that occur when a reference hologram and a placement hologram collide, and FIG.
The configuration diagram of the four-division element detector shown in the figure,! Figure 4 is a characteristic diagram of the output signal from the four-split photodetector in Figure 1.0 1...Mask, 2...Wafer, 3.4
...Manipulator, 5, 7, 101...
...Reference hologram, 6.8.102... Placement hologram, 9... Laser. 10... Half mirror 111... Mira* 12 p13.14, 15... Photodetector, 16, 17, 18.

Claims (3)

【特許請求の範囲】[Claims] (1)円筒波を再生する第1のホログラムを有する第1
面と、前記第1のホログラムと焦点距離の同一あるいは
異なった円筒波を再生する第2のホログラムを有する第
2面とを重ね合わせてモアレ縞を生じせしめ、前記第1
のホログラムを観測面に対して位置決めし、前記モアレ
縞にコヒーレント光を照射して生じる回折光が前記観測
面の定められた位置に生じるように、前記第2面の位置
決めを行うことを特徴とする位置決め方法。
(1) A first hologram that reproduces a cylindrical wave.
and a second surface having a second hologram that reproduces a cylindrical wave having the same or different focal length as the first hologram to generate moiré fringes,
The hologram is positioned with respect to the observation surface, and the second surface is positioned so that diffracted light generated by irradiating the moire fringes with coherent light is generated at a predetermined position on the observation surface. positioning method.
(2)第1のホログラムと第2のホログラムとの各面の
重ね合わせが各ホログラムの縞が平行に重なるようにし
た特許請求の範囲第1項記載の位置決め方法。
(2) The positioning method according to claim 1, wherein the surfaces of the first hologram and the second hologram are superimposed so that the stripes of each hologram overlap in parallel.
(3)第1のホログラムと第2のホログラムとの各面の
重ね合わせが各ホログラムの縞が直交するよりにした特
許請求の範囲第1項記載の位置決め方法。
(3) The positioning method according to claim 1, wherein the surfaces of the first hologram and the second hologram are superimposed so that the stripes of the holograms are perpendicular to each other.
JP61070143A 1986-03-27 1986-03-27 Positioning method Granted JPS62226628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61070143A JPS62226628A (en) 1986-03-27 1986-03-27 Positioning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61070143A JPS62226628A (en) 1986-03-27 1986-03-27 Positioning method

Publications (2)

Publication Number Publication Date
JPS62226628A true JPS62226628A (en) 1987-10-05
JPH0546969B2 JPH0546969B2 (en) 1993-07-15

Family

ID=13423053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61070143A Granted JPS62226628A (en) 1986-03-27 1986-03-27 Positioning method

Country Status (1)

Country Link
JP (1) JPS62226628A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5057581A (en) * 1973-09-20 1975-05-20
JPS514829A (en) * 1974-07-01 1976-01-16 Asahi Ishiwata Kogyo Kk NAISOYO KENZAI
US4037969A (en) * 1976-04-02 1977-07-26 Bell Telephone Laboratories, Incorporated Zone plate alignment marks
US4360273A (en) * 1980-02-14 1982-11-23 Sperry Corporation Optical alignment of masks for X-ray lithography
JPS60136312A (en) * 1983-12-26 1985-07-19 Hitachi Ltd Method and equipment for semiconductor exposure
JPS6244608A (en) * 1985-08-22 1987-02-26 Tokyo Optical Co Ltd Method and device for setting hologram primary standard of holographic interferometer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5057581A (en) * 1973-09-20 1975-05-20
JPS514829A (en) * 1974-07-01 1976-01-16 Asahi Ishiwata Kogyo Kk NAISOYO KENZAI
US4037969A (en) * 1976-04-02 1977-07-26 Bell Telephone Laboratories, Incorporated Zone plate alignment marks
US4360273A (en) * 1980-02-14 1982-11-23 Sperry Corporation Optical alignment of masks for X-ray lithography
JPS60136312A (en) * 1983-12-26 1985-07-19 Hitachi Ltd Method and equipment for semiconductor exposure
JPS6244608A (en) * 1985-08-22 1987-02-26 Tokyo Optical Co Ltd Method and device for setting hologram primary standard of holographic interferometer

Also Published As

Publication number Publication date
JPH0546969B2 (en) 1993-07-15

Similar Documents

Publication Publication Date Title
US6882477B1 (en) Method and system for interference lithography utilizing phase-locked scanning beams
US4340305A (en) Plate aligning
USRE49241E1 (en) Lithography system and method for processing a target, such as a wafer
JPS61501656A (en) A device that accurately aligns different grids stacked on top of each other and measures gaps.
JPS6332730A (en) Scanner for light recording carrier
JPS6048949B2 (en) A device that reads information using a light beam
JPS62261004A (en) Method of aligning object
JPH0590143A (en) Measuring equipment of position deviation
EP0652487B1 (en) Rotational deviation detecting method and system using a periodic pattern
US3930734A (en) Process and apparatus for sensing magnitude and direction of lateral displacement
JPS59191143A (en) Optical track tracking device
US7554675B2 (en) Light wavefront measuring instrument, light wavefront measuring method, and light source adjusting method
JPS62226628A (en) Positioning method
US5291026A (en) Method for measuring eccentricity
JP2723502B2 (en) Positioning method
JPH067543B2 (en) Positioning device
JPH07229721A (en) Device for generating aspherical wave and method for measuring aspherical shape
JPH0340417A (en) Projection aligner
JP3323666B2 (en) Apparatus and method for detecting rotational deviation of object using periodic pattern
JPS58173416A (en) Measuring method of face shape
JPH08159724A (en) Rotary surface measuring instrument
JP2513281B2 (en) Alignment device
JP3116867B2 (en) Light beam position detecting device and light beam position detecting method
JP3393910B2 (en) Surface shape measurement method
JPH073702B2 (en) Optical head astigmatism adjustment device