JPS60260855A - Analysis of radioactive element in semiconductor material - Google Patents

Analysis of radioactive element in semiconductor material

Info

Publication number
JPS60260855A
JPS60260855A JP11656084A JP11656084A JPS60260855A JP S60260855 A JPS60260855 A JP S60260855A JP 11656084 A JP11656084 A JP 11656084A JP 11656084 A JP11656084 A JP 11656084A JP S60260855 A JPS60260855 A JP S60260855A
Authority
JP
Japan
Prior art keywords
sample
radioactive elements
ion exchange
soln
inorganic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11656084A
Other languages
Japanese (ja)
Inventor
Akira Okada
章 岡田
Shigeo Iiri
飯利 茂雄
Hiroshi Endo
博 遠藤
Naoyuki Hirate
平手 直之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11656084A priority Critical patent/JPS60260855A/en
Publication of JPS60260855A publication Critical patent/JPS60260855A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods

Abstract

PURPOSE:To determine quantitatively and quickly the radioactive elements in a semiconductor material with good accuracy by using a hermetic decomposing vessel and a separating means which operates under pressurization. CONSTITUTION:A sample to be analyzed is first stored into the hermetic decomposing vessel 1 of which the entire part of the inside wall is constituted of a fluororesin 3. Said sample is heated to dissolve at 150-250 deg.C together with an inorg. acid. U and Th are separated from the matrix and concd. by using a constant volume pump which feeds the sample soln. and separating soln. to an ion exchange column 5 if necessary. The resulting sample soln. is dried and ashed on a boat made of a metal having a high melting point and thereafter the dried sample is introduced into the Ar plasma generated by heating to 1,500-2,000 deg.C. The respective radioactive elements are quantitatively determined from the intensity of the light emitted by the excitation. The pressure in the vessel 1 rises high during the decomposition by heating and therefore the easy decomposition of Al2O3 is made possible only by the inorg. acid according to the above- mentioned method. In addition, there is no contamination from the outside. The sample soln., etc. are fed under the pressure into the ion exchange resin 5 and therefore the resin column is made finer and the resolving power is made higher.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、半導体材料中の放射性元素の分析力“法に関
する。
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for the analysis of radioactive elements in semiconductor materials.

〔発明の技術的背景およびその問題点〕半導体材料中に
不純物として含まれる放射性元素、例えばウラン(U)
、)リウム(Th) から発生するα線により、半導体
メモリーの蓄積データが反転する現象、いわゆる半導体
ンフトエラーが良く知られている。
[Technical background of the invention and its problems] Radioactive elements contained as impurities in semiconductor materials, such as uranium (U)
,) A phenomenon in which data stored in a semiconductor memory is reversed due to α rays generated from lithium (Th), a so-called semiconductor dump error, is well known.

これら半導体材料中で、例えばSin、は半導体封止用
樹脂にフィラーとして約70%含まれており、封止樹脂
は直接半導体素子に接触している。
Among these semiconductor materials, for example, about 70% of Sin is contained as a filler in the semiconductor encapsulation resin, and the encapsulation resin is in direct contact with the semiconductor element.

またAl1−84合金は配線材料に、Mo81hMo及
びWなどは電極材料として半導体素子lこ使用されるた
め、放射性元素を精度よくかつ迅速に短時間で定量する
ことが半導体の信頼性向上のために重要である。
In addition, Al1-84 alloy is used as wiring material, and Mo81hMo and W are used as electrode materials in semiconductor devices, so it is important to accurately and quickly quantify radioactive elements in a short time to improve the reliability of semiconductors. is important.

一般に、半導体材料中の放射性元素の分析法としては、
例えばUを蛍光光度法、Thを吸光光度法で定量する方
法、または放射化分析法でυ、Thを同時に定量する方
法が用いられている。これら分析法の内では、検出感度
、積率、同一試料からU、Thが定量できる点で、放射
化分析法が最も優れている。
In general, methods for analyzing radioactive elements in semiconductor materials include:
For example, a method is used in which U is quantified by fluorescence photometry, Th is quantified by spectrophotometry, or υ and Th are simultaneously quantified by activation analysis. Among these analytical methods, the activation analysis method is the most superior in terms of detection sensitivity, product moment, and ability to quantify U and Th from the same sample.

放射化分析法でU、Th等を定量する場合、■試料に直
接中性子を照射し%U、Thの放射能を測定する方法■
あらかじめ試料を無機酸あるいはアルカリ融剤等で分解
し、イオン交換分離法でU、Thを分離濃縮したのちに
、中性子照射してU、Thの放射能を測定し、定量する
方法がある。■は、主に高濃度のU、Th定量法に適し
ており、fM便で迅速性に優れているが、測定時に多量
の放射能で被曝する危険性が高く、高濃度の放射性廃棄
物が発生する欠点がある。■は、微量なU%Thの定量
に適しているが、微量の[1,Thの放射能は微弱であ
り、l試料を測定するのに数時間から数日を要する。ま
た、放射化分析法は、原子炉を必要とするなど、品質管
理用の分析方法としては実用的でなかりた。
When quantifying U, Th, etc. using the activation analysis method, ■Method of directly irradiating the sample with neutrons and measuring the radioactivity of %U, Th■
There is a method of decomposing a sample in advance with an inorganic acid or alkaline flux, separating and concentrating U and Th using an ion exchange separation method, and then irradiating the sample with neutrons to measure and quantify the radioactivity of U and Th. ■ is mainly suitable for high-concentration U and Th quantitative methods, and is excellent in speed by fM delivery, but there is a high risk of being exposed to a large amount of radioactivity during measurement, and high-concentration radioactive waste is There are drawbacks that occur. Method (2) is suitable for quantifying trace amounts of U%Th, but the radioactivity of trace amounts of [1,Th is weak and it takes several hours to several days to measure a sample. In addition, the activation analysis method required a nuclear reactor and was therefore impractical as an analysis method for quality control.

また、吸光光度法、蛍光光度法および■の放射化分析法
で微量なU、Thを定量する場合、はとんど前処理の段
階で、U、Thを分離濃縮している。゛例えば% 8i
0*ではフッ化水素酸と硫酸で810!を揮散させたの
ち、StO,の粉砕時に用いるアルミナボールから混入
した未分解のkl、Ollをアルカリ融剤で融解し、硝
酸などの無機酸で溶解して、自然落下方式のイオン交換
分離法でU、Thを分離濃縮している。しかしながら、
これらの前処理は、特に試料分解時において、試料は各
種の試薬や分析用器具と接触することが多いので、外部
から汚染される可能性が大きい。また自然落下方式のイ
オン交換分離法は、U、Thの分離時間に要時間を要し
、かつU、Thとマトリックスの分離能が悪く時には分
離操作を2.3度くり返す必要がある。
Furthermore, when quantifying trace amounts of U and Th by spectrophotometry, fluorometry, and the activation analysis method described in (2), U and Th are usually separated and concentrated at the pretreatment stage.゛For example, % 8i
0* is 810 for hydrofluoric acid and sulfuric acid! After volatilizing the StO, the undecomposed KL and OLL mixed in from the alumina balls used when grinding StO are melted with an alkaline flux, dissolved with an inorganic acid such as nitric acid, and then separated using a gravity-type ion exchange separation method. U and Th are separated and concentrated. however,
In these pretreatments, especially during sample decomposition, the sample often comes into contact with various reagents and analytical instruments, so there is a high possibility of contamination from the outside. Further, in the gravity-type ion exchange separation method, it takes a long time to separate U and Th, and when the separation ability between U and Th and the matrix is poor, it is necessary to repeat the separation operation 2.3 times.

との高い精度と迅速さを重視する品質管理用の分析方法
としては実用的でなかった。
It was not practical as an analysis method for quality control, which emphasizes high accuracy and speed.

〔発明の目的〕[Purpose of the invention]

本発明者らは、これら従来法のU、Th定量分析方法t
こおける試料溶液の調製、測定の難点を解消したU、T
hの定量分析方法について種々の検討を重ねた結果、本
発明を完成するに至った。
The present inventors have developed these conventional methods for quantitative analysis of U and Th.
U and T solve the problems of sample solution preparation and measurement in the laboratory.
As a result of various studies on quantitative analysis methods for h, the present invention has been completed.

〔発明の概要〕[Summary of the invention]

すなわち、本発明は、被分析試料を無機酸もしくは、内
壁の全部をフッ素樹脂で構成する密閉分解容器に収納し
、無機酸とともに150〜250℃に加熱して溶解し、
必要に応じて試料溶液、分離溶液をイオン交換樹脂カラ
ムに送り込む定容ポンプを用いて%U、Thをマトリッ
クスから発着濃縮し、得られた試料溶液を高融点金属製
ボート上で乾燥、灰化したのち、1500〜2000℃
に加熱して発生させたアルゴンプラズマ内に導入し、励
起発光強度から各放射性元素か定量できる。また、高感
度、高精度で簡便かつ迅速に同一試料から定量できるこ
とを特徴とする半導体材料中の放射性元素の分析方法を
定量するものである。
That is, in the present invention, a sample to be analyzed is stored in a sealed decomposition container whose inner wall is entirely made of an inorganic acid or a fluororesin, and the sample is heated to 150 to 250°C together with the inorganic acid to dissolve it.
If necessary, %U and Th are removed and concentrated from the matrix using a constant volume pump that sends the sample solution and separation solution to the ion exchange resin column, and the obtained sample solution is dried and incinerated on a boat made of high melting point metal. After that, 1500-2000℃
Each radioactive element can be quantified from the excitation emission intensity by introducing it into argon plasma generated by heating. The present invention also provides a quantitative analysis method for radioactive elements in semiconductor materials, which is characterized by high sensitivity, high precision, and can be performed simply and quickly from the same sample.

粉砕時に混入するA7,0.は耐酸性が強く、通常無機
酸では完全に分解されない。したがって。
A7.0 mixed in during crushing. has strong acid resistance and is usually not completely decomposed by inorganic acids. therefore.

従来はアルカリ融剤で融解したのち、無機酸で溶解して
いた。このため、アルカリ融剤や分析器具などから汚染
される可能性が大きい。
Conventionally, it was melted with an alkaline flux and then dissolved with an inorganic acid. Therefore, there is a high possibility of contamination from alkaline fluxes, analytical instruments, etc.

本発明では、試料の分解は第1図に示す密閉分解容器を
用い、150〜250℃の温度域で行なわれ゛る。15
0℃以下の場合には、試料の分解に長時間を有し、また
250℃以上の場合には、フッ素樹脂が侵される。加熱
分解時に、容器内は高圧(5〜25 kg/cm” )
となるが、これはAI、o、の分解を促進する作用を果
たし、無機酸だけで容易にAI、0゜を分解することが
でき、しかもフッ素樹脂製の密閉容器であるため外部か
らの汚染もない。
In the present invention, the sample is decomposed using a closed decomposition container shown in FIG. 1 in a temperature range of 150 to 250°C. 15
If the temperature is below 0°C, it will take a long time to decompose the sample, and if it is above 250°C, the fluororesin will be attacked. During thermal decomposition, the inside of the container is under high pressure (5 to 25 kg/cm”)
However, this has the effect of promoting the decomposition of AI, o, and can easily decompose AI, 0° with just an inorganic acid, and since it is a sealed container made of fluororesin, there is no contamination from the outside. Nor.

また、定容ポンプを用いるイオン交換分離装置の概図を
第2因に示す。第3図に示す従来の自然落下方式のイオ
ン交換分離法では、マトリックスからU、Thを完全に
分離することが困難であるばかりか、自然落下のために
、試料溶液あるいは分離溶液がイオン交換樹脂柱を通過
するのに長時間を要していた。本発明のイオン交換分離
装置は、定容ポンプで試料溶液あるいは分離溶液をイオ
ン交換樹脂中に圧力をかけて短時間で送り込むことがで
きるため、樹脂柱を細くして、分離能を向上することが
可能であり、1回の操作で、U、Thをマトリックスか
ら完全に分離することができる。
In addition, a schematic diagram of an ion exchange separation device using a constant volume pump is shown in the second factor. In the conventional ion-exchange separation method using the gravity fall method shown in Figure 3, not only is it difficult to completely separate U and Th from the matrix, but also the sample solution or separation solution is mixed with the ion exchange resin due to gravity fall. It took a long time to pass the pillar. The ion exchange separation device of the present invention can feed the sample solution or separation solution into the ion exchange resin in a short time by applying pressure using a constant volume pump, so the resin column can be made thinner to improve separation performance. is possible, and U and Th can be completely separated from the matrix in a single operation.

〔発明の実施例〕[Embodiments of the invention]

以下に高純度シリカを分析した実施例を示す。 Examples of analyzes of high-purity silica are shown below.

試料10IIをフッ素樹脂製ビーカーにとり、フッ化水
素酸(1+1)、50 mlと過塩素酸、5mlを加え
、熱板上で乾固近くまで加熱する。放冷後塩酸(1+1
)、5tll を加え加熱して大部分の残渣を溶屏した
のち、第1図に示したような内壁を厚み3mmのフッ素
樹脂で被覆した肉厚5mmのステンレススティール製容
器(直径50mm 。
Place sample 10II in a fluororesin beaker, add 50 ml of hydrofluoric acid (1+1) and 5 ml of perchloric acid, and heat on a hot plate until almost dry. After cooling, add hydrochloric acid (1+1
), 5 tll was added and heated to melt away most of the residue, and then a 5 mm thick stainless steel container (diameter 50 mm) whose inner wall was coated with 3 mm thick fluororesin as shown in Fig. 1 was prepared.

深さ3Qmm)内に水で洗い移し入れ、フッ化水素酸(
1+1)、10rnJと塩酸5m1lを加え内面を厚み
5mm のフッ素樹脂で被覆した肉厚5mmのステンレ
ススティール製蓋をねじ嵌合して冠着固定した。次いで
、この密閉分解器を200℃に温度調節されている空気
洛中に2時間放置した。急冷後硫酸(1+1 ) 、1
mJfと過塩素酸5m1l を加え、硫酸白煙を発生さ
せ、乾固近くまで加熱する。
Rinse with water to a depth of 3 Qmm) and add hydrofluoric acid (
1+1), 10 rnJ and 5 ml of hydrochloric acid were added thereto, and a 5 mm thick stainless steel lid whose inner surface was coated with a 5 mm thick fluororesin was fitted with a screw to secure the lid. Next, this closed decomposer was left for 2 hours in an air chamber whose temperature was controlled at 200°C. Sulfuric acid after quenching (1+1), 1
Add mJf and 5 ml of perchloric acid, generate white sulfuric acid smoke, and heat to near dryness.

放冷後、硝酸(1+1)5mノを加え溶解した。After cooling, 5 m of nitric acid (1+1) was added and dissolved.

得られた溶液を第2図に示すイオン交換クロマトグラフ
の直径3mm、長さ1.4mのフッ累樹脂製分取ループ
に定容ポンプにより保持した。次いで陰イオン交換樹脂
を充填したカラム上端から注入し、カラム下端から流出
して(る溶液を採取した。陰イオン交換樹脂としては、
強塩基性第四級アンモニウム形(商品名、DOWBX 
1−X8200〜400メツシL)を直径g mm、長
さ2ocmのカラムに充填して用いた。カラムに7N硝
酸30m1を流してマトリックス(Fe、Ca、Na、
など)を流し出す。更に0.5 N塩酸somiを流し
、U、’rhを溶出させ、フッ素樹脂製ビーカーに採取
した。溶液をo、 i m を近くまで蒸発濃縮して、
被検溶液とした。
The obtained solution was held in a fluoroplastic preparative loop having a diameter of 3 mm and a length of 1.4 m of an ion exchange chromatograph shown in FIG. 2 using a constant volume pump. Next, the anion exchange resin was injected from the top of the column, and the solution flowing out from the bottom of the column was collected.
Strongly basic quaternary ammonium form (trade name, DOWBX
1-X8200 to 400 mesh L) was used by filling a column with a diameter of g mm and a length of 2 ocm. Flow 30ml of 7N nitric acid through the column to remove the matrix (Fe, Ca, Na,
etc.) are flushed out. Furthermore, 0.5 N hydrochloric acid somi was flowed to elute U and 'rh, and the mixture was collected in a fluororesin beaker. Evaporate the solution to near o, i m, and
This was used as the test solution.

この被検溶液からマイク西ピペットで5〜50μノを採
取し、高温気化装置のタングステンボート上に注入し、
第1表に示すように100℃で乾燥。
Collect 5 to 50 μm of this test solution using a microphone pipette and inject it onto the tungsten boat of a high-temperature vaporizer.
Dry at 100°C as shown in Table 1.

160℃で灰化後、2300℃で気化させてアルゴンプ
ラズi内に導入して、発光分光法によりU、Thを定量
分析した。
After incineration at 160°C, it was vaporized at 2300°C and introduced into Argon Plasma, where U and Th were quantitatively analyzed by emission spectroscopy.

以上の操作により得られたU、Thの定量分析値及び分
析所要時間を第2表に示す。なお比較のため放射化分析
法で同−試料中のU、Thの定量分析値2分析所要時間
を併記した。以上の結果からも明らかなように、従来の
放射化分析法と比較して、定量不可能であった0、5p
pb以下のU、TbをIA7 の短時間に簡便かつ多量
の試料が分析できることが判明した。
Table 2 shows the quantitative analysis values of U and Th obtained by the above operations and the time required for analysis. For comparison, the quantitative analysis values of U and Th in the same sample using the activation analysis method and the time required for two analyzes are also shown. As is clear from the above results, compared to the conventional activation analysis method, 0 and 5p, which could not be quantified,
It has been found that U and Tb below PB can be analyzed easily and in a large amount of samples in a short time using IA7.

第、1表 高周波誘導プラズマ発光分光第 2 表 〔発明の効果〕 本発明によれば、従来定量不可能であった0、5ppb
以下の放射性元素を長時間にかつ簡便に分析することが
でき、その工業的価値は大である。
Table 1: High-frequency stimulated plasma emission spectroscopy Table 2 [Effects of the invention] According to the present invention, 0.5 ppb, which was previously impossible to quantify.
The following radioactive elements can be easily analyzed over a long period of time, and its industrial value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明に用いる密閉分解器の縦断面図、第2
図は、同じく本発明に用いる元素分取装置の概略図、第
3図は、従来のイオン交換分離装置の概略図である。 1・・・蓋、2・・・容器、3・・・フッ素樹脂、4・
・・ねじ、5・・・陰イオン交換樹脂、6・・・試料溶
液、7・・・流出液、8・・・分取ループ、9,9’、
9’・・・溶離液。 代理人弁理士 則 近 憲 佑(ほか1名)口′7
Figure 1 shows 1 a vertical cross-sectional view of a sealed decomposer used in the present invention, and
The figure is a schematic diagram of an element separation device similarly used in the present invention, and FIG. 3 is a schematic diagram of a conventional ion exchange separation device. 1... Lid, 2... Container, 3... Fluorine resin, 4...
... Screw, 5 ... Anion exchange resin, 6 ... Sample solution, 7 ... Effluent, 8 ... Preparation loop, 9,9',
9'... Eluent. Representative Patent Attorney Noriyuki Chika (and 1 other person) ’7

Claims (1)

【特許請求の範囲】 (1>被分析試料を無機酸もしくは密閉分解容器で分解
し、必要に応じてイオン交換分離で放射性元素をマトリ
ックスから分離濃縮し、得られた試料溶液を高融点金属
製ボート上で乾燥、灰化したのち、1500〜2000
℃に加熱して蒸発気化させ、10〜30MHzの高周波
誘導加熱して発生させたアルゴンプラズマ内に導入し、
励起発光強度から定量することを特徴とする半導体材料
中の放射性元素分析方法。 ρ)特許請求の範囲第1項記載分析方法において、被分
析試料を分解する際に無機酸、もしくは少なくとも内壁
の全部をフッ素樹脂で構成する密閉分解容器に収納し、
無機酸とともに150〜250℃に加熱して溶解するこ
とを特徴とする半導体材料中の放射性元素分析方法。 G)特許請求の範囲第1項記載の分析方法において、試
料溶液から放射性元素を分離濃縮する際に、少なくとも
試料溶液1分離溶液をイオン交換樹脂カラムに送り込む
定容ポンプを用いて、分離濃縮することを特徴とする半
導体材料中の放射性元素分析方法。
[Scope of Claims] (1> Decompose the sample to be analyzed with an inorganic acid or a closed decomposition container, separate and concentrate radioactive elements from the matrix by ion exchange separation if necessary, and use the resulting sample solution to make a refractory metal. After drying and ashes on the boat, 1,500 to 2,000
℃ to evaporate it, introduce it into argon plasma generated by high frequency induction heating of 10 to 30 MHz,
A method for analyzing radioactive elements in semiconductor materials, characterized by quantitative determination based on excitation emission intensity. ρ) In the analysis method described in claim 1, when the sample to be analyzed is decomposed, it is stored in an airtight decomposition container made of an inorganic acid or at least the entire inner wall of which is made of a fluororesin,
A method for analyzing radioactive elements in a semiconductor material, which comprises heating and dissolving at 150 to 250°C together with an inorganic acid. G) In the analytical method described in claim 1, when separating and concentrating radioactive elements from a sample solution, a constant volume pump that sends at least one sample solution to an ion exchange resin column is used to separate and concentrate the radioactive element. A method for analyzing radioactive elements in semiconductor materials, characterized by:
JP11656084A 1984-06-08 1984-06-08 Analysis of radioactive element in semiconductor material Pending JPS60260855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11656084A JPS60260855A (en) 1984-06-08 1984-06-08 Analysis of radioactive element in semiconductor material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11656084A JPS60260855A (en) 1984-06-08 1984-06-08 Analysis of radioactive element in semiconductor material

Publications (1)

Publication Number Publication Date
JPS60260855A true JPS60260855A (en) 1985-12-24

Family

ID=14690131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11656084A Pending JPS60260855A (en) 1984-06-08 1984-06-08 Analysis of radioactive element in semiconductor material

Country Status (1)

Country Link
JP (1) JPS60260855A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03277969A (en) * 1990-03-28 1991-12-09 Ngk Insulators Ltd Quantitative analysis method for solid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03277969A (en) * 1990-03-28 1991-12-09 Ngk Insulators Ltd Quantitative analysis method for solid

Similar Documents

Publication Publication Date Title
Miranda et al. Measurement of 151 Sm in nuclear decommissioning samples by ICP-MS/MS
JP2017106851A (en) Analysis method and analysis device of radionuclide in soil sample in environment
Linstedt et al. Determination of vanadium in natural waters by neutron activation analysis
JPS60260855A (en) Analysis of radioactive element in semiconductor material
JP4788000B2 (en) Trace element analysis method in aqueous solution
Ramakumar et al. Application of dicesium metaborate ion for the determination of boron by thermal ionisation mass spectrometry
Xiang-Wei et al. High-temperature catalytic oxidation preparation and liquid scintillation counting determination of the carbon-14 in liquid effluent samples from nuclear power plants
D'Silva et al. Ultratrace level detection of mercury by an x-ray excited optical fluorescence technique
Bootharajan et al. Pyrohydrolytic separation of fluoride and chloride in U–Zr and U–Pu–Zr metallic fuel alloys through oxidation accompanied by estimation using ion chromatography
Mitchell State-of-the-art contamination control techniques for ultratrace elemental analysis
Vandecasteele et al. Determination of traces of carbon, nitrogen and oxygen in molybdenum and tungsten
Wenzel et al. Emission Spectrographic Determination of Boron in Plutonium and Uranium Nitrate Solutions Following Cation Exchange Separation.
Küppers Fast source preparation for alpha-spectrometry of uranium and transuranium isotopes
JP4193981B2 (en) Isotope analysis method using laser
Borsaru et al. Determination of aluminum in bulk iron ore samples by neutron activation analysis
Rossbach et al. Prompt and delayed NAA techniques for the characterization of specimen bank materials
Kim et al. Identification and behaviour of trace inorganic elements in an urban sewage treatment plant by monostandard activation analysis
JPH0445446B2 (en)
JP2808982B2 (en) Method for analyzing impurities in sample liquid
Kiesl et al. Analysis of Terrestrial and Extraterrestrial Materials
Krivan et al. Radiochemical fast neutron activation analysis of high-purity metals for phosphorus
Tölgyesi et al. Determination of alpha-emitting isotopes in radioactive wastes
Rajeswari et al. Methods and concerns in disposal of nuclear waste from storage vials post recovery
Dixon The analysis of mineralogical and metallurgical materials
Mortier et al. The Determination of Boron, Carbon and Nitrogen in Zircaloy by Charged Particle Activation Analysis