JP4788000B2 - Trace element analysis method in aqueous solution - Google Patents

Trace element analysis method in aqueous solution Download PDF

Info

Publication number
JP4788000B2
JP4788000B2 JP2005318587A JP2005318587A JP4788000B2 JP 4788000 B2 JP4788000 B2 JP 4788000B2 JP 2005318587 A JP2005318587 A JP 2005318587A JP 2005318587 A JP2005318587 A JP 2005318587A JP 4788000 B2 JP4788000 B2 JP 4788000B2
Authority
JP
Japan
Prior art keywords
aqueous solution
adsorbent
trace elements
concentration
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005318587A
Other languages
Japanese (ja)
Other versions
JP2007127453A (en
Inventor
哲也 磯貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Original Assignee
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd filed Critical Penta Ocean Construction Co Ltd
Priority to JP2005318587A priority Critical patent/JP4788000B2/en
Publication of JP2007127453A publication Critical patent/JP2007127453A/en
Application granted granted Critical
Publication of JP4788000B2 publication Critical patent/JP4788000B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

本発明は、水溶液中に存在する微量元素、例えば、砒素、鉛、セレン、水銀、クロム等を、蛍光X線分析装置を用いて計測する水溶液中の微量元素分析方法に関する。   The present invention relates to a trace element analysis method in an aqueous solution in which trace elements present in an aqueous solution, for example, arsenic, lead, selenium, mercury, chromium, and the like are measured using a fluorescent X-ray analyzer.

一般的に、水溶液中に含有する微量な重金属類の濃度を簡易に分析する方法として蛍光X線分析装置を利用する方法がある。これには、対象となる水溶液をそのままの状態で、これに蛍光X線を照射して測定する方法もあるが、この方法は分析に必要な前処理が少ないため、手間が少なくて済むものの、蛍光X線分析装置自身の感度が数ppm程度であるため、水溶液に含まれる微量金属元素を排水基準濃度(0.1ppm)や、環境基準濃度(0.01ppm)まで測定することはできない。   In general, there is a method using a fluorescent X-ray analyzer as a method for simply analyzing the concentration of a trace amount of heavy metals contained in an aqueous solution. For this, there is also a method of measuring the target aqueous solution as it is by irradiating it with fluorescent X-rays, but this method requires less pre-processing, so less labor is required. Since the sensitivity of the fluorescent X-ray analyzer itself is about several ppm, the trace metal elements contained in the aqueous solution cannot be measured to the wastewater standard concentration (0.1 ppm) or the environmental standard concentration (0.01 ppm).

このため従来は、水溶液中に存在する微量元素を集めた状態で濃度を分析する方法が提案されており、これには、例えば、水溶液中の各元素にDDTCキレート剤を反応させて沈澱濾過する方法(キレート沈澱法)(例えば特許文献1)、水溶液中の各元素に適当な沈澱剤及び共沈剤を加えて反応させ、水溶液から沈澱分離させる方法(沈澱分離法)(例えば特許文献2)、水溶液中の各元素に有機試薬を反応させ、有機溶媒層に抽出分離させる方法(溶媒抽出法)等がある
特開2004−294329号公報 特開平10−277564号公報
For this reason, conventionally, a method for analyzing the concentration in a state where trace elements present in an aqueous solution are collected has been proposed. For example, a DDTC chelating agent is reacted with each element in an aqueous solution and subjected to precipitation filtration. Method (chelate precipitation method) (for example, Patent Document 1), a method of adding an appropriate precipitation agent and coprecipitation agent to each element in an aqueous solution, reacting them, and separating them from an aqueous solution (precipitation separation method) (for example, Patent Document 2) And a method of reacting each element in an aqueous solution with an organic reagent and extracting and separating into an organic solvent layer ( solvent extraction method) .
JP 2004-294329 A Japanese Patent Laid-Open No. 10-277564

しかしながら、上述した従来のキレート沈澱法、沈澱分離法、溶媒抽出法には、次のような問題がある。
(1)キレート剤を添加する際、測定対象物質の種類に応じて、過酸化水素(H)等の薬品を水溶液中に溶かす作業を伴い、また、薬品を正確に計量するための専用の道具(例えば、マイクロピペット等)や水溶液の水素イオン濃度を測定するための機器(例えば、PHメーター)等が必要になる。
(2)薬品を投入した後、水溶液の沈澱状態等を管理する必要がある。
(3)水溶液中の水分を蒸発させるために、そのまま、コンロやホットプレート等(以下、単に加熱器という)にかけた場合、薬品による有害な揮発性ガスの発生が懸念され、それを排気するための専用設備(例えば、ドラフトチャンバー)が必要となる。
(4)上述のような作業を行うための高度の知識及び器具を取り扱うための熟練した技術、更には、使用後の廃液の保管又は廃棄及び薬品や器具を保管するための設備等が必要となる。
(5)何れの方法も、化学知識のない人にとってフィールドワーク等で簡単に行うことができない。
However, the conventional chelate precipitation method, precipitation separation method, and solvent extraction method described above have the following problems.
(1) When adding a chelating agent, depending on the type of substance to be measured, it involves the work of dissolving a chemical such as hydrogen peroxide (H 2 O 2 ) in an aqueous solution, and for accurately measuring the chemical. A dedicated tool (for example, a micropipette) or a device (for example, a PH meter) for measuring the hydrogen ion concentration of an aqueous solution is required.
(2) After adding chemicals, it is necessary to manage the precipitation state of the aqueous solution.
(3) In order to evaporate the moisture in the aqueous solution, if it is directly applied to a stove, hot plate, etc. (hereinafter simply referred to as a heater), harmful volatile gas may be generated due to chemicals. Dedicated equipment (for example, a draft chamber) is required.
(4) Advanced knowledge and skill to handle equipment as described above, as well as storage or disposal of waste liquid after use and equipment for storing chemicals and equipment are required. Become.
(5) Neither method can be easily performed by a fieldwork or the like for a person without chemical knowledge.

この他、水溶液中の微量元素と水溶液を分離するのに、薬品を使用しないことを前提とした場合、測定するための前処理方法としては、水溶液を加熱して水蒸気を追い出す(水溶液を濃縮する)方法が考えられる。   In addition, when it is assumed that no chemicals are used to separate trace elements from aqueous solutions, the pretreatment method for measurement is to heat the aqueous solution to drive off water vapor (concentrate the aqueous solution). ) Method is conceivable.

しかしながら、この方法では、濃縮する過程で容器内に沈殿物が発生することが多く、沈殿物が発生した場合には沈殿物と水溶液との混合物についての分析結果が得られることとなり、固形沈殿物のみや水溶液のみの蛍光X線分析による分析結果に比べ、評価が煩雑となってしまうといった問題がある。   However, in this method, a precipitate is often generated in the container during the concentration process, and when the precipitate is generated, an analysis result about the mixture of the precipitate and the aqueous solution is obtained, and the solid precipitate is obtained. There is a problem that the evaluation becomes complicated as compared with the analysis result by fluorescent X-ray analysis of only the aqueous solution or only the aqueous solution.

この問題は、沈殿物を発生させない程度に水溶液を蒸発させることによって解決するが、沈殿物が発生するタイミングを見極めるための管理が必要となる。   This problem can be solved by evaporating the aqueous solution to such an extent that no precipitate is generated, but management is required to determine the timing at which the precipitate is generated.

また、これまでの実験結果から初期の水溶液に対して容積が3/4から1/3程度になるまで濃縮されると沈殿物ができ始めることが確認されているが、沈殿物の発生しない状態で濃縮を止めると、十分な濃縮倍率が得られないため、結果として目標としている排水基準濃度も分析することができないといった問題がある。   In addition, it has been confirmed from the experimental results so far that when an initial aqueous solution is concentrated to a volume of about 3/4 to 1/3, a precipitate starts to form, but no precipitate is generated. If the concentration is stopped at this point, a sufficient concentration rate cannot be obtained, and as a result, the target drainage standard concentration cannot be analyzed.

本発明はこのような従来の問題点に鑑みてなされたもので、水溶液中に存在する微量元素の分析を、蛍光X線分析装置を使用し、キレート剤や薬品を一切使用することなく、また、化学知識のない人でもフィールドワーク等で排水基準濃度(0.1ppm)及び環境基準濃度(0.01ppm)レベルの精度で行うことができる水溶液中の微量元素分析方法を提供することを目的としたものである。   The present invention has been made in view of such conventional problems, and it is possible to analyze trace elements present in an aqueous solution using a fluorescent X-ray analyzer without using any chelating agent or chemical. The purpose of the present invention is to provide a method for analyzing trace elements in an aqueous solution that can be carried out by a person who does not have chemical knowledge with a level of accuracy of wastewater standard concentration (0.1 ppm) and environmental standard concentration (0.01 ppm) by fieldwork etc. It is a thing.

上述の如き従来の問題点を解決し、微量元素を含む水溶液を吸着材ともに煮沸容器に入れ、該水溶液を加熱して水分を蒸発させることにより該水溶液を濃縮させつつ前記微量元素を吸着材に吸着させ、水分蒸発後に残った煮沸容器内の吸着材を含む固形成分をすりつぶし、得られた粉状及び/又は粒状の試料中の蛍光X線分析装置にて分析可能な微量元素の含有量を、蛍光X線分析装置を用いて計測することを特徴としてなる水溶液中の微量元素分析方法にある。 To solve the conventional problems such as described above, an aqueous solution containing trace elements placed on both boiling container and adsorbent, the adsorbent and the trace element while the aqueous solution was concentrated by evaporating the water by heating the aqueous solution The amount of trace elements that can be analyzed by a fluorescent X-ray analyzer in the powdered and / or granular sample obtained by grinding the solid components including the adsorbent in the boiling vessel left after the water evaporation Is a method for analyzing trace elements in an aqueous solution, characterized in that it is measured using a fluorescent X-ray analyzer.

本発明は、微量元素を含んでいる水溶液内に吸着材を入れ、これを加熱して水分を蒸発させることで、水溶液を濃縮させつつ該水溶液中の微量元素を吸着材に捕捉せしめこれをすりつぶして分析のための試料を調整することとしたことにより、キレート剤を添加したり薬品を水溶液中に溶かしたりする作業が不要となり、また、使用器具も、特殊な器具は使用することなく、常用の計りやビーカーなど、汎用品ばかりを使用でき、しかも試料調整工程において分析器具を全く使用する必要がない。 The present invention, the adsorbent placed in an aqueous solution containing the trace elements, Evaporation of the heated water this ground it allowed capture trace elements in the aqueous solution to the adsorbent while concentrating the aqueous solution Therefore, it is not necessary to add a chelating agent or dissolve chemicals in an aqueous solution, and there is no need to use special equipment. It is possible to use only general-purpose products such as measuring instruments and beakers, and there is no need to use analytical instruments in the sample preparation process.

また、対象とする水溶液と吸着材の適量を計測し、ビーカー等の煮沸容器内に投入し、水分が蒸発し終わるまで、加熱器にかけて放置すれば良く、また、途中の水溶液の管理を必要とせず、化学の特別な専門知識も必要とせず計測できる。   Also, measure the appropriate amount of the target aqueous solution and adsorbent, put it in a boiling container such as a beaker, and leave it in a heater until the water has evaporated, and it is necessary to manage the aqueous solution along the way. In addition, it can be measured without the need for special chemical knowledge.

また、水分が蒸発して、最終的には水溶液中の蒸発しない微量元素の大部分が吸着材に捕捉され、粒体及び/又は粉状体で残るため、初めの水溶液の状態に比べ、体積は格段に小さく、液体でないため、保管時の液漏れが無く、取り扱いが容易である。   In addition, since moisture evaporates and most of the trace elements that do not evaporate in the aqueous solution are finally trapped in the adsorbent and remain in the granular and / or powdery body, the volume is smaller than that of the initial aqueous solution. Is extremely small and not liquid, it does not leak during storage and is easy to handle.

また、薬品を混合しないため、水溶液中の水分を蒸発させる時、薬品の化学反応による有害な物質は発生せず、有害物質を排気するための専用設備も必要としない。   In addition, since no chemicals are mixed, no harmful substances are generated due to chemical reactions of chemicals when water in the aqueous solution is evaporated, and no dedicated equipment for exhausting harmful substances is required.

このように本発明の微量元素の分析方法は、フィールドワークでの作業を可能とする方法であり、また、最終的には、蒸発しない大部分の微量元素が吸着材に吸着され、試料を粒状体として扱うことができるため、土壌中の微量元素と同じ手順で分析することができ、新たに水溶液中の元素を分析するための高度な技術を習得する必要が無く、また、土壌など固形分の分析と水溶液の分析とを、同一の蛍光X線分析装置で分析できるため、設置するためのスペースや機械のメンテナンスも一台で可能になる等、現場での省力化を図ることができる。 Thus, the trace element analysis method of the present invention is a method that enables work in field work. Finally, most of the trace elements that do not evaporate are adsorbed on the adsorbent, and the sample is granular. Because it can be treated as a body, it can be analyzed in the same procedure as trace elements in soil, there is no need to learn advanced techniques for newly analyzing elements in aqueous solution, and solid content such as soil Therefore, it is possible to save labor in the field, such as installation space and machine maintenance by one unit.

次に、本発明の実施の最良の形態を図面について説明する。本発明は、含有している微量元素の分析及びその計量を行おうとする水溶液内に吸着材を入れた後、加熱して水分を蒸発させることにより、残された固形成分、即ち水溶液中の蒸発しない微量元素の殆どを補足した吸着材及び吸着されないで容器内に残された固形成分をすりつぶして有形物である試料を調製し、この試料を計量して専用容器に入れ、これを蛍光X線分析装置に掛け、試料に蛍光X線を照射して微量元素の種類を分析するとともにその濃度を計測するものであり、先ず、図1(a)に示すように、ビーカー等の煮沸容器1内に、微量元素例えば、砒素、鉛、セレン、水銀、クロム等が含まれている水溶液2を計量して注入する。 Next, the best mode for carrying out the present invention will be described with reference to the drawings. In the present invention, the adsorbent is placed in an aqueous solution to be analyzed and weighed, and then heated to evaporate the water, thereby remaining solid components, that is, evaporation in the aqueous solution. Prepare a sample that is a tangible material by grinding the adsorbent that captures most of the trace elements that are not absorbed and the solid components that are not adsorbed in the container, and weighs this sample into a dedicated container, which is fluorescent X-ray The sample is applied to an analyzer, and the sample is irradiated with fluorescent X-rays to analyze the types of trace elements and the concentration thereof is measured. First, as shown in FIG. 1 (a), in a boiling vessel 1 such as a beaker The aqueous solution 2 containing trace elements such as arsenic, lead, selenium, mercury, chromium, etc. is weighed and injected.

次いで、図1(b)に示すように同煮沸容器1内の水溶液2内に吸着材3を浸漬させる。吸着材3としては、例えば、活性炭が使用できる。また、これらの吸着材3は、粉状体及び粒状体の何れか又はこれらの混合物が好ましい。尚、水溶液2と吸着材3との煮沸容器1への収容順序は逆であってもよい。   Next, as shown in FIG. 1 (b), the adsorbent 3 is immersed in the aqueous solution 2 in the boiling vessel 1. As the adsorbent 3, for example, activated carbon can be used. In addition, these adsorbents 3 are preferably either powdered or granular materials or a mixture thereof. The accommodation order of the aqueous solution 2 and the adsorbent 3 in the boiling vessel 1 may be reversed.

次に、図1(c)に示すように、水溶液2と吸着材3とを収容した煮沸容器1を加熱器4にかけて煮沸し、水分を蒸発させる。これにより水溶液が濃縮されつつ前記微量元素が吸着材に吸着され、図1(d)に示すように、煮沸容器1内に水溶液2中に含まれていた蒸発しない固形成分が、吸着材3に吸着された状態、及び容器底部や周壁に付着した状態で残る。 Next, as shown in FIG.1 (c), the boiling vessel 1 which accommodated the aqueous solution 2 and the adsorbent 3 is boiled over the heater 4, and a water | moisture content is evaporated. As a result, the trace element is adsorbed on the adsorbent while the aqueous solution is concentrated . As shown in FIG. 1 (d), the solid component that does not evaporate contained in the aqueous solution 2 in the boiling vessel 1 is adsorbed on the adsorbent 3. It remains adsorbed and attached to the bottom of the container and the peripheral wall.

このようにして煮沸容器1内に残った固形成分5を、図1(e)に示すように、乳鉢6に移し、すりつぶして微粉状(粒径150μm以下程度)となし、試料を均一化する。尚、このすりつぶし作業後の粒径は、小さければ小さい程計測精度が向上するが、時間と手間がかかるため、大よその分析結果が得られれば良いとする場合には粒径2mm程度の粒状であってもよい。 The solid component 5 remaining in the boiling vessel 1 in this way is transferred to a mortar 6 as shown in FIG. 1 (e) and ground to form a fine powder (particle size of about 150 μm or less), and the sample is homogenized. . The smaller the particle size after grinding, the better the measurement accuracy. However, it takes time and effort, so if it is sufficient to obtain the result of the analysis, the particle size is about 2 mm. It may be.

このようにして得られた試料7を計量して分析用の専用容器8に入れ、図1(f)に示すように蛍光X線分析装置9にセットして分析及び計量を行い、得られた値から最初の水溶液に対する含有濃度を算出する。
(比較試験)
図2〜図4は、本発明の分析方法を用いて、水溶液中に溶出した砒素、鉛、セレンの濃度を蛍光X線分析装置で分析した結果を示している。
Thus placed in a dedicated container 8 for analysis by weighing the sample 7 obtained was analyzed and metering is set to the fluorescent X-ray analysis apparatus 9, as shown in FIG. 1 (f), the resulting The content concentration for the first aqueous solution is calculated from the value.
(Comparative test)
2 to 4 show the results of analyzing the concentrations of arsenic, lead, and selenium eluted in an aqueous solution with a fluorescent X-ray analyzer using the analysis method of the present invention.

図2は砒素濃度0.01、0.1、0.5mg/Lの3種の標準液について、本発明方法によって計測を行った場合の結果、図3は鉛濃度0.01、0.2、0.5mg/Lの3種の標準液について、本発明方法によって計測を行った場合の結果、図4はセレン濃度0.01、0.1、0.5mg/Lの3種の標準液について、本発明方法によって計測を行った場合の結果を示している。   FIG. 2 shows the results of measurement by the method of the present invention for three types of standard solutions having arsenic concentrations of 0.01, 0.1, and 0.5 mg / L. FIG. FIG. 4 shows the results of measurement using the method of the present invention for three standard solutions of 0.5 mg / L. FIG. 4 shows three standard solutions of selenium concentrations of 0.01, 0.1, and 0.5 mg / L. Fig. 5 shows the results when measurement is performed by the method of the present invention.

各図のグラフにおいて横軸が標準濃度(目標値)、縦軸が本発明による同水溶液の計測結果であり、いずれの場合においても、標準液に比べ稍低い値となっているが、略直線関係が保たれている。   In each graph, the horizontal axis is the standard concentration (target value), and the vertical axis is the measurement result of the same aqueous solution according to the present invention. In each case, the value is much lower than that of the standard solution. The relationship is maintained.

図5、図6は、焼却灰から溶出した重金属を含有する水溶液について本発明方法によって計測した結果と、同じ水溶液について原子吸光分析装置を用いて計測した結果とを比較したものであり、図5は砒素の濃度を、図6はセレンの濃度を計測している。各図のグラフにおいて横軸が原子吸光分析装置による計測値、縦軸が本発明による同水溶液の計測結果を示している。いずれの場合においても、図2〜図4の計測結果に比べて本発明による計測結果にばらつきがあるが、全体的に原子吸光分析装置による結果と同じ傾向、即ち原子吸光分析装置により計測される濃度が濃くなるに従って、本発明方法による測定値も大きくなるという傾向が見られ、簡易分析としては充分に使用可能なものである。   FIGS. 5 and 6 are a comparison of the results measured by the method of the present invention for an aqueous solution containing heavy metals eluted from the incinerated ash and the results of measuring the same aqueous solution using an atomic absorption spectrometer. Shows the concentration of arsenic, and FIG. 6 shows the concentration of selenium. In the graph of each figure, the horizontal axis indicates the measured value by the atomic absorption analyzer, and the vertical axis indicates the measurement result of the aqueous solution according to the present invention. In any case, the measurement results according to the present invention vary compared to the measurement results of FIGS. 2 to 4, but the overall trend is the same as the results of the atomic absorption analyzer, that is, the measurement results are measured by the atomic absorption analyzer. As the concentration increases, the measured value according to the method of the present invention tends to increase, which is sufficiently usable as a simple analysis.

本発明に係る水溶液中の微量元素分析方法の工程の一例を示す説明図である。It is explanatory drawing which shows an example of the process of the trace element analysis method in the aqueous solution which concerns on this invention. 砒素の標準液濃度水溶液について本発明によって求めた計測値を示すグラフである。It is a graph which shows the measured value calculated | required by this invention about the standard solution density | concentration aqueous solution of arsenic. 鉛の標準液濃度水溶液について本発明によって求めた計測値を示すグラフである。It is a graph which shows the measured value calculated | required by this invention about the standard solution density | concentration aqueous solution of lead. セレンの標準液濃度水溶液について本発明によって求めた計測値を示すグラフである。It is a graph which shows the measured value calculated | required by this invention about the standard solution concentration aqueous solution of selenium. 焼却灰から溶出した微量元素を含む水溶液中の砒素について、原子吸光分析装置による濃度測定結果と本発明による濃度測定結果を比較したグラフである。It is the graph which compared the concentration measurement result by an atomic absorption analyzer, and the concentration measurement result by this invention about the arsenic in the aqueous solution containing the trace element eluted from the incineration ash. 焼却灰から溶出した微量元素を含む水溶液中のセレンについて、原子吸光分析装置による濃度測定結果と本発明による濃度測定結果を比較したグラフである。It is the graph which compared the concentration measurement result by an atomic absorption analyzer, and the concentration measurement result by this invention about the selenium in the aqueous solution containing the trace element eluted from the incineration ash.

1 煮沸容器
2 水溶液
3 吸着材
4 加熱器
5 固形成分
6 乳鉢
7 試料
8 専用容器
9 蛍光X線分析装置
DESCRIPTION OF SYMBOLS 1 Boiling container 2 Aqueous solution 3 Adsorbent 4 Heater 5 Solid component 6 Mortar 7 Sample 8 Dedicated container 9 X-ray fluorescence analyzer

Claims (1)

微量元素を含む水溶液を吸着材ともに煮沸容器に入れ、該水溶液を加熱して水分を蒸発させることにより該水溶液を濃縮させつつ前記微量元素を吸着材に吸着させ、水分蒸発後に残った煮沸容器内の吸着材を含む固形成分をすりつぶし、得られた粉状及び/又は粒状の試料中の蛍光X線分析装置にて分析可能な微量元素の含有量を、蛍光X線分析装置を用いて計測することを特徴としてなる水溶液中の微量元素分析方法。 The aqueous solution containing the trace elements placed on both boiling vessel and the adsorbent, the aqueous solution of the trace elements while concentrating the aqueous solution is adsorbed to the adsorbent by evaporating the water by heating the boiling vessel remaining after the evaporation of water The amount of trace elements that can be analyzed with a fluorescent X-ray analyzer in a powdered and / or granular sample obtained by grinding solid components including the adsorbent inside is measured using the fluorescent X-ray analyzer. A method for analyzing trace elements in an aqueous solution, characterized by:
JP2005318587A 2005-11-01 2005-11-01 Trace element analysis method in aqueous solution Active JP4788000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005318587A JP4788000B2 (en) 2005-11-01 2005-11-01 Trace element analysis method in aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005318587A JP4788000B2 (en) 2005-11-01 2005-11-01 Trace element analysis method in aqueous solution

Publications (2)

Publication Number Publication Date
JP2007127453A JP2007127453A (en) 2007-05-24
JP4788000B2 true JP4788000B2 (en) 2011-10-05

Family

ID=38150234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005318587A Active JP4788000B2 (en) 2005-11-01 2005-11-01 Trace element analysis method in aqueous solution

Country Status (1)

Country Link
JP (1) JP4788000B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2246193B1 (en) 2008-02-29 2015-09-16 Seiko Epson Corporation Waste liquid recovering body
US9168756B2 (en) 2008-02-29 2015-10-27 Seiko Epson Corporation Waste liquid container and waste liquid discharging device
AT511821B1 (en) 2012-02-21 2013-03-15 Ge Jenbacher Gmbh & Co Ohg Method for operating an internal combustion engine provided with at least one purged prechamber
EP2787342B1 (en) * 2013-04-05 2017-11-01 PANalytical B.V. Preparation of sample-pellets from milk and dairy products by pressing

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5661637A (en) * 1979-10-24 1981-05-27 Kawasaki Steel Corp Preparation of sample for fluorescent x-ray analysis of liquid sample
JPH06235688A (en) * 1993-02-09 1994-08-23 Rigaku Denki Kogyo Kk Preparation of sample for fluorescent x-ray analysis

Also Published As

Publication number Publication date
JP2007127453A (en) 2007-05-24

Similar Documents

Publication Publication Date Title
Sposito The environmental chemistry of aluminum
López-Antón et al. Analytical methods for mercury analysis in coal and coal combustion by-products
US20140106461A1 (en) Mercury monitoring systems and methods
JP5583362B2 (en) Simultaneous analysis method for multi-element components in soil
Dimpe et al. Evaluation of sample preparation methods for the detection of total metal content using inductively coupled plasma optical emission spectrometry (ICP-OES) in wastewater and sludge
Tolu et al. A new methodology involving stable isotope tracer to compare simultaneously short-and long-term selenium mobility in soils
JP4788000B2 (en) Trace element analysis method in aqueous solution
Tokman et al. Determination of bismuth and cadmium after solid-phase extraction with chromosorb-107 in a syringe
JP2004294329A (en) Method and apparatus for analyzing amount of elution of heavy metals contained in soil, and sample for the same
JP5817372B2 (en) Heavy metal analyzer and heavy metal analysis method
JP2017106851A (en) Analysis method and analysis device of radionuclide in soil sample in environment
Vázquez-Ortega et al. Phosphate controls uranium release from acidic waste-weathered Hanford sediments
Lochmüller et al. Trace metal analysis in water by proton-induced x-ray emission analysis of ion-exchange membranes
Varga Preparation and characterization of manganese dioxide impregnated resin for radionuclide pre-concentration
JP4647405B2 (en) Method for analyzing toxic substance content in soil
Chirila et al. Analytical approaches for sampling and sample preparation for heavy metals analysis in biological materials
JP2012073264A (en) Simple test method for content of harmful substance in soil
JP4199143B2 (en) Method for analyzing harmful metal elements and pretreatment method thereof
JP2005083827A (en) Method and instrument for fluorescent x-ray analysis
Jubin et al. Joint Test Plan for the Evaluation of Iodine Retention for Long-Chain Organic Iodides
JP2004251828A (en) Method for simply ,easily and quantitatively analyzing trace specific material in environment
Ivanova et al. Environmental modeling of uranium interstitial compositions of non-stoichiometric oxides: experimental and theoretical analysis
Akagi et al. Quantitative evaluation of environmental factors influencing the dynamics of mercury in the aquatic systems
JP2003194722A (en) Method and apparatus for analysis of heavy metal substance
Tölgyesi et al. Determination of alpha-emitting isotopes in radioactive wastes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110701

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4788000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250