JPS62226206A - Control system for synchronous position - Google Patents

Control system for synchronous position

Info

Publication number
JPS62226206A
JPS62226206A JP7003786A JP7003786A JPS62226206A JP S62226206 A JPS62226206 A JP S62226206A JP 7003786 A JP7003786 A JP 7003786A JP 7003786 A JP7003786 A JP 7003786A JP S62226206 A JPS62226206 A JP S62226206A
Authority
JP
Japan
Prior art keywords
control system
position control
value
systems
disturbance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7003786A
Other languages
Japanese (ja)
Inventor
Koji Ito
浩司 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP7003786A priority Critical patent/JPS62226206A/en
Publication of JPS62226206A publication Critical patent/JPS62226206A/en
Pending legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To prevent the asymmetrical properties due to disturbance by feeding the position shifts of both master and slave axes back to each position control system. CONSTITUTION:A large arch-shaped column 11 of a machine tool, etc., contains foot parts 12 and 13 symmetrical to each other and ball screw shafts 14 and 15. These shafts 14 and 15 are driven by motors 16 and 17 respectively. The motors 16 and 17 are actuated by the position command value R to secure synchronism between shift positions C1 and C2 of both parts 12 and 13. When the synchronous positioning is carried out between both parts 12 and 13 through each of position control systems 1 and 2, the command value R is supplied to both systems 1 and 2 to obtain the outputs of both systems, i.e., the mutual differentials between positions C1 and C2. Then the compensation elements H1 and H2 of both systems 1 and 2 are applied to those differentials (C1-C2) and (C2-C1) to obtain the value of compensation. This value of compensation is fed back to the value R is both systems 1 and 2 respectively. Thus the constant responsiveness is secured to the value R.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、同期位置制御方式に係り、例えば凹型等の可
動構造物を備えた工作機械等において、その両側の脚部
を同期位置決めする制御方式に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a synchronous position control system, and is a control method for synchronously positioning the legs on both sides of a machine tool, etc., equipped with a movable structure such as a concave structure. Regarding the method.

〔背景技術とその問題点〕[Background technology and its problems]

工作機械等において、大型の凹型コラム等を駆動させる
場合、例えば第5図に示す如く、可動構造物であるコラ
ム11の中心に対して対称な両側の脚部12.13に例
えばポールねじ軸14.15を設け、この各ボールねし
軸14.15にモータ16.17を連結し、この各モー
タ16.17を位置指令値に従って駆動させ、脚部12
.13の移動位置C1,Czを同量位置制御することが
行われている。
When driving a large concave column or the like in a machine tool or the like, for example, as shown in FIG. A motor 16.17 is connected to each of the ball screw shafts 14.15, and each motor 16.17 is driven according to the position command value.
.. 13 movement positions C1 and Cz are controlled by the same amount.

従来の同期位置制御方式を第6図に示す。同図中、21
.22は各軸L4.15側の位置制御系、23は補償回
路である。Rは位置指令値、GI。
A conventional synchronous position control system is shown in FIG. In the same figure, 21
.. 22 is a position control system for each axis L4.15, and 23 is a compensation circuit. R is position command value, GI.

G2は各位置制御系21.22における位置指令値Rに
対する移動位置c、、C2への伝達関数である。Hは移
り1位置C+ 、 C!のずれをなくすように働く補償
回路23の補償要素で、通常、P制御、PI制御、PI
D制御等が用いられる。すなわち、この方式は、2つの
軸14.15をマスター軸とスレーブ軸とに分け、マス
ター軸側の移動位置に一致するようにスレーブ軸側の移
動位置を制御するものである。
G2 is a transfer function for the position command value R in each position control system 21, 22 to the movement position c, , C2. H moves to 1 position C+, C! A compensation element of the compensation circuit 23 that works to eliminate the deviation of the P control, PI control, PI
D control etc. are used. That is, in this method, the two axes 14, 15 are divided into a master axis and a slave axis, and the movement position of the slave axis is controlled to match the movement position of the master axis.

このような構成にすると、マスター軸側に何らかの外乱
(例えば、切削負荷や摩擦等)が加わり、それによって
マスター軸側が位置ずれを起こした場合には、ここでは
モータのロータが回転して位置ずれを起こした場合には
、スレーブ軸側はその位置ずれを補うように移動し、両
輪における位置ずれをなくす、一方、スレーブ軸側に外
乱が加わった場合には、マスター軸側は移動せず、スレ
ーブ軸側は自らの外乱抑制能力により外乱による位置ず
れをなくす。従って、このような制御方式では、対称構
造の機械を作っても、各制御系の外乱に対する応答を対
称にできないため、機械的な応答は非対称となり、最終
的な加工物も非対称に仕−ヒがることになる。
With this configuration, if some disturbance (e.g. cutting load, friction, etc.) is applied to the master shaft and this causes the master shaft to shift its position, the rotor of the motor will rotate and the position will shift. If a disturbance occurs, the slave shaft side moves to compensate for the positional deviation, eliminating the positional deviation in both wheels.On the other hand, if a disturbance is applied to the slave shaft side, the master shaft side does not move. The slave shaft side uses its own disturbance suppression ability to eliminate positional deviations caused by disturbances. Therefore, with this type of control method, even if a machine with a symmetrical structure is created, the response of each control system to disturbance cannot be made symmetrical, so the mechanical response will be asymmetrical, and the final workpiece will also be worked asymmetrically. This will result in

この様子を第7図(A)、(B)に示す。すなわち、機
械の中心軸に対して対称的な機械上の点A、Bにおいて
、マスター軸側の黒人に外乱Fが階段状に加わると、ス
レーブ軸側はその位置ずれを補うように移動するので、
そのときの機械の最大変位は第7図(A)のようになる
。一方、スレーブ軸側の点Bに同じ大きさの階段状の外
乱Fが加わると、マスター軸側は殆ど移動移動すること
はないから、そのときの機械の最大変位は第7図(B)
のようになる。つまり、左右非対称となるから、それに
よって加工される加工物の切削面も左右非対称なものと
なる。
This situation is shown in FIGS. 7(A) and 7(B). In other words, at points A and B on the machine that are symmetrical with respect to the central axis of the machine, if a disturbance F is applied in a stepwise manner to the master shaft side, the slave shaft side will move to compensate for the positional deviation. ,
The maximum displacement of the machine at that time is as shown in Fig. 7(A). On the other hand, if a step-like disturbance F of the same size is applied to point B on the slave axis side, the master axis side will hardly move, so the maximum displacement of the machine at that time will be as shown in Figure 7 (B).
become that way. In other words, since the cutting surface is asymmetrical, the cut surface of the workpiece to be machined is also asymmetrical.

〔発明の目的〕[Purpose of the invention]

ここに、本発明の目的は、このような従来の問題、つま
り外乱による非対称性を生じない同期位置制御方式を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a synchronous position control method that does not cause such conventional problems, that is, asymmetry due to disturbances.

〔問題点を解決するための手段および作用〕そのため、
本発明では、従来のようにマスター軸、スレーブ軸とい
う区別をなくし、両軸側の位置ずれを各位置制御系にそ
れぞれフィードバックすることにより、上記目的を達成
しようとするものである。
[Means and actions for solving problems] Therefore,
The present invention aims to achieve the above object by eliminating the conventional distinction between a master axis and a slave axis and feeding back positional deviations on both axis sides to each position control system.

すなわち、可動構造物の両側に、位置指令値に基づき各
側を移動させる位置制御B系をそれぞれ設け、この両位
置制御系で可動構造物の両側を同期位置決めする方式に
おいて、可動構造物の両側の移動位置の差分を求め、こ
の差分に補償要素を作用させて補償値を求め、この補償
値を各位置制御系にそれぞれフィードバックすることに
より、外乱による非対称性の問題を解消したものである
That is, in a system in which a position control system B is provided on both sides of a movable structure to move each side based on a position command value, and these two position control systems position both sides of the movable structure synchronously, both sides of the movable structure are The problem of asymmetry caused by disturbances is solved by determining the difference in the movement position of the position, applying a compensation element to this difference to determine a compensation value, and feeding back this compensation value to each position control system.

〔実施例〕〔Example〕

第1図は本発明の第1の実施例を示している。 FIG. 1 shows a first embodiment of the invention.

同図において、Rは位置指令値、G + 、 G zは
各軸側の位置制御系1,2における位置指令値Rに対す
る移動位置C+、Czへの伝達関数、H+。
In the figure, R is a position command value, G + and G z are transfer functions, H+, to movement positions C+ and Cz with respect to the position command value R in the position control systems 1 and 2 on each axis side.

H2は各位置制御系1,2に対する補償回路3+。H2 is a compensation circuit 3+ for each position control system 1, 2.

3tの補償要素である。3t compensation element.

まず、位置指令値Rを各位置制御系1,2へ入力し、各
位置制御系1,2の出力、つまり各移動位置C+ 、C
zのお互いの差分(C,−C,)、(Cz   Ct)
を求める。そして、この各差分(C,−Cz )、(C
2−c+ )に各位置制御系1.2の補償要素IN+、
Hzを作用させて補償値を求め、これを各位置制御系1
.2の位置指令値Rにイードバックさせる。
First, the position command value R is input to each position control system 1, 2, and the output of each position control system 1, 2, that is, each movement position C+, C
mutual difference of z (C, -C,), (Cz Ct)
seek. Then, these differences (C, -Cz), (C
2-c+), the compensation element IN+ of each position control system 1.2,
Hz is applied to obtain a compensation value, and this is applied to each position control system 1.
.. E-back is performed to the position command value R of 2.

従って、本方式では、両位置制御系1.2の移動値ic
l 、Czのお互いの差分、つまり位置ずれを各位置制
御系1.2の位置指令値Rにフィードバックしているた
め、指令値に対する応答性も等しく、かつ外乱に対する
非対称性の問題も解消できる。
Therefore, in this method, the movement value ic of both position control systems 1.2
Since the difference between l and Cz, that is, the positional deviation, is fed back to the position command value R of each position control system 1.2, the responsiveness to the command value is the same, and the problem of asymmetry with respect to disturbance can be solved.

そこで、この点を、第1図に外乱の要素を加えた第2図
を基に説明する。同図において、T、。
Therefore, this point will be explained based on FIG. 2, which is a diagram in which disturbance elements are added to FIG. 1. In the same figure, T.

T2を各位置制御系1.2に対するトルク外乱、1)+
、Diを各位置制御系1.2のトルク外乱丁1、T2に
対する移動値ac、−Czへの伝達関数(D+ ”Ct
 /T+ 、Dz −Ct /Tt )とすると、位置
指令値Rおよび外乱T1.Ttに対する位置制御系1,
2の応答C,,C,は、次式で表される。
T2 is the torque disturbance for each position control system 1.2, 1)+
, Di are transfer functions (D+ ``Ct
/T+, Dz -Ct /Tt), the position command value R and the disturbance T1. Position control system 1 for Tt,
The response C,,C, of 2 is expressed by the following equation.

C+ (R1TI 、Tz) 1  + GI  Hl  +  Gz  Hzl  
+G1 Hl  +Q、  triC2(R,TI、T
z) 1  +  GI HI +  Gz  Hzl  +
  G I Hl  +  Gz  Hzよって、位置
制御系1の移動位置CIに対する位置制御系2の移動位
置C2の誤差E、は、次式%式% この(3)式中、第1項は位置指令値により生じる位置
誤差、第2項は位置制御系IGこ対する外乱T、により
生じる位置誤差、第3項番よ(立置!+1 ?l系2に
対する外乱T2により生じる位置誤差である。
C+ (R1TI, Tz) 1 + GI Hl + Gz Hzl
+G1 Hl +Q, triC2(R, TI, T
z) 1 + GI HI + Gz Hzl +
G I Hl + Gz Hz Therefore, the error E of the movement position C2 of the position control system 2 with respect to the movement position CI of the position control system 1 is expressed by the following formula % Formula % In this formula (3), the first term is the position command value The second term is the position error caused by the disturbance T to the position control system IG, and the third term is the position error caused by the disturbance T2 to the system 2.

比較のために、従来のマスク・スレーフ゛方式における
同様な式を求めると、この方式番よ第2図の実施例でH
l  =O,H,=Hと置(′またものとなるから、 CAI−GI  R+ Dl TI       ・・
・・・・・・・ (4)1  +0g  H1+Gz 
 H となる。
For comparison, we found a similar formula for the conventional mask-slave method.
Set l = O, H, = H (' Since it becomes a thing again, CAI-GI R+ Dl TI...
・・・・・・・・・ (4) 1 +0g H1+Gz
It becomes H.

通常、各位置制御系は同じ応答を示すように構成するか
ら、GI  ”’Gz 、Dr  −Dz とみなせる
Usually, each position control system is configured to show the same response, so it can be regarded as GI'''Gz, Dr -Dz.

また、各補償要素は同じになるようにシステムを構成す
ると、Hl”Hz となり、(1)〜(3)弐および(
4)〜(6)式はそれぞれ次のように変換される。
Also, if the system is configured so that each compensation element is the same, Hl"Hz will be obtained, and (1) to (3) 2 and (
Equations 4) to (6) are each converted as follows.

GA+= GI  R+ Dr  TI    ・・・
・・・・・・・・・・・・・・・  (4″)1+GI
H (3°)式と(6゛)式とを比較すると、(3゛)式は
(6′)式においてH” 2 H+  とおいたもので
ある。これは、単に補償要素のゲインを2倍にしたもの
である。従って、H、のゲインをHの1/2に設定すれ
ば、従来方式と本方式とにおいて、両制御系の位置誤差
に対しては差がないことが判る。
GA+= GI R+ Dr TI...
・・・・・・・・・・・・・・・ (4″)1+GI
Comparing Equation H (3°) and Equation (6'), Equation (3') is the same as Equation (6') with H" 2 H+. This simply doubles the gain of the compensation element. Therefore, it can be seen that if the gain of H is set to 1/2 of H, there is no difference in position error between the conventional system and the present system.

また、系の安定性は特性方程式を調べれば判る。In addition, the stability of the system can be determined by examining the characteristic equation.

従来方式の特性方程式は1+−G、H=Oであり、本方
式ではl +2C;I  H,=Oであり、上と同様な
理由により差がない。
The characteristic equation of the conventional method is 1+-G, H=O, and in the present method, it is l +2C;I H,=O, and there is no difference for the same reason as above.

次に、両方式の外乱に対する対称性を調べてみる。いま
、第3図のような場合を考えてみると、点Aに外乱FA
が加わったとき、第1軸(例えば、位置制御系1側)に
はT、い第2軸(位置制御系2側)にはTzAなる外乱
が加わる。ここで、指令値をRとすると、第1軸および
第2軸の変位はそれぞれC+(R,TIA 、TlA)
 、 Cz(R,TIA、Txa) となる。また、中
心軸に対し点Aと対称な点Bに同じ大きさの外乱F、が
加わったとき、第1軸にはT4、第2軸にはTzIlな
る外乱が加わるが、機械の構造が対称構造であるとする
と、Tll1=T2A、Tll1TZAとなる。よって
、第1軸および第2軸の変位はそれぞれC+ (R9T
li 、Txa)  = C+ (R,TlA 、TI
A) 、  C2(R,71B 、Tzs) = C2
(R,TZA 、TIA)となる。
Next, let's examine the symmetry of both equations against disturbances. Now, if we consider the case shown in Figure 3, there is a disturbance FA at point A.
When , a disturbance of T is applied to the first axis (for example, on the position control system 1 side) and a disturbance of TzA is applied to the second axis (on the position control system 2 side). Here, if the command value is R, the displacements of the first and second axes are respectively C+(R, TIA, TlA)
, Cz(R, TIA, Txa). Also, when a disturbance F of the same magnitude is applied to a point B that is symmetrical to point A with respect to the central axis, a disturbance T4 is applied to the first axis and TzIl is applied to the second axis, but the structure of the machine is symmetrical. If the structure is Tll1=T2A, Tll1TZA. Therefore, the displacements of the first and second axes are each C+ (R9T
li, Txa) = C+ (R, TlA, TI
A), C2(R,71B,Tzs) = C2
(R, TZA, TIA).

従って、点Aに外乱F、が加わったときのC4の変位と
、点Bに同じ外乱F8が加わったときの02の変位との
差ER,は、 E R+  = CI(RlTIA 、TzA)   
C2(11,TZA 、TIA)−〇 となる。同様に、点Aに外乱F、加わったときの02の
変位と、点已に同じ外乱F、が加わったときの01 の
変位との差ER,は、 E Rz = C2(R,TIA 、TEA)   C
4(R,TZA 、TlA)=0 となる。すなわち、本方式では、機械的に対称な位置に
同し大きさの外乱が加わった場合の各軸の制御系の応答
は対称となる。
Therefore, the difference ER between the displacement of C4 when disturbance F is applied to point A and the displacement of 02 when the same disturbance F8 is applied to point B is E R+ = CI (RlTIA, TzA)
C2 (11, TZA, TIA) - ○. Similarly, the difference ER between the displacement of 02 when disturbance F is applied to point A and the displacement of 01 when the same disturbance F is applied to point A is E Rz = C2 (R, TIA, TEA ) C
4(R, TZA, TlA)=0. That is, in this method, when a disturbance of the same magnitude is applied to a mechanically symmetrical position, the response of the control system for each axis is symmetrical.

一方、従来方式の同様な外乱に対する応答を調べてみる
と、 E Rs+ = CAl (R,TIA、TZA)  
 CA2(R,TZA、TIA)E  RA2=  C
A2(R,TIA、TZA)  −CAI(R,丁ZA
、TIA)となる。よって、従来方式では、両輪に加わ
る外乱が等しい場合(T la = 72A)のみ、外
乱に対する応答が等しくなる。
On the other hand, when we examine the response of the conventional method to similar disturbances, we find that E Rs+ = CAl (R, TIA, TZA)
CA2(R,TZA,TIA)E RA2=C
A2 (R, TIA, TZA) - CAI (R, Ding ZA
, TIA). Therefore, in the conventional system, the responses to disturbances are equal only when the disturbances applied to both wheels are equal (T la = 72A).

第4図は本発明の第2の実施例を示している。FIG. 4 shows a second embodiment of the invention.

このものは、第1図における補償要素H,,H!を同一
として[■とおき、両移動位置C,,C,の差分(CI
−c、)に補償要素Hを作用させて補償値を求め、これ
を位置制御系1の位置指令値Rから減算する一方、位置
制御系2の位置指令値Rに加算するようにしたものであ
る。
This one corresponds to the compensation elements H,,H! in FIG. Assuming that [■] is the same, the difference (CI
-c,) to obtain a compensation value by applying a compensation element H, and subtracting this from the position command value R of the position control system 1, while adding it to the position command value R of the position control system 2. be.

なお、第1図、第2図および第4図における斯償要素H
+、Hz としては、通常のP制御、PI制御、P’l
D制御等を用いることができる。
In addition, the compensation element H in FIGS. 1, 2, and 4
+, Hz, normal P control, PI control, P'l
D control etc. can be used.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明によれば、中心軸に対し対称な加工
物を切削した場合でも、非対称となることがなく、対称
な加工物にできる。
As described above, according to the present invention, even when cutting a workpiece that is symmetrical with respect to the central axis, the workpiece can be made symmetrical without becoming asymmetrical.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を示すブロック図、第2
図は第1図に外乱の要素を付加したブロック図、第3図
は第2図において中心軸に対して対称な点Δ、Bに外乱
が加わったときの最大変位を示す図、第4図は本発明の
第2の実施例を示すブロック図、第5図は凹型可動構造
物の位置制御システムを示す斜視図、第6図は従来の同
量位置制御方式を示すブロック図、第7図はその方式に
おいて中心軸に対して対称な点A、Bに外力が加わった
ときの変位を示す図である。 1.2・・・位置制御系、R・・・位置指令値、cl。 C2・・・各位置制御系の移動位置、Do、Dz・・・
トルク外乱、C,、C2・・・各位置制御系における位
置指令値に対する移動位置への伝達関数、Hl。 H,、H・・・各位置制御系に対する補償要素。
FIG. 1 is a block diagram showing a first embodiment of the present invention;
The figure is a block diagram with disturbance elements added to Figure 1, Figure 3 is a diagram showing the maximum displacement when disturbance is applied to points Δ and B, which are symmetrical to the central axis in Figure 2, and Figure 4. is a block diagram showing a second embodiment of the present invention, FIG. 5 is a perspective view showing a position control system for a concave movable structure, FIG. 6 is a block diagram showing a conventional equivalent position control system, and FIG. is a diagram showing displacement when an external force is applied to points A and B that are symmetrical about the central axis in this method. 1.2...Position control system, R...Position command value, cl. C2... Movement position of each position control system, Do, Dz...
Torque disturbance, C,, C2...Transfer function to the movement position with respect to the position command value in each position control system, Hl. H,,H...Compensation element for each position control system.

Claims (2)

【特許請求の範囲】[Claims] (1)可動構造物の両側に、位置指令値に基づき各側を
移動させる位置制御系をそれぞれ設け、この両位置制御
系で可動構造物の両側を同期位置決めする方式において
、可動構造物の両側の移動位置の差分を求め、この差分
に補償要素を作用させて補償値を求め、この補償値を各
位置制御系にそれぞれフィードバックするようにしたこ
とを特徴とする同期位置制御方式。
(1) In a method in which position control systems are provided on both sides of a movable structure to move each side based on position command values, and both position control systems position both sides of the movable structure synchronously, both sides of the movable structure are 1. A synchronous position control system characterized in that a difference in movement position is determined, a compensation element is applied to this difference to determine a compensation value, and this compensation value is fed back to each position control system.
(2)特許請求の範囲第1項において、前記両移動位置
のお互いの差分を求め、この各差分に各位置制御系に対
する補償要素を作用させてそれぞれの補償値を求め、こ
の各補償値を各位置制御系にそれぞれフィードバックす
るようにしたことを特徴とする同期位置制御方式。
(2) In claim 1, the differences between the two moving positions are determined, and each compensation value is determined by applying a compensation element for each position control system to each difference, and each compensation value is A synchronous position control method characterized by feeding back to each position control system.
JP7003786A 1986-03-27 1986-03-27 Control system for synchronous position Pending JPS62226206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7003786A JPS62226206A (en) 1986-03-27 1986-03-27 Control system for synchronous position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7003786A JPS62226206A (en) 1986-03-27 1986-03-27 Control system for synchronous position

Publications (1)

Publication Number Publication Date
JPS62226206A true JPS62226206A (en) 1987-10-05

Family

ID=13419987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7003786A Pending JPS62226206A (en) 1986-03-27 1986-03-27 Control system for synchronous position

Country Status (1)

Country Link
JP (1) JPS62226206A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01122043U (en) * 1987-10-27 1989-08-18
JPH01318101A (en) * 1988-06-20 1989-12-22 Nissan Motor Co Ltd Method and device for multiaxis control
US5917294A (en) * 1995-08-31 1999-06-29 Canon Kabushiki Kaisha Synchronization control apparatus and method
WO2004092859A1 (en) * 2003-04-11 2004-10-28 Mitsubishi Denki Kabushiki Kaisha Servo controller
JP2012014719A (en) * 2010-01-12 2012-01-19 Yaskawa Electric Corp Synchronous control apparatus
JP2022145326A (en) * 2021-03-19 2022-10-04 大銀微系統股▲分▼有限公司 Compensation system for dynamic displacement error
US11512984B2 (en) 2021-03-23 2022-11-29 Hiwin Mikrosystem Corp. Dynamic displacement error compensation system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5311868A (en) * 1976-07-20 1978-02-02 Ishikawajima Harima Heavy Ind Oil pressure press rolling mill

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5311868A (en) * 1976-07-20 1978-02-02 Ishikawajima Harima Heavy Ind Oil pressure press rolling mill

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01122043U (en) * 1987-10-27 1989-08-18
JPH0519307Y2 (en) * 1987-10-27 1993-05-21
JPH01318101A (en) * 1988-06-20 1989-12-22 Nissan Motor Co Ltd Method and device for multiaxis control
US5917294A (en) * 1995-08-31 1999-06-29 Canon Kabushiki Kaisha Synchronization control apparatus and method
WO2004092859A1 (en) * 2003-04-11 2004-10-28 Mitsubishi Denki Kabushiki Kaisha Servo controller
US7671553B2 (en) 2003-04-11 2010-03-02 Mitsubishi Denki Kabushiki Kaisha Servo controller
JP2012014719A (en) * 2010-01-12 2012-01-19 Yaskawa Electric Corp Synchronous control apparatus
JP2022145326A (en) * 2021-03-19 2022-10-04 大銀微系統股▲分▼有限公司 Compensation system for dynamic displacement error
US11512984B2 (en) 2021-03-23 2022-11-29 Hiwin Mikrosystem Corp. Dynamic displacement error compensation system

Similar Documents

Publication Publication Date Title
Perez-Pinal et al. Relative coupling strategy
Katsura et al. Wideband force control by position-acceleration integrated disturbance observer
JP4478584B2 (en) Position control device, measuring device and processing device
US4888538A (en) System for remote transmission of angular position and force between master and slave shafts
US4816734A (en) Speed control system
DE2265246A1 (en) ADJUSTMENT DEVICE
JPS5846413A (en) Electric servomechanism
JPS62226206A (en) Control system for synchronous position
US20120304478A1 (en) Method for calculating error compensation value of machine
JPS615302A (en) Controller of manipulator
Saied et al. A novel model-based robust super-twisting sliding mode control of PKMs: Design and real-time experiments
JPH01228752A (en) Spindle synchronizing system
Hasegawa et al. Robot joint angle control based on Self Resonance Cancellation using double encoders
JP7044440B2 (en) Methods and systems for controlling brushless electric motors
Cheng et al. Synchronization controller synthesis of multi-axis motion system
JPS58170901A (en) Electro-hydraulic servo system
JP2580502B2 (en) Force / torque control method for motor with reduction gear
JPS61131007A (en) Numerical control for machine tool
Tondos Minimizing electromechanical oscillations in the drives with resilient couplings by means of state and disturbance observers
Tomaszuk et al. Integrated drive system of robotic arm joint used in a mobile robot
RU2007838C1 (en) Two-motor electric drive
JPH01170386A (en) Controller for motor
JP6391489B2 (en) Motor control device
JP3611662B2 (en) Synchronous position controller
JPS62120514A (en) Position control drive method