JPS62225932A - Method for analyzing thorium - Google Patents

Method for analyzing thorium

Info

Publication number
JPS62225932A
JPS62225932A JP6711086A JP6711086A JPS62225932A JP S62225932 A JPS62225932 A JP S62225932A JP 6711086 A JP6711086 A JP 6711086A JP 6711086 A JP6711086 A JP 6711086A JP S62225932 A JPS62225932 A JP S62225932A
Authority
JP
Japan
Prior art keywords
thorium
boat
filament
argon plasma
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6711086A
Other languages
Japanese (ja)
Inventor
Akira Okada
章 岡田
Yoshimi Yamaguchi
芳美 山口
Hideki Shimada
秀樹 島田
Takanori Iwakiri
岩切 貴乃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6711086A priority Critical patent/JPS62225932A/en
Publication of JPS62225932A publication Critical patent/JPS62225932A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To analyze 0.5ppb or less of thorium quantitatively within a short time, by a method wherein a specimen solution is electrolyzed to electrodeposit thorium on a boat and a current is made to flow to the boat to evaporate and gasify thorium which is, in turn, introduced into argon plasma. CONSTITUTION:A thorium-containing specimen solution is used to be subjected to electrolysis using a boat or filament made of a high m.p. metal as a cathode and a noble metal as an anode and thorium is electrodeposited on the boat or filament. Thereafter, a current is made to flow to the boat or filament to heat the same to 1,500-3,000 deg.C and thorium is evaporated and gasified to be introduced into argon plasma generated by high frequency induction heating of 10-50MHz and quantitatively analyzed from the intensity of exciting light emission. By this method, 0.5ppb or less of thorium is quantitatively analyzed within a short time.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、トリウムの分析法に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a method for analyzing thorium.

〔発明の技術的背景およびその問題点〕半導体材料中の
微量不純物であるウランMやトリウム(Tb)から自然
崩壊によって放出されるα線によりで起るダイナミック
メモリのビット不良はMa yらの発表峠以来、ソフト
エラーとして大きな問題となった。
[Technical background of the invention and its problems] Bit defects in dynamic memory caused by alpha rays emitted by natural decay from trace impurities such as uranium M and thorium (Tb) in semiconductor materials have been reported by May et al. Since the pass, it has become a big problem as a soft error.

高速、大容量化のためメモリーセルを微11FB (5
L。
For high speed and large capacity, the memory cells are micro 11FB (5
L.

高集積化するためにはパッケージ材料やチップ構成材料
の低α線化の改良が菖要である。 U、Th含有量の少
ないLSI構成材料の製法と実際に使用するのに適した
ものを選択するためには測定時間の短くかつ検出感度の
高い分析方法の開発が必要である。
In order to achieve high integration, it is essential to improve package materials and chip constituent materials to reduce α-rays. In order to manufacture LSI constituent materials with low U and Th contents and to select materials suitable for actual use, it is necessary to develop an analysis method that requires short measurement time and has high detection sensitivity.

従来一般にトリウムの分析は、(1)吸光光度法。Conventionally, thorium has generally been analyzed using (1) spectrophotometry.

(2)放射化分析法が用いられてきた。(1)は以上の
ような微量分析のためには、感度が不足しており、また
、非常に複雑な化学前処理を要し分析所要時間が長い欠
点がある。(2)は上記目的の分析に広く応用されてい
るが、原子炉を必要とする等品質管理用の分析方法とし
ては実用的でなかった。
(2) Activation analysis methods have been used. Method (1) has the disadvantage that it lacks sensitivity for the above-mentioned trace analysis, requires very complicated chemical pretreatment, and takes a long time for analysis. Although method (2) has been widely applied to the above-mentioned analysis, it has not been practical as an analysis method for quality control as it requires a nuclear reactor.

近年蒸発気化−ICP法によるトリウムの分析が試みら
れるようになった。この方法は、微量試料を非常に高感
度に分析できるが、その反面、試料の酸濃度やマトリッ
クス成分の影響を受は易い欠点があり、複雑で長時間を
要する化学前処理が必要であった。
In recent years, attempts have been made to analyze thorium using the evaporation-ICP method. Although this method can analyze trace amounts of samples with extremely high sensitivity, it has the disadvantage that it is easily affected by the acid concentration and matrix components of the sample, and requires complicated and time-consuming chemical pretreatment. .

以上のように半導体メモリ開発及び製造プロセスでは高
感度で迅速なTh分析法の開発が要求されていた。
As described above, development of a highly sensitive and rapid Th analysis method has been required in semiconductor memory development and manufacturing processes.

〔発明の目的〕[Purpose of the invention]

本発明者らは、これら従来法のトリウム定量分析方法に
おける試料化学前処理、測定の難点を解消したトリウム
の定量分析方法について種々の検討を重ねた結果1本発
明を完成するに至ったものであり、簡便な操作で高感度
な分析方法を提供するものである。
The present inventors have completed the present invention as a result of various studies on a method for quantitatively analyzing thorium that overcomes the difficulties of sample chemical pretreatment and measurement in the conventional methods for quantitatively analyzing thorium. It provides a highly sensitive analysis method with simple operation.

〔発明の概要〕[Summary of the invention]

すなわち1本発明は、液体被分析試料はそのままもしく
は濃縮後、固体被分析試料は、無機酸もしくは、アルカ
リなどで分解後、必要に応じてイオン交換分離でトリウ
ムをマトリックスから分離濃縮し、得られた試料溶液を
使って高融点金属ボートもしくはフィラメントを陰極、
貴金属を陽極にして電気分解を行いトリウムをボートも
しくはフィラメント上に電着する。
In other words, the present invention provides that the liquid sample to be analyzed is obtained as it is or after being concentrated, the solid sample to be analyzed is decomposed with an inorganic acid or alkali, and if necessary, thorium is separated and concentrated from the matrix by ion exchange separation. A refractory metal boat or filament is used as a cathode and
Thorium is electrodeposited onto a boat or filament by electrolysis using a noble metal as an anode.

その後、ボートもしくはフィラメント両端に電極を接続
し、1!流を流し、1500〜3000℃に抵抗加熱し
てトリウムを蒸発気化させ、10〜50■(2の高周波
誘導刃口熱によって発生させたアルゴンプラズマ内に導
入し、励起発光強度からトリウムを定量できる。高感度
、高精度で簡便かつ迅速に足敏できることをIFi、徴
とするトリウムの定量分析方法を提供するものである0
本発明では、仮に述べるトリウムの電着分離を行うため
、固体試料の分解はどのような方法を用いても良いが、
加圧分解容器を用いる酸分解等の試薬や容器から汚染の
少ない方法を用いることが望ましい。液体試料は蒸発a
縮を行えば、より高感度な検出が可能である。
After that, connect electrodes to both ends of the boat or filament, and do 1! The thorium is evaporated by resistive heating to 1500-3000°C, and then introduced into the argon plasma generated by the high-frequency induced heat in step 2.Thorium can be quantified from the excitation emission intensity. .IFi provides a method for quantitative analysis of thorium that is characterized by high sensitivity, high precision, and can be performed simply and quickly.
In the present invention, any method may be used to decompose the solid sample in order to perform the electrodeposition separation of thorium, which will be described temporarily.
It is desirable to use a method that causes less contamination from reagents and containers, such as acid digestion using a pressure digestion vessel. Liquid sample evaporates a
By reducing the size, more sensitive detection is possible.

また電着分離を完全に行うためイオン交換法などの分離
濃縮を行っても良い。この場合、従来の放射化分析法や
吸光光度法で要求される非常に厳密な分離は不要で最も
簡単な装置、条件で十分である。以上のようにして得ら
れた試料溶液を高融点金属製ボートもしくはフィラメン
トを陰極とじ貴金属を陽極として電気分解し、トリウム
をボートに電着分離する。ボートもしくはフィラメント
に。
Further, in order to completely perform electrodeposition separation, separation and concentration such as an ion exchange method may be performed. In this case, the extremely strict separation required by conventional activation analysis methods and spectrophotometry methods is unnecessary, and the simplest equipment and conditions are sufficient. The sample solution obtained as described above is electrolyzed using a high melting point metal boat or filament as a cathode and a noble metal as an anode, and thorium is electrodeposited and separated on the boat. Boat or filament.

タングステン(W) 、タンタル(Ta)、モリブデン
(Mo)、白金(Pt)、白金−パラジウム合金(Pt
−Pd )等が使用可能で、グラフアイ) (C)も使
用できる。また電気分解時の陽極電位を制量して定電位
電解を行えば、トリウムのみの分離が可能で、後のIC
P発光分光測定で妨害のある鉄等を除くことができる。
Tungsten (W), tantalum (Ta), molybdenum (Mo), platinum (Pt), platinum-palladium alloy (Pt
-Pd) etc. can be used, and Graphai) (C) can also be used. In addition, by controlling the anode potential during electrolysis and performing constant potential electrolysis, it is possible to separate only thorium, which can be used later in the IC process.
Interferences such as iron can be removed by P emission spectrometry.

電気分解後、ボートもしくはフィラメントに電位を加え
たまま、アセトン、アルコールなどで洗う、蒸発気化時
に問題となる試料溶液中の酸や塩類は、流しさられるの
で、どのような試料溶液を用いても、常に均一な状態で
蒸発気化が行なえる。また、濃縮率の測定や分取操作が
ないので試料溶液の体積測定が不要である。時に濃縮さ
れた微少量溶液の測容等の煩雑で、誤差を置引しやすい
操作が不要になった。
After electrolysis, the boat or filament should be washed with acetone, alcohol, etc. while the potential is still applied.Acids and salts in the sample solution, which can be a problem during evaporation, will be washed away, so no matter what sample solution you use. , evaporation can always be performed in a uniform state. Furthermore, since there is no concentration ratio measurement or preparative separation operation, there is no need to measure the volume of the sample solution. This eliminates the need for complicated and error-prone operations such as measuring the volume of a very small amount of a concentrated solution.

次にトリウムを電着したボートもしくはフィラメントに
電極をとりつけ、電流を流して1500〜3000℃に
加熱してトリウムを蒸発気化させICP発光分光分析装
置に導入してトリウムの励起発光強度から定量する。従
来非常に恵要であった酸や塩を除くための灰化操作は、
1!着後の洗浄で除かれているので不要である。また従
来の灰化操作では、トリウムが酸化物、金属、その他の
塩類と多様な形で存在するので、蒸発気化時の蒸発温度
が違うためICP発光のピークが広がり1強度が低くな
っていた。水沫では電着によるのでトリウムのほとんど
が金属状態で存在するため、蒸発温度が一定であるため
従来法に比較して1.5倍以上のピーク強度が得られる
ようになった。
Next, an electrode is attached to a boat or filament on which thorium has been electrodeposited, and a current is applied to heat the boat or filament to 1,500 to 3,000° C. to evaporate the thorium, which is then introduced into an ICP emission spectrometer and quantified from the excitation emission intensity of thorium. The ashing operation to remove acids and salts, which has traditionally been very important,
1! This is not necessary as it is removed by washing after wearing. Furthermore, in conventional ashing operations, since thorium exists in various forms such as oxides, metals, and other salts, the evaporation temperature during evaporation differs, resulting in a broadened peak of ICP emission and a lower intensity. In water droplets, most of the thorium exists in a metallic state due to electrodeposition, and the evaporation temperature is constant, making it possible to obtain a peak intensity 1.5 times or more compared to the conventional method.

〔発明の実施例〕[Embodiments of the invention]

以下半導体封止フィラー用高純度シリカを分析した実施
例を示す。
Examples of analyzing high-purity silica for semiconductor encapsulation filler are shown below.

試料10gをフッ累樹脂製ビーカーにとり、フッ化水素
酸(1+1)、50m/と過塩素酸5mlを加え、熱板
上で乾固近くまで加熱する。放冷後。
Take 10 g of the sample in a fluoroplastic beaker, add 50 ml of hydrofluoric acid (1+1) and 5 ml of perchloric acid, and heat on a hot plate until almost dry. After cooling.

塩酸(1+1 )、 5mlを加え、加熱して大部分の
残渣を溶解したのち、内部をフッ素樹脂で被覆した加圧
分解容器中でフッ化水素酸(i+1)10mJと塩酸5
mlを加え200℃2時間加圧分解する。その後硫酸(
1+1)2mlと過塩素酸5mJ?を加え、硫酸白煙を
発生させ乾固近くまで加熱する。その後水20m1を加
え加熱して塩類を溶解する。
After adding 5 ml of hydrochloric acid (1+1) and dissolving most of the residue by heating, add 10 mJ of hydrofluoric acid (i+1) and 5 ml of hydrochloric acid in a pressure decomposition vessel whose interior is coated with fluororesin.
ml and decompose under pressure at 200°C for 2 hours. Then sulfuric acid (
1+1) 2ml and 5mJ of perchloric acid? Add sulfuric acid, generate white sulfuric acid smoke, and heat to near dryness. Then, add 20 ml of water and heat to dissolve the salts.

得られた溶液に第1図に示すようなタングステン製ボー
トの1の部分を浸し陰極とし1表面積2cm”の白金電
電を陽極として電解電流o、ix、刀ロ電王4〜10V
で1時間電解する。その後電圧を加えたままボートを溶
液からとり出しエチiレアルコール、アセトンで洗浄し
そのまま乾燥する。
Part 1 of a tungsten boat as shown in Figure 1 was immersed in the obtained solution, and a platinum electrolyte with a surface area of 2 cm was used as an anode, and the electrolytic current was o, ix, 4 to 10 V.
Electrolyze for 1 hour. Thereafter, the boat was taken out of the solution while the voltage was still applied, washed with ethyl alcohol and acetone, and then dried.

以上の操作によりトリウムを電着させたタングステンボ
ートを高温気化装置にとりつけ、第1表に示すように1
00℃で乾燥後2300℃で気化させてアルゴンプラズ
マ内に導入して発光分光法によりトリウムを足置分析し
た。
The tungsten boat with thorium electrodeposited by the above procedure was attached to a high-temperature vaporizer, and 1
After drying at 00°C, it was vaporized at 2300°C, introduced into argon plasma, and thorium was analyzed by optical emission spectroscopy.

定量分析値及び分析所要時間を第2表に示す。Quantitative analysis values and analysis time are shown in Table 2.

以上の結果から明らかなように、従来の放射化分析法と
比較して定量不可能であった。0.5ppb以下のトリ
ウムを1725の短時間に簡便かつ多量の試料が分析で
きることが判明した。
As is clear from the above results, quantification was not possible compared to conventional activation analysis methods. It has been found that thorium of 0.5 ppb or less can be analyzed easily and in a large amount of samples in a short period of time.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来定量不可能であった。、5ppb
以下のトリウムを短時間にかつ簡便に足置分析すること
が可能で、その工業的価値は犬である。
According to the present invention, quantification was not possible in the past. ,5ppb
It is possible to analyze the following thorium in a short time and easily, and its industrial value is significant.

第1表 高周波誘導結合プラズマ発光分光測定条件 第2表Table 1 High frequency inductively coupled plasma emission spectrometry measurement conditions Table 2

【図面の簡単な説明】[Brief explanation of drawings]

第1i′21は本発明に用いる高温気化用タングステン
ボー!・の1例である。 1・・・試料溶液接触部、2・・・電極取付部。 代理人 弁理士   則 近 憲 佑 同     竹 花 喜久男 第  1 図
1i'21 is the tungsten bow for high temperature vaporization used in the present invention!・This is an example. 1... Sample solution contact part, 2... Electrode mounting part. Agent Patent Attorney Noriyuki Chika Yudo Kikuo Takehana Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)トリウム含有試料溶液を用い、高融点金属製ボー
トもしくはフィラメントを陰極、貴金属を陽極にして電
気分解を行なって、トリウムをボートもしくはフィラメ
ント上に電着し、その後、ボートもしくはフィラメント
に電流を流すことにより1500〜3000°に加熱し
てトリウムを蒸発気化させ、10〜50MHzの高周波
誘導加熱によって発生させたアルゴンプラズマ(ICP
)内に導入し、励起発光強度からトリウムを定量するこ
とを特徴とするトリウムの分析方法。
(1) Using a thorium-containing sample solution, conduct electrolysis using a high-melting point metal boat or filament as a cathode and a noble metal as an anode to electrodeposit thorium onto the boat or filament, and then apply an electric current to the boat or filament. The thorium is heated to 1,500 to 3,000° by flowing it to evaporate it, and argon plasma (ICP) is generated by high-frequency induction heating at 10 to 50 MHz.
) and quantifying thorium from the excitation emission intensity.
JP6711086A 1986-03-27 1986-03-27 Method for analyzing thorium Pending JPS62225932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6711086A JPS62225932A (en) 1986-03-27 1986-03-27 Method for analyzing thorium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6711086A JPS62225932A (en) 1986-03-27 1986-03-27 Method for analyzing thorium

Publications (1)

Publication Number Publication Date
JPS62225932A true JPS62225932A (en) 1987-10-03

Family

ID=13335428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6711086A Pending JPS62225932A (en) 1986-03-27 1986-03-27 Method for analyzing thorium

Country Status (1)

Country Link
JP (1) JPS62225932A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019535002A (en) * 2016-09-08 2019-12-05 オブチョースカ アグネスOBUCHOWSKA, Agnes Apparatus for analyzing elemental composition of liquid sample and method of using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019535002A (en) * 2016-09-08 2019-12-05 オブチョースカ アグネスOBUCHOWSKA, Agnes Apparatus for analyzing elemental composition of liquid sample and method of using the same

Similar Documents

Publication Publication Date Title
Gramlich et al. Absolute isotopic abundance ratio and atomic weight of a reference sample of rhenium
Jin et al. Determination of platinum group elements and gold in geological samples with ICP-MS using a sodium peroxide fusion and tellurium co-precipitation
Manjusha et al. Determination of major to trace level elements in Zircaloys by electrolyte cathode discharge atomic emission spectrometry using formic acid
Heumann et al. Boron trace determination in metals and alloys by isotope dilution mass spectrometry with negative thermal ionization
Manjusha et al. Determination of cadmium in Zircaloys by electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES)
Krasnodębska‐Ostręga et al. Determination of lead and cadmium at silver electrode by subtractive anodic stripping voltammetry in plant materials containing Tl
JPS62225932A (en) Method for analyzing thorium
Liu et al. Fast and High Sensitive Analysis of Lead in Human Blood by Direct Sampling Hydride Generation Coupled with in situ Dielectric Barrier Discharge Trap
JP2007327797A (en) High-frequency inductively coupled plasma emission spectrometric analysis method
JPH11281542A (en) Method for analyzing metallic impurity on silicon wafer surface and its pretreatment method
Opoka et al. Applicability of the silver amalgam electrode in voltammetric determination of zinc and copper in gastric juice and gastric mucosa of rats
CN111413168B (en) Method for testing zirconia in zirconia-coated nickel-cobalt-manganese ternary positive electrode material
CN113740320A (en) Method for analyzing content of copper impurities in waste lead-acid storage battery recovery process
JPH11316220A (en) Method and apparatus for high-accuracy analysis of trace element in metal
Runge et al. Spectrographic Determination of Trace Quantities of Boron in Steel
JP2002184828A (en) Method of analyzing metallic impurities in semiconductor substrate
Coedo et al. Study of the application of air-water flow injection inductively coupled plasma mass spectrometry for the determination of calcium in steels
Vanhaecke et al. Use of thermal ionization isotope dilution mass spectrometry (TI-IDMS) as an oligo-element method for the determination of photographically relevant trace elements in AgCl emulsions
JP4559932B2 (en) Method for analyzing metal impurities
Sharma et al. Studies on the coulometric determination of uranium and plutonium employing a graphite electrode
JPS60260855A (en) Analysis of radioactive element in semiconductor material
Leao et al. General Method for Analyzing Refractory-Metal Alloys Using the Vacuum-Cup Electrode
Churchill Analytical applications of emission spectrometry
Beran et al. Application of oscillographic polarography in quantitative chemical analysis: XX. The oscillographic determination of trace amounts of heavy metals in hydrochloric acid, pure aluminium and zirconium
Wrembel Determination of mercury in water by electro-deposition and low-pressure ring-discharge emission spectroscopy