JPS58170901A - Electro-hydraulic servo system - Google Patents

Electro-hydraulic servo system

Info

Publication number
JPS58170901A
JPS58170901A JP5134182A JP5134182A JPS58170901A JP S58170901 A JPS58170901 A JP S58170901A JP 5134182 A JP5134182 A JP 5134182A JP 5134182 A JP5134182 A JP 5134182A JP S58170901 A JPS58170901 A JP S58170901A
Authority
JP
Japan
Prior art keywords
compensation element
electro
servo
signal
servo system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5134182A
Other languages
Japanese (ja)
Other versions
JPH0231243B2 (en
Inventor
Hiroshi Ikebe
池辺 洋
Hirotake Hirai
洋武 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5134182A priority Critical patent/JPH0231243B2/en
Publication of JPS58170901A publication Critical patent/JPS58170901A/en
Publication of JPH0231243B2 publication Critical patent/JPH0231243B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B9/00Servomotors with follow-up action, e.g. obtained by feed-back control, i.e. in which the position of the actuated member conforms with that of the controlling member
    • F15B9/02Servomotors with follow-up action, e.g. obtained by feed-back control, i.e. in which the position of the actuated member conforms with that of the controlling member with servomotors of the reciprocatable or oscillatable type
    • F15B9/03Servomotors with follow-up action, e.g. obtained by feed-back control, i.e. in which the position of the actuated member conforms with that of the controlling member with servomotors of the reciprocatable or oscillatable type with electrical control means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Servomotors (AREA)

Abstract

PURPOSE:To provide for stable and immediately responsive operation without influence of load, external disturbance and so on by incorporating static, compressibility and dynamic compensating elements at the preceeding steps of a servo amplifier of a closed loop system, and integrating a stabilization compensating element in a feedback loop. CONSTITUTION:A compressibility compensating element 9, a static compensating element 10 and a dynamic compensating element 11 are provided at the preceeding steps of a servo amplifier 8 of an electro-hydraulic servo system in a closed loop system and a stabilization compensating element 14 is integrated in a feedback loop. Influence of the compressibility of working oil, load pressure, a delay of transfer characteristic and oscillation of an electro-hydraulic servo valve are compensated by the compressibility compensating element 9, the static compensating element 10, the dynamic compensating element 11 and the stabilization compensating element 14, respectively so that the system may be controlled to closely follow a target value without influence of load fluctuation, the effect of any external disturbance, delay characteristic of the servo valve and so on.

Description

【発明の詳細な説明】 本発明は制御対象となる負荷の特性および外乱に影響さ
れず、しかも安定で高応答に動作する電気油圧サーボ系
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electro-hydraulic servo system that is not affected by the characteristics of a load to be controlled or disturbances, and operates stably and with high response.

電気油圧サーボ系は、撮動試験機、材料試験などの各種
の試験機、各種のシミュレータ、圧延機およびロボット
をはじめとする一般産業機械の駆動部に利用されている
。そして、その利用目的によって制御対象となる負荷は
質量のみの場合、弾性体の場合あるいは両者の特性を兼
ね備える場合など様々であり、その制御すべき量も変位
、速度荷電あるいはひずみなどがある。
Electro-hydraulic servo systems are used in the drive parts of general industrial machinery, including video testing machines, various testing machines for material testing, various simulators, rolling mills, and robots. Depending on the purpose of use, the load to be controlled varies, such as when it is only mass, when it is an elastic body, or when it combines the characteristics of both, and the quantity to be controlled also includes displacement, velocity charging, strain, etc.

この種の閉ループ系の電気油圧サーボ系では、系の特性
が負荷、外乱およびしゆう動部の摩擦の影響を受けに<
<、シかも安定で高応答に動作することがきわめて重要
である。
In this type of closed-loop electro-hydraulic servo system, the system characteristics are not affected by loads, disturbances, and friction of shearing parts.
However, it is extremely important that the system operates stably and with high response.

しかし、実際には負荷の変更あるいは変動、外乱の作用
、しゆう動部の摩擦およびサーボ弁の遅れ特性等によっ
て電気油圧サーボ系の伝達特性が影響を受けて、電気油
圧サーボ系を備えた機械を安定に制御することができな
いのが実情である。
However, in reality, the transmission characteristics of an electro-hydraulic servo system are affected by changes or fluctuations in load, the effect of external disturbances, friction in shearing parts, delay characteristics of servo valves, etc. The reality is that it is not possible to stably control the

すなわち、負荷の特性が変化した場合、例えは負荷の質
量がMOのときに暖気油圧サーボ系の伝達特性が最適と
なるように設足した状態で負荷の質量を大きく変える場
合には、負荷の変位が非騎に振動的になる。また、電気
油圧サーボ系に外乱が作用した場合には負荷の位置が変
動する。この結果、゛電気油圧サーボ系は、目標1直に
対する制御量の追従性を忠実に実現することができない
ことになる。
In other words, when the characteristics of the load change, for example, when the mass of the load is MO, the transmission characteristics of the warm-up hydraulic servo system are set to be optimal, but when the mass of the load changes significantly, the mass of the load changes. The displacement becomes vibratory. Further, when a disturbance acts on the electro-hydraulic servo system, the position of the load changes. As a result, the electro-hydraulic servo system cannot faithfully realize the followability of the control amount to the target one shift.

本発明は上述の事柄にもとづいてなされたもので、制御
対象となる負荷の変更あるいは変動、外乱の作用、しゆ
う動部の摩擦およびサーボ弁の遅れ特性等に影響されず
、しかも安定で高応答に動作する負荷・外乱無反応形の
電気油圧サーボ系を提供することを目的とする。
The present invention has been made based on the above-mentioned matters, and is not affected by changes or fluctuations in the load to be controlled, the effect of external disturbances, friction of sliding parts, delay characteristics of servo valves, etc., and is stable and has high performance. The purpose of this invention is to provide a load/disturbance-free electro-hydraulic servo system that operates in response.

本発明の特徴とするところは、閉ループ系の電気油圧サ
ーボ系のサーボ増幅器の前段に、制御対象となる負荷の
変更あるいは変動、外乱およびしゆう動部の摩擦に依存
するサーボ弁の特性への影響を取除くための補償要素を
設け、さらに、これら補償要素を含む電気油圧サーボ機
構を安定に動作させるだめの安定化補償要素を設けたも
のである。
A feature of the present invention is that the servo amplifier of the closed-loop electro-hydraulic servo system is equipped with a servo amplifier that is designed to handle changes or fluctuations in the load to be controlled, disturbances, and the characteristics of the servo valve that depend on the friction of the shearing parts. A compensating element is provided to remove the influence, and a stabilizing compensating element is further provided to stably operate the electro-hydraulic servomechanism including these compensating elements.

以下図面を診照して本発明の実施13−IJを説明する
Embodiment 13-IJ of the present invention will be described below with reference to the drawings.

第1図は本発明の電気油圧サーボ系の一実施例の構成を
示すもので、図において、1は制御対象となる負荷、2
は負荷1を駆動する油圧アクチュエータ、3はアクチュ
エータ2への圧油の流量および方向を制御するサーボ弁
、4は油圧源、5は負荷1の変位の目標(iiVを発生
する信号発生器、6はフィードバック回路で(この実施
例では、制@量は負荷の変位である)、このフィードバ
ック回路6は負荷1の変位を検出する変位計68と変位
検出回路6bとからなっている。7は信号発生器5から
の目標1直Vとフィードバック回路6からのフィードバ
ック信号との偏差eを計算する加算器、8はサーボ弁3
への入力信号をパワー増幅するサーボ増幅器である。こ
のサーボ増幅器8の前段には、信号発生器5i!lOか
ら、サーボ弁3の作動油の圧縮性補償要素9、サーボ弁
3の圧力流量特性補償要素所謂静的補償要素10および
サーボ弁3の伝達遅れ特性補償要素、所謂動的補償要素
11が設けら扛ている。静的補償要素10にはアクチュ
エータ3に作用する負荷圧力P、の信号が力日えられる
。この負荷圧力P、は負荷圧力検出器12によって検出
される。圧縮性補償要素9には微分器13によって得ら
れる負荷圧力P、の微分値信号が加えられる。14は圧
縮性補償要素9、静的補償要素10および動的補償要素
11を含む電気油圧サーボ機構を安定に動作させるだめ
の安定化補償要素である。
FIG. 1 shows the configuration of an embodiment of the electro-hydraulic servo system of the present invention. In the figure, 1 indicates a load to be controlled, 2
is a hydraulic actuator that drives the load 1; 3 is a servo valve that controls the flow rate and direction of pressure oil to the actuator 2; 4 is a hydraulic pressure source; 5 is a signal generator that generates the displacement target (iiV) of the load 1; is a feedback circuit (in this embodiment, the control amount is the displacement of the load), and this feedback circuit 6 consists of a displacement meter 68 that detects the displacement of the load 1 and a displacement detection circuit 6b. 7 is a signal An adder for calculating the deviation e between the target direct voltage from the generator 5 and the feedback signal from the feedback circuit 6; 8 is the servo valve 3;
This is a servo amplifier that amplifies the power of the input signal to the servo amplifier. At the front stage of this servo amplifier 8, a signal generator 5i! From lO, a hydraulic fluid compressibility compensation element 9 of the servo valve 3, a pressure flow characteristic compensation element of the servo valve 3, a so-called static compensation element 10, and a transmission delay characteristic compensation element of the servo valve 3, a so-called dynamic compensation element 11 are provided. I'm running away. The static compensation element 10 receives a signal of the load pressure P acting on the actuator 3. This load pressure P is detected by the load pressure detector 12. A differential value signal of the load pressure P obtained by a differentiator 13 is applied to the compressibility compensation element 9. 14 is a stabilizing compensation element for stably operating the electro-hydraulic servomechanism including the compressible compensation element 9, the static compensation element 10 and the dynamic compensation element 11.

次に前述した本発明の一実施例である電気油圧サーボ系
の作用について説明する。
Next, the operation of the electro-hydraulic servo system which is an embodiment of the present invention described above will be explained.

作用の説明に先立って、電気油圧サーボ系の各構成要素
の特性および動作原理を説明すると、サーボ増幅器8の
特性は一般に一次遅れ要素の特性で表わされるが、その
折点周波数は電気油圧サーボ系の使用周波数よシ十分畠
く設計することができるため、次のように比例要素の特
性で表わされる。すなわち、偏差電圧eは E(S)= K、V(8) −at(a)y(s)  
 ・・・・・・・・・・・・(1)となる。ただし、E
(S)、 V(8)およびY (S)はそれぞれ、偏差
電圧e1目標値■および負荷1の変位yのラプラス変換
であり、G1(S)は安定化補償要素14の伝達関数を
表わす。安定化補償要素14としては、いわゆるフィー
ドバック補償要素としている。次に、サーボ弁30入力
電流lは1=l(−e         ・・・・・・
・・・・・・・・・(2)但し K:サーボ増幅器8の
利得 で与えられる。
Before explaining the operation, the characteristics and operating principle of each component of the electro-hydraulic servo system will be explained.The characteristics of the servo amplifier 8 are generally expressed by the characteristics of the first-order delay element, but the corner frequency is different from that of the electro-hydraulic servo system. Since it can be designed with sufficient precision for the operating frequency, it can be expressed by the characteristics of the proportional element as follows. In other words, the deviation voltage e is E(S) = K, V(8) -at(a)y(s)
・・・・・・・・・・・・(1) However, E
(S), V(8) and Y(S) are the Laplace transforms of the deviation voltage e1 target value ■ and the displacement y of the load 1, respectively, and G1(S) represents the transfer function of the stabilization compensation element 14. The stabilization compensation element 14 is a so-called feedback compensation element. Next, the servo valve 30 input current l is 1=l(-e...
(2) However, K: is given by the gain of the servo amplifier 8.

サーボ弁3の圧力流量特性およびその周波数特性は多く
の場合、はぼ次式で表わされる。すなわち、サーボ弁3
の出力流量をQII、無負荷時のサーボ弁3の出力流量
をql。、負荷圧力をP、および作動油の供給圧力をP
、とすると、サーボ弁3の出力流量q、は、 で与えられ、またその無負荷時の周波数特性はQ、。(
S) = G、 (S)・I (8)   ・・・・・
・・・・・・・・・・・・・(5)で与えられる。この
(5)式でQ、。(飄)およびI (8)はそれぞれ無
負荷時のサーボ弁3の出力流iQヨ。およびサーボ弁3
の入力電流■のラプラス変換である。また式(5)にお
けるG、 (8)はサーボ弁3の遅れを表わす伝達関数
であり、多くの場合 但し kI :サーボ弁3の流量ゲインω、:サーボ弁
3の固有周波数 ζ:サーボ弁3の減杖比 なる二次遅れ要素の特性で近似される。
The pressure flow characteristics and the frequency characteristics of the servo valve 3 are often expressed by the following equation. That is, servo valve 3
The output flow rate of is QII, and the output flow rate of servo valve 3 at no load is ql. , the load pressure is P, and the hydraulic oil supply pressure is P
, then the output flow rate q of the servo valve 3 is given by, and its frequency characteristic at no load is Q,. (
S) = G, (S)・I (8) ・・・・・・
It is given by (5). In this equation (5), Q. (飄) and I (8) are the output flow iQ of the servo valve 3 at no load, respectively. and servo valve 3
is the Laplace transform of the input current ■. Also, G in equation (5), (8) is a transfer function that represents the delay of the servo valve 3, and in many cases, kI: flow rate gain ω of the servo valve 3,: natural frequency ζ of the servo valve 3: servo valve 3 It is approximated by the characteristic of the second-order lag element, which is the reduction ratio of .

アクチュエータ2および配管中の油の王権性ならびにア
クチュエータ2および配管の内圧変化に対する膨張を考
えると、アクチュエータ2に流入する油に関する連続の
式は 但し Ap:アクチュエータ2のピストンの断面積 C:駆動系の岡11性を衣わす定数 y:負負荷の変位 t:時間 として表わされる。
Considering the kingship of the oil in the actuator 2 and the piping and the expansion of the actuator 2 and the piping in response to changes in internal pressure, the equation of continuity regarding the oil flowing into the actuator 2 is as follows: Ap: Cross-sectional area of the piston of the actuator 2 C: Drive system It is expressed as a constant y that affects the Oka 11 property: displacement of negative load t: time.

負荷1の運動方程式は、負荷1ならびにアクチュエータ
2のピストン摺動面に作用する摩擦力をFt負荷1に外
部より作用する外乱をF % 、負荷1の質量をmとす
れば となる。
The equation of motion of the load 1 is as follows: Ft is the frictional force acting on the piston sliding surface of the load 1 and the actuator 2, F% is the disturbance acting on the load 1 from the outside, and m is the mass of the load 1.

上述したように醒気油圧サーボ系の主装なる構成要素の
特性が式(1)〜式(8)で表わされる場合において、
圧縮性補償要素9と静的補償要素10との動作原理は、
静的補償要素10の偏差電圧をe。
As mentioned above, in the case where the characteristics of the main components of the hydration hydraulic servo system are expressed by formulas (1) to (8),
The operating principle of the compressible compensation element 9 and the static compensation element 10 is as follows:
The deviation voltage of the static compensation element 10 is e.

とすれば次式となる。Then, the following formula is obtained.

おるいは、電流iと偏差電圧eとの間には、式(2)の
関係があるので、出力電流iに対して、次式のように補
正を加えることも可能である。
Alternatively, since there is a relationship between the current i and the deviation voltage e as shown in equation (2), it is also possible to correct the output current i as shown in the following equation.

式(9)あるいは式αOの括弧内の巣2塊が圧紬性補□
償に関するものであり、他の安素は静的補償に関するも
のである。
The two clusters of nests in the parentheses of equation (9) or equation αO are compression compensation □
One is about compensation, and the other is about static compensation.

次にサーボ弁3の動的補償要素11の伝達関数をG −
(8)として弐わすと Q、 (s)== k曹・G (8)      ・・
・・・・・・・・・・・・・・・・αυとなシ、式(9
)で表わされる信号e、あるいは弐〇Oで表わされる信
号1.に式α〃なる伝達関数の補正を加えるものである
。すなわち、サーボ弁・3の伝達遅れが式(5)で表わ
される場合には、サーボ弁3の動的補償要素11の伝達
関数は式α刀よシ82+2ζωl18+ω、2 G、(S)=□   ・・印・・旧旧・・(6)ω1! となる。ところで式(6)は微分動作を含むため、これ
を理想的に実現することは、現状の技術ではかなり困難
をともなう。したがって、実用上はなどの目的とする使
用周波数範囲内で冥現可能な伝:i関数を用いることが
有効である。この式(至)の分子がサーボ弁3の遅れを
打ち消すための2次進み要素でおる。そして式(至)の
分母の2次遅れ要素の影響を無視できる程度にαの値を
例えは3以上のように犬きく選んでおくことが必要であ
る。
Next, the transfer function of the dynamic compensation element 11 of the servo valve 3 is defined as G −
As (8), we get Q, (s)==k.G (8)...
・・・・・・・・・・・・・・・αυ and Nashi, formula (9
), or the signal 1, represented by 2○O. A correction of the transfer function expressed by the equation α is added to the equation. That is, when the transmission delay of the servo valve 3 is expressed by equation (5), the transfer function of the dynamic compensation element 11 of the servo valve 3 is expressed as・Mark... Old and old... (6) ω1! becomes. By the way, since equation (6) includes a differential operation, it is quite difficult to ideally realize this with the current technology. Therefore, in practice, it is effective to use an i-function that can be expressed within the intended frequency range. The numerator of this equation (to) is a quadratic advance element for canceling the delay of the servo valve 3. It is necessary to carefully select the value of α, for example 3 or more, to such an extent that the influence of the second-order lag element in the denominator of equation (to) can be ignored.

安定化補償要素14としては、例えば、その伝達関数a
t(S)  を GM(8)=に直+KW6十Kall’     ・・
・・・・・・・α→と選ぶ、ここで、 K−:変位のフィードバックゲイン に、:速度のフィードバックゲイン に、:加速度のフィードバックゲイン である。すなわち、本発明の一実施例を示す第1図の電
気油圧サーボ系の制御量である負荷の変位のフィードバ
ックの他に、その−同機分値および皿回微分値に相当す
る1ぎ号のフィードバックを付加しである。もちろん、
変位の一回微分値および皿回微分値のかわりに、検出器
により直接速度および加速度信号を検出してフィートノ
くツクしてもよい。なお、安定化補償要素14としては
、第1図の一実施例に示すようなフィード・(ツク補償
のかわりに第1図の加算器7の次に直列補償要素を付加
しても同様の効果を得ることができる。
As the stabilization compensation element 14, for example, its transfer function a
t(S) directly to GM(8)=+KW60Kall'...
......Select α→, where K-: Displacement feedback gain, : Velocity feedback gain, : Acceleration feedback gain. That is, in addition to the feedback of the displacement of the load, which is the control amount of the electro-hydraulic servo system shown in FIG. is added. of course,
Instead of the one-time differential value and the one-time differential value of displacement, the velocity and acceleration signals may be detected directly by a detector to calculate the feet. Note that the same effect can be obtained by adding a series compensation element next to the adder 7 in FIG. 1 instead of the feed compensation shown in the embodiment in FIG. can be obtained.

次に上述した各補償要素の動作原理にもとづいて本発明
の電気油圧サーボ系の動作を説明する。
Next, the operation of the electro-hydraulic servo system of the present invention will be explained based on the operating principle of each compensation element described above.

第1図に示す本発明の装置の実施例では実用上の実現性
を考慮して式(9)のようにぼ圧の段階で補償を行なう
場合について述べる。
In the embodiment of the apparatus of the present invention shown in FIG. 1, in consideration of practical feasibility, a case will be described in which compensation is performed at the stage of negative pressure as shown in equation (9).

信号発生器5からの目標値■と安定化補償要素14の出
力信号とにより、加算器7はその偏差信号eを圧縮性補
償要素9に印加する。圧縮性補償要素9は第2図に示す
ようにその係数器9aによって微分器13からの負荷圧
力P、の時間微分値を出力信号e′として静的補償要素
10に印加する。この出力信号e′は前述し次式(9)
の右辺の括弧内の項に該当しており、偏差信号eに対し
て作動油の圧縮性補償を行なう信号に補正されているこ
とになる。
Depending on the target value ■ from the signal generator 5 and the output signal of the stabilizing compensation element 14, the adder 7 applies its deviation signal e to the compressible compensation element 9. As shown in FIG. 2, the compressible compensation element 9 applies the time differential value of the load pressure P from the differentiator 13 to the static compensation element 10 as an output signal e' through its coefficient multiplier 9a. This output signal e' is expressed by the following equation (9) as described above.
This corresponds to the term in parentheses on the right side of , and the deviation signal e has been corrected to a signal that compensates for the compressibility of the hydraulic fluid.

静的補償要素10は第2図に示すようにその平方根関数
器10aによって負荷圧力検出器12からの負荷圧力信
号P、にもとづいて 9bからの出力信号e′とを割算110bにより割算し
て、この割算信号〔式(10に相当する信号e、)を動
的補償要素11に加える。なお、前述した平方根関数器
10aは出力信号e、のi[75E正の演算を行なう。
As shown in FIG. 2, the static compensation element 10 uses its square root function function unit 10a to divide the output signal e' from 9b based on the load pressure signal P from the load pressure detector 12 by a division 110b. Then, this divided signal [signal e corresponding to equation (10)] is applied to the dynamic compensation element 11. Note that the square root function unit 10a described above performs a positive calculation of i[75E of the output signal e.

出力信号e、の正負の判別は通常の比較器によシ行なう
ことができる。
Determination of whether the output signal e is positive or negative can be performed using a normal comparator.

動的補償要素11は位相進み遅れ回路により構成されて
おり、静的補償要素1oからの出力信号e、に対して、
サーボ弁3の遅れを打ち消すように補正した信号e、を
、サーボ増幅器8を通してサーボ弁3に加える。このた
め、サーボ弁3には偏差信号eに対してサーボ弁3の圧
縮性補償、静的補償および動的補償するように補正され
た信号が加えられることになる。この結果、サーボ弁3
の特性を見かけ上負荷1の変更あるいは変動に対する影
響を取シ除くことができ、またアクチュエータ2の摩擦
力FM、負荷1に作用する外乱F。
The dynamic compensation element 11 is constituted by a phase lead/lag circuit, and with respect to the output signal e from the static compensation element 1o,
A signal e corrected to cancel the delay of the servo valve 3 is applied to the servo valve 3 through the servo amplifier 8. Therefore, a signal corrected to compensate for the compressibility, static compensation, and dynamic compensation of the servo valve 3 is applied to the deviation signal e to the servo valve 3. As a result, servo valve 3
It is possible to remove the influence of apparent changes or fluctuations in the load 1 from the characteristics of the friction force FM of the actuator 2 and the disturbance F acting on the load 1.

の影響を除去することができ、さらにサーボ弁3の伝達
特性の遅れも除去することができ、電気油圧サーボ系を
備えた機械の制御精度を高めることができる。
In addition, it is possible to eliminate the delay in the transmission characteristics of the servo valve 3, and it is possible to improve the control accuracy of a machine equipped with an electro-hydraulic servo system.

次に、安定化補償要素14の役割について説明する。本
発明の実施例を示す第1図の血気油圧サーボ系において
安定化補償要素14がない場合、その電気油圧サーボ系
は不安定となシ、発振してしまうことが多い。このよう
な状態は、本発明の応用対象である振動試験機、材料試
験壁、シミュレータ、圧延機およびロボットをはじめと
する一般産業機械に共通の問題である。安定化補償要素
14はこの問題を解決するために付加されるものである
。安定化補償要素14を付加することにより、本発明の
電気油圧サーボ系は、負荷の変更あるいは変動、外乱の
作用およびしゅう動部の摩擦による影響を取り除くとと
もに、安定で高応答に動作することが可能となる。
Next, the role of the stabilization compensation element 14 will be explained. If the stabilizing compensation element 14 is not present in the blood-hydraulic servo system of FIG. 1, which shows an embodiment of the present invention, the electro-hydraulic servo system is unstable and often oscillates. Such a situation is a common problem in general industrial machines including vibration testing machines, material testing walls, simulators, rolling mills, and robots to which the present invention is applied. The stabilizing compensation element 14 is added to solve this problem. By adding the stabilization compensation element 14, the electro-hydraulic servo system of the present invention can eliminate the effects of load changes or fluctuations, external disturbances, and friction of sliding parts, and can operate stably and with high response. It becomes possible.

上述した本発明の装置の一実施例と本発明に係る補償要
素を備えていない従来のものとの応答結果を第3図〜第
6図に示す。
The response results of one embodiment of the device according to the present invention described above and a conventional device not provided with the compensation element according to the present invention are shown in FIGS. 3 to 6.

第3図および第4図は負荷1の質量を変更したときの影
響を示す応答結果で、第3図は従来の応答結果であシ、
第4図は本発明の応答結果である。
Figures 3 and 4 show the response results showing the effect of changing the mass of load 1, and Figure 3 shows the conventional response results.
FIG. 4 shows the response results of the present invention.

負荷1の質t”oのときに、電気油圧サーボ系の伝達特
性が最適となるように設定した状態での目標値とこれに
対応する負荷の変位の応答は第3図(a)、第4図(a
)に示す。この状態において、負荷1の質量を3倍にし
た場合には、従来の装置では第3図(b)に示すように
負荷1の変位が非常に振動的になった。これに対し、本
発明においては第4図(b)に示すように、負荷1の変
更の影響が現われないことが実験的にも明らかである。
When the quality of load 1 is t”o, the target value and the corresponding load displacement response when the transmission characteristics of the electro-hydraulic servo system are set to be optimal are shown in Figure 3 (a). Figure 4 (a
). In this state, when the mass of the load 1 is tripled, the displacement of the load 1 becomes extremely vibratory in the conventional device as shown in FIG. 3(b). On the other hand, in the present invention, as shown in FIG. 4(b), it is experimentally clear that the effect of changing the load 1 does not appear.

第5図および第6図は外乱の影響、すなわち第3図(a
)、第4図(a)の状態に設定された電気油圧サーボ系
に外乱が作用したときの応答結果を示すもので、第5図
は従来の応答結果であシ、第6図は本発明の応答結果で
ある。従来のものでは第5図に示すように外乱の作用に
より負荷1の変位が変動している。これに対し、本発明
においては第6図に示すように外乱の影響は負荷1の変
位に現われていないことが実験的にも明らかである。
Figures 5 and 6 show the influence of disturbance, that is, Figure 3 (a
), which shows the response results when a disturbance acts on the electro-hydraulic servo system set to the state shown in FIG. 4(a), FIG. 5 shows the conventional response results, and FIG. This is the response result. In the conventional type, the displacement of the load 1 fluctuates due to the action of disturbances, as shown in FIG. On the other hand, in the present invention, it is experimentally clear that the influence of disturbance does not appear on the displacement of the load 1, as shown in FIG.

なお、上述の実施例はサーボ増幅器8の前段に、信号発
生器59111から圧縮性補償要素9、静的補償要素1
0および動的補償要素11を順次設けたが、アクチュエ
ータの油室体積が小さい場合には圧縮性を無視すること
ができるので、この場合には圧縮性補償要素9を省略す
ることができる。あるいは式(3)、 (4)で与えら
れるサーボ弁3の出力流量がqmu  ” qm 6 で近似できる領域では靜的補fX要素10を省略するこ
とができる。また、サーボ弁3の遅れが無視できる程度
のものである場合には、動的補償要素11を省略するこ
とができることは勿論である。
In addition, in the above embodiment, the compressive compensation element 9 and the static compensation element 1 are connected from the signal generator 59111 to the stage before the servo amplifier 8.
0 and the dynamic compensation element 11 are sequentially provided, but if the oil chamber volume of the actuator is small, compressibility can be ignored, so the compressibility compensation element 9 can be omitted in this case. Alternatively, in the region where the output flow rate of the servo valve 3 given by equations (3) and (4) can be approximated by qmu '' qm 6 , the silent complementary fX element 10 can be omitted.Also, the delay of the servo valve 3 can be ignored. Of course, if it is possible, the dynamic compensation element 11 can be omitted.

また、上述の実施例は負荷1の特性が慣性質量の場合に
ついて説明したが、負荷の特性が弾性体の場合にも全く
同様の制御が可能である。
Furthermore, although the above-mentioned embodiment has been described in the case where the characteristic of the load 1 is an inertial mass, completely similar control is possible when the characteristic of the load is an elastic body.

以上詳述したように、本発明によれば、負荷の変更ある
いは変動、外乱の作用およびサーボ弁の遅れ特性等によ
って電気油圧サーボ系の伝達特性が影響を受けることが
なく、目標値に対する制御量の追従性を忠実に実現する
ことができるものである。
As described in detail above, according to the present invention, the transmission characteristics of the electro-hydraulic servo system are not affected by load changes or fluctuations, disturbance effects, delay characteristics of the servo valve, etc., and the control amount relative to the target value is It is possible to faithfully realize the following performance.

【図面の簡単な説明】 第1図は本発明の電気油圧サーボ系の一実施例の構成を
示す図、第2図は第1図に示される電気油圧サーボ系の
要部の詳細な構成を示す図、第3図は従来の電気油圧サ
ーボ系における負荷変動の影響の応答結果を示す線図、
第4図は本発明の装置における負荷変動の影響の応答結
果を示す線図、第5図は従来の電気油圧サーボ系におけ
る外乱の影響の応答結果を示す線図、第6図は本発明の
装置における外乱の影響の応答結果を示す線図である。 1・・・負荷、2・・・アクチュエータ、3・・・サー
ボ弁、5・・・IM号発生器、6・・・フィードバック
回路、8・・・サーボ増幅器、9・・・圧縮性補償要素
、10・・・静的補償要素、11・・・動的補償要素、
12・・・負荷圧力検出器、13・・・微分器、14・
・・安定化補償要素。
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 shows the configuration of an embodiment of the electro-hydraulic servo system of the present invention, and FIG. 2 shows the detailed configuration of the main parts of the electro-hydraulic servo system shown in FIG. 1. Figure 3 is a diagram showing the response results of the influence of load fluctuation in a conventional electro-hydraulic servo system.
FIG. 4 is a diagram showing the response results of the influence of load fluctuation in the device of the present invention, FIG. 5 is a diagram showing the response results of the influence of disturbance in the conventional electro-hydraulic servo system, and FIG. FIG. 3 is a diagram showing a response result of the influence of disturbance in the device. DESCRIPTION OF SYMBOLS 1... Load, 2... Actuator, 3... Servo valve, 5... IM signal generator, 6... Feedback circuit, 8... Servo amplifier, 9... Compressible compensation element , 10... Static compensation element, 11... Dynamic compensation element,
12... Load pressure detector, 13... Differentiator, 14.
...Stabilization compensation element.

Claims (1)

【特許請求の範囲】 1、目標値である入力信号と、制御対象あるいは制御対
象を駆動するアクチュエータの出力信号である制御量と
の偏差をサーボ増幅器を通してサーボ弁に加えてサーボ
弁を操作し、偏差が小さくなるようにアクチュエータ・
に供給烙れる油の流量と方向とを制御する電気油圧サー
ボ機構において、サーボ弁の出力流量が負荷圧力に見か
け上依存しないように補償する静的補償要素と、前記ア
クチュエータの作動油の圧縮に伴う影響を補償する圧縮
性補償要素と、サーボ弁の伝達特性の遅れを補償する動
的補償要素の中で、静的補償要素と圧縮性補償要素の少
なくとも一つを含み、あるいは必要に応じてこれらに付
加される動的補償要素とを前記サーボ増幅器の前段に備
え、さらに、これら補償要素を含む電気油圧サーボ機構
を安定に動作させる安定化補償要素を備えこれらにより
制御対象となる負荷の変更あるいは変動、外乱の作用お
よびしゆう動部の摩擦による影響を取り除き、しかも閉
ループ系が安定で高応答に動作することを特徴とする電
気油圧サーボ系。 2、特許請求の範囲第1項記載の電気油圧サーボ系にお
いて、静的補償要素を含む場合に、この静的補償要素を
、アクチュエータに作用する負荷圧力を信号に変換し、
この負荷圧力信号とサーボ機構の偏差信号とによってサ
ーボ弁の出力流量が負荷圧力に見かけ上依存しないよう
にサーボ弁への入力信号を演算し、この信号をサーボ弁
に印加するように構成したことを特徴とする電気油圧サ
ーボ系。 3、特許請求の範囲第1項記載の電気油圧サーボ系にお
いて、圧縮性補償要素を含む場合に、この圧縮性補償要
素を、アクチュエータに作用する負荷圧力信号を微分し
、この微分値に比例しだ信号を偏差信号に加算するよう
に構成したことを特徴とする電気油圧サーボ系。 4、特許請求の範囲第1項記載の電気油圧サーボ系にお
いて、動的補償要素を、静的補償要素の出力信号を、サ
ーボ系の伝4%性の遅れを実用上打ち消すように補償す
る1B号に変換してサーボ弁に印加するように構成した
ことを特徴とする電気油圧サーボ系。 5、特許請求の範囲第1項記載の電気油圧サーボ系にお
いて、安定化補償要素は、フィードバック補償要素によ
シ構成したことを特徴とする電気油圧サーボ系。 6、特許請求の範囲第1項記載の電気油圧サーボ系にお
いて、安定化補償要素は直列補償要素によシ構成したこ
とを特徴とする電気油圧サーボ系。 7、特許請求の範囲第1項記載の電気油圧サーボ系にお
いて、安定化補償要素はフィードバック補償要素および
直列補償要素により構成したことを特徴とする電気油圧
サーボ系。
[Claims] 1. Operating the servo valve by adding the deviation between the input signal, which is a target value, and the control amount, which is the output signal of the controlled object or an actuator that drives the controlled object, to the servo valve through a servo amplifier; Adjust the actuator so that the deviation is small.
An electro-hydraulic servo mechanism for controlling the flow rate and direction of oil supplied to the actuator includes a static compensation element for compensating the output flow rate of the servo valve so that it does not apparently depend on the load pressure, and a static compensation element for compensating the apparent dependence of the output flow rate of the servo valve on the load pressure, and a compressible compensation element that compensates for the associated influence, and a dynamic compensation element that compensates for the delay in the transmission characteristics of the servo valve, including at least one of a static compensation element and a compressibility compensation element, or as necessary. A dynamic compensation element added to these is provided at the front stage of the servo amplifier, and further a stabilization compensation element is provided to stably operate the electro-hydraulic servo mechanism including these compensation elements, thereby changing the load to be controlled. Alternatively, an electro-hydraulic servo system is characterized in that it eliminates the effects of fluctuations, disturbances, and friction of shearing parts, and that the closed-loop system operates stably and with high response. 2. In the electrohydraulic servo system according to claim 1, when a static compensation element is included, the static compensation element is used to convert the load pressure acting on the actuator into a signal,
The input signal to the servo valve is calculated based on this load pressure signal and the deviation signal of the servo mechanism so that the output flow rate of the servo valve does not apparently depend on the load pressure, and this signal is applied to the servo valve. An electro-hydraulic servo system featuring: 3. In the electro-hydraulic servo system according to claim 1, when a compressibility compensation element is included, the compressibility compensation element is differentiated from the load pressure signal acting on the actuator and is proportional to this differential value. An electro-hydraulic servo system characterized by being configured to add a signal to a deviation signal. 4. In the electrohydraulic servo system according to claim 1, the dynamic compensation element compensates the output signal of the static compensation element so as to practically cancel out the delay in transmission of the servo system. An electro-hydraulic servo system characterized in that it is configured to convert the signal into a number and apply it to a servo valve. 5. The electrohydraulic servo system according to claim 1, wherein the stabilization compensation element is constituted by a feedback compensation element. 6. An electrohydraulic servo system according to claim 1, characterized in that the stabilizing compensation element is constituted by a series compensation element. 7. The electrohydraulic servo system according to claim 1, wherein the stabilization compensation element is comprised of a feedback compensation element and a series compensation element.
JP5134182A 1982-03-31 1982-03-31 DENKYUATSUSAABOKEI Expired - Lifetime JPH0231243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5134182A JPH0231243B2 (en) 1982-03-31 1982-03-31 DENKYUATSUSAABOKEI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5134182A JPH0231243B2 (en) 1982-03-31 1982-03-31 DENKYUATSUSAABOKEI

Publications (2)

Publication Number Publication Date
JPS58170901A true JPS58170901A (en) 1983-10-07
JPH0231243B2 JPH0231243B2 (en) 1990-07-12

Family

ID=12884221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5134182A Expired - Lifetime JPH0231243B2 (en) 1982-03-31 1982-03-31 DENKYUATSUSAABOKEI

Country Status (1)

Country Link
JP (1) JPH0231243B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61228104A (en) * 1985-03-29 1986-10-11 Sumitomo Metal Ind Ltd Oil hydraulic servo controller
JPS6275106A (en) * 1985-09-30 1987-04-07 Komatsu Ltd Controlling method of hydraulic actuation type working machine
US4700610A (en) * 1984-09-17 1987-10-20 Hoerbiger Ventilwerke Aktiengesellschaft Cylinder tube strain measurement feedback for piston position control
JPS62274101A (en) * 1986-05-23 1987-11-28 Amada Co Ltd Method for ram-positioning in hydraulic equipment
JPH02278636A (en) * 1989-04-20 1990-11-14 Matsushita Electric Ind Co Ltd Electron source
US4991491A (en) * 1986-12-13 1991-02-12 Mannesmann Rexroth Gmbh Circuit arrangement for position and feed control of a hydraulic cylinder
JPH0339601U (en) * 1989-08-29 1991-04-17
US5031506A (en) * 1987-09-24 1991-07-16 Siemens Aktiengesellschaft Device for controlling the position of a hydraulic feed drive, such as a hydraulic press or punch press
FR2660705A1 (en) * 1990-04-10 1991-10-11 Renault Device for servo control of a hydraulic jack in terms of force and motor vehicle suspension equipped with such a device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4700610A (en) * 1984-09-17 1987-10-20 Hoerbiger Ventilwerke Aktiengesellschaft Cylinder tube strain measurement feedback for piston position control
JPS61228104A (en) * 1985-03-29 1986-10-11 Sumitomo Metal Ind Ltd Oil hydraulic servo controller
JPH0418164B2 (en) * 1985-03-29 1992-03-27 Sumitomo Metal Ind
JPS6275106A (en) * 1985-09-30 1987-04-07 Komatsu Ltd Controlling method of hydraulic actuation type working machine
JPS62274101A (en) * 1986-05-23 1987-11-28 Amada Co Ltd Method for ram-positioning in hydraulic equipment
US4991491A (en) * 1986-12-13 1991-02-12 Mannesmann Rexroth Gmbh Circuit arrangement for position and feed control of a hydraulic cylinder
US5031506A (en) * 1987-09-24 1991-07-16 Siemens Aktiengesellschaft Device for controlling the position of a hydraulic feed drive, such as a hydraulic press or punch press
JPH02278636A (en) * 1989-04-20 1990-11-14 Matsushita Electric Ind Co Ltd Electron source
JPH0339601U (en) * 1989-08-29 1991-04-17
FR2660705A1 (en) * 1990-04-10 1991-10-11 Renault Device for servo control of a hydraulic jack in terms of force and motor vehicle suspension equipped with such a device

Also Published As

Publication number Publication date
JPH0231243B2 (en) 1990-07-12

Similar Documents

Publication Publication Date Title
US5698968A (en) Power system stabilizer for generator
US7319909B2 (en) Position control device, measuring device and machining device
US9798295B2 (en) Motor controller having a function of suppressing vibrations
TWI461877B (en) Servo control device
JPS58170901A (en) Electro-hydraulic servo system
JP3900219B2 (en) Electric motor speed control device and gain setting method for the same
US6998810B2 (en) Position controller of feed shaft
JPS615302A (en) Controller of manipulator
CN108023531B (en) Compensation method for measurable speed disturbance of closed-loop position servo
US3038451A (en) Position control system
JPH0118281B2 (en)
JPH0378806A (en) Multi-function type controller
JP3725259B2 (en) Hydraulic shaker control device
JP3972155B2 (en) Motor control device
JPH058191A (en) Robot hand control method
JP3305899B2 (en) Generator power stabilizer
JPH10161706A (en) Simply adaptive controller
JPS63201705A (en) Vibration-proof controller for manipulator
JP2011197738A (en) Full-closed position control device
JPH1194689A (en) Disturbance compensating device in vibration testing machine
JPH03250307A (en) Route controller for rigid body
JPS62226317A (en) Suppressing device for mechanical oscillation
JPS5836197A (en) Generating output controller
JP3129335B2 (en) Damper control device
JPH08200364A (en) Control method for magnetic bearing and device thereof