JPS62225247A - Perovskite type oxidation catalyst - Google Patents

Perovskite type oxidation catalyst

Info

Publication number
JPS62225247A
JPS62225247A JP61066332A JP6633286A JPS62225247A JP S62225247 A JPS62225247 A JP S62225247A JP 61066332 A JP61066332 A JP 61066332A JP 6633286 A JP6633286 A JP 6633286A JP S62225247 A JPS62225247 A JP S62225247A
Authority
JP
Japan
Prior art keywords
catalyst
perovskite type
perovskite
composite oxide
type composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61066332A
Other languages
Japanese (ja)
Other versions
JPH0710351B2 (en
Inventor
Kenji Tabata
研二 田畑
Ikuo Matsumoto
松本 郁夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61066332A priority Critical patent/JPH0710351B2/en
Publication of JPS62225247A publication Critical patent/JPS62225247A/en
Publication of JPH0710351B2 publication Critical patent/JPH0710351B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To form a complete perovskite structure by depositing a specified amt. of an iron element on a catalyst consisting of an inorg. heat-resistant material, and then depositing a specified amt. of a perovskite type composite oxide to obtain the titled catalyst. CONSTITUTION:An inorg. heat-resistant material such as alumina, silica, and cordierite is formed into a honeycomb, a foamed ceramic, or a cloth to obtain a catalyst carrier. From 1-15wt% iron element is deposited on the catalyst carrier. The perovskite type composite oxide is expressed by the crystal structural formula ABO3, the A site is selected from >=1 kind of element among alkaline earth metals such as strontium and calcium, and the B site is formed with a cobalt element. Then 1-15wt% perovskite type composite oxide is deposited to produce the perovskite type oxidation catalyst.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は各種燃焼器から排出される未燃の炭化水素、−
酸化炭素を完全燃焼し炭酸ガスと水にする酸化触媒に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to unburned hydrocarbons discharged from various combustors, -
This relates to an oxidation catalyst that completely burns carbon oxide and converts it into carbon dioxide and water.

従来の技術 一般に未燃の炭化水素を空気の存在下、炭酸ガスと水蒸
気に完全酸化させる酸化触媒については白金、パラジウ
ム、ロジウム等の白金族が最も活性が高い。このためア
ルミナ、シリカ等の各種担体に担持させた白金族系触媒
が酸化触媒として各種燃焼器に広く使用されている。一
方、コバルト、ニッケル、鉄等のいわゆる卑金属につい
ては単独の金属酸化物としてよりも、最近では各種複合
酸化物が検討されている。特にペロブスカイト型の結晶
構造をもったものが活性が高いとされ注目されている。
BACKGROUND OF THE INVENTION In general, platinum group metals such as platinum, palladium, and rhodium have the highest activity as oxidation catalysts that completely oxidize unburned hydrocarbons into carbon dioxide and water vapor in the presence of air. For this reason, platinum group catalysts supported on various carriers such as alumina and silica are widely used as oxidation catalysts in various combustors. On the other hand, for so-called base metals such as cobalt, nickel, and iron, various composite oxides have recently been studied rather than individual metal oxides. In particular, those with a perovskite-type crystal structure are attracting attention because they are said to have high activity.

(例えば中村、御園生ら、口止、1980.1679 
)発明が解決しようとする問題点 白金、パラジウム、ロジウム等の白金族はそれ自体、酸
化活性が高く、500°C以下の温度での使用では問題
がないが、500°C以上の温度、特に700〜800
°C以上の温度で使用すると、シンタリングと称してい
る担持金属の粒子径が大きくなり、活性が低下するとい
う熱的劣化の問題がある。このため耐熱性を上げる各種
の方法が提案されているが十分な結果は得られていない
。さらに白金族はコストが高いと共に価格変動の巾が大
きく安定供給の面でも問題がある。一方、ニッケル、コ
バルト、鉄等のいわゆる卑金属単独の酸化物では酸化活
性が低い。さらに耐熱性が低く実使用には至っていない
。最近結晶構造式ABO3で表わされるペロプスカイト
型構造を有する複合酸化物が酸化活性が高く、耐熱性が
高いことが報告され注目を集めている。特にAサイトを
ランタン、ネオジウム等の希土類でBサイトをコバルト
、ニッケル、鉄等の遷移金属で構成したものが酸化活性
が高いとされ各種研究されている。これらはいづれも、
酢酸塩、硝酸塩等の各種塩を世論比で混合した溶液を蒸
発あるいは沈澱させた後焼成しペロプスカイト型構造を
有する触媒粉末を作製したものである。実使用にはこの
触媒粉末をアルミナゾル、シリカゾル等と一諸に混合し
たものをコージライト、アルミナ、シリカ、ムライト等
の耐熱材料をハニカム等に成型したものに担持し、触媒
としていた。この為触媒としては常に剥離の問題がある
と共に触媒活性の点からもバインダとして添加したアル
ミナゾル、シリカゾルが触媒粉末を遮蔽し活性が低下す
るという問題あるいは粉末法では触媒担体の表面積が有
効に利用出来ず比表面積が小さいものしか得られないと
いう問題があった。この為、これらの問題を解決する為
触媒担体上で溶液から直接比表面積の高い微粒子のペロ
ブスカイト型結晶構造を作製する検討を行った結果次の
ような問題点が明らかとなった。即ちペロプスカイト構
造を作るには少くとも700°C以上の温度で焼成する
ことが必要であるがこのような温度条件ではむしろ担体
と担持金属の成分が反応し望みのペロプスカイト型構造
が得られないという問題がある。例えばBサイトの遷移
金属としてコバルト、あるいはニッケルを用いた場合、
担体としてアルミナを用いた場合にはアルミン酸コバル
ト(CoAI204)、アルミン酸ニッケル(NiAI
204)を生成し、目的とするペロプスカイトが生成し
ないという問題がある。本発明はこのように直接担持法
により高活性なペロプスカイト型触媒を作製する際の問
題点を解決しようとするものである。
(For example, Nakamura, Misono et al., Kusudome, 1980.1679
) Problems to be solved by the invention Platinum group metals such as platinum, palladium, and rhodium themselves have high oxidation activity, and there is no problem when used at temperatures below 500°C, but when used at temperatures above 500°C, especially 700-800
When used at temperatures above .degree. C., there is a problem of thermal deterioration, which is called sintering, in which the particle size of the supported metal increases and the activity decreases. For this reason, various methods for increasing heat resistance have been proposed, but no satisfactory results have been obtained. Furthermore, platinum group metals are expensive, have large price fluctuations, and have problems in terms of stable supply. On the other hand, oxides of so-called base metals alone, such as nickel, cobalt, and iron, have low oxidation activity. Furthermore, it has low heat resistance and has not been put into practical use. Recently, it has been reported that a composite oxide having a perovskite structure represented by the crystal structure formula ABO3 has high oxidation activity and high heat resistance, and has attracted attention. In particular, materials in which the A site is composed of a rare earth such as lanthanum or neodymium and the B site is composed of a transition metal such as cobalt, nickel, or iron have been found to have high oxidation activity, and various studies have been conducted. These are all
A catalyst powder having a perovskite structure is produced by evaporating or precipitating a solution of various salts such as acetates and nitrates mixed at the same ratio, and then calcining the solution. In actual use, this catalyst powder was mixed with alumina sol, silica sol, etc. and supported on a heat-resistant material such as cordierite, alumina, silica, mullite, etc. formed into a honeycomb shape to form a catalyst. For this reason, there is always the problem of peeling off as a catalyst, and from the viewpoint of catalytic activity, the alumina sol or silica sol added as a binder blocks the catalyst powder, resulting in a decrease in activity.In addition, in the powder method, the surface area of the catalyst carrier cannot be used effectively. However, there was a problem in that only those with a small specific surface area could be obtained. Therefore, in order to solve these problems, we conducted a study to create a perovskite-type crystal structure of fine particles with a high specific surface area directly from a solution on a catalyst carrier, and as a result, the following problems became clear. That is, in order to create a perovskite structure, it is necessary to sinter at a temperature of at least 700°C, but under such temperature conditions, the components of the support and the supported metal will react and the desired perovskite structure will not be obtained. The problem is that there is no. For example, when cobalt or nickel is used as the transition metal at the B site,
When alumina is used as a carrier, cobalt aluminate (CoAI204), nickel aluminate (NiAI
204) and the desired perovskite is not produced. The present invention is thus intended to solve the problems encountered in producing highly active perovskite catalysts by the direct support method.

問題点を解決するための手段 このように直接担持にまつわる問題を解決する為に、ア
ルミナ、シリカ、コージライト等の無機耐熱材料を母材
とする触媒担体に鉄酸化物をプレコートし、その上にペ
ロブスカイト型構造を有する複合酸化物を担持するとい
う構成を採用した。
Means to Solve the Problems In order to solve the problems associated with direct support, iron oxide is pre-coated on a catalyst support whose base material is an inorganic heat-resistant material such as alumina, silica, cordierite, etc. A structure in which a complex oxide with a perovskite structure is supported was adopted.

作   用 アルミナ、シリカ、コージライト等の無機耐熱材料を母
材とする触媒担体上に鉄の酸化物をプレコートするとペ
ロブスカイト構造を構成しようとする遷移金属元素と担
体との相互作用がなく活性の高いペロプスカイト型複合
酸化物を触媒担体上に作製することが出来た。
Function: When iron oxide is precoated on a catalyst carrier made of an inorganic heat-resistant material such as alumina, silica, cordierite, etc., there is no interaction between the transition metal elements that try to form a perovskite structure and the carrier, resulting in high activity. We were able to fabricate a perovskite-type composite oxide on a catalyst carrier.

実施例 以下本発明を用いて調製した触媒の実施例について述べ
る。
Examples Examples of catalysts prepared using the present invention will be described below.

゛(実施例1) コージライト1yに硝酸鉄の水溶液(0,2y/100
mf)を25ぜ注入し、−昼夜放置した後、湯浴により
乾燥した。乾燥後、400℃で分解後、900°Cで1
時間焼成した。焼成後SrとCOのモル比が1=1にな
るように混合した硝酸塩溶液に含浸、乾燥を繰り返し全
体として8W%担持した後、空気中850°C5時間焼
成し触媒とした。
(Example 1) An aqueous solution of iron nitrate (0.2y/100
After injecting 25 times of mf) and leaving it for day and night, it was dried in a hot water bath. After drying, after decomposition at 400℃, 1 at 900℃
Baked for an hour. After calcination, it was impregnated with a nitrate solution mixed so that the molar ratio of Sr and CO was 1=1, and dried to obtain a total loading of 8 W%, and then calcined in air at 850° C. for 5 hours to obtain a catalyst.

(実施例2) 実施例1と同様傾コージライト担体の上に鉄の酸化物を
7W%担持した後、MgとCOのモル比が1:1になる
ように混合した硝酸塩溶液に含浸、乾燥を繰り返し全体
として8W%担持した後、空気中850°C5時間焼成
し触媒とした。
(Example 2) As in Example 1, 7 W% of iron oxide was supported on a tilted cordierite support, then impregnated with a nitrate solution containing Mg and CO mixed at a molar ratio of 1:1, and dried. After repeating this to support a total of 8 W%, the catalyst was calcined at 850° C. for 5 hours in air to obtain a catalyst.

上記実施例1の触媒を用いてプロパンの酸化活性の検討
を行った所、プレコートしなかった触媒に比較し重量当
りの反応速度で約2倍の活性が得られた。
When the propane oxidation activity was investigated using the catalyst of Example 1, it was found that the reaction rate per weight was about twice as high as that of the non-precoated catalyst.

発明の効果 以上のように本発明によりコージライト、アルミナ、シ
リカ等無機耐熱材料を母材とする触媒担体にプレコート
として鉄の酸化物を担持後ペロプスカイト型複合酸化物
を合成するように量論比を調節した酢酸塩、硝酸塩等の
溶液を含浸、燃成して酸化触媒を調製した結果、次のよ
うな効果が得られた。
Effects of the Invention As described above, according to the present invention, iron oxide is precoated on a catalyst carrier having an inorganic heat-resistant material such as cordierite, alumina, or silica as a base material, and then a perovskite-type composite oxide is synthesized. As a result of preparing an oxidation catalyst by impregnating and burning a solution of acetate, nitrate, etc. with adjusted ratios, the following effects were obtained.

プレコートとしての鉄元素はコージライト、アルミナと
反応し一部スピネル化合物を作っているものと思われる
が、大部分は鉄の酸化物として存在する。この結果、そ
の上にアルカリ土類金属と遷移金属により完全なペロブ
スカイト構造を作ることが出来る。さらに担体としてシ
リカを用いた場合にはプレコートしないとアルカリ土類
金属と反応しケイ素化物を作るが、鉄をプレコートする
とそのようなことがなくペロプスカイト構造を得ること
が出来る。このように直接担持法により作製することに
より従来の粉末法のように剥離の問題もなく、あるいは
助材として使用していたアルミナゾル、シリカゾルによ
る触媒粉末の遮蔽という問題もなく高活性な触媒を得る
ことが出来た。
It is thought that the iron element as a precoat reacts with cordierite and alumina to partially form a spinel compound, but the majority exists as iron oxide. As a result, a complete perovskite structure can be created on top of the alkaline earth metal and transition metal. Furthermore, when silica is used as a carrier, if it is not precoated, it will react with the alkaline earth metal to form a silicide, but if iron is precoated, this will not occur and a perovskite structure can be obtained. By using this direct support method, a highly active catalyst can be obtained without the problems of peeling as with conventional powder methods, or of shielding the catalyst powder with alumina sol or silica sol used as auxiliary materials. I was able to do it.

Claims (1)

【特許請求の範囲】[Claims] アルミナ、シリカ、コージライト等の無機耐熱材料をハ
ニカム状、発泡セラミック状あるいは布状に構成したも
のを触媒担体とし、前記担体上に鉄元素を1〜15重量
パーセントの範囲で担持した後、結晶構造式ABO_3
であらわされるペロブスカイト型複合酸化物をAサイト
をストロンチウム、カルシウム等のアルカリ土類金属か
ら少なくとも一種の元素を選択し、Bサイトをコバルト
元素で構成し、ペロブスカイト型複合酸化物としての担
持量が1〜15重量パーセントの範囲で担持する構成と
したペロブスカイト型酸化触媒。
The catalyst carrier is made of an inorganic heat-resistant material such as alumina, silica, cordierite, etc. in the shape of a honeycomb, foamed ceramic, or cloth. After supporting the iron element in a range of 1 to 15% by weight on the carrier, Structural formula ABO_3
The perovskite type composite oxide represented by: A site is composed of at least one element selected from alkaline earth metals such as strontium and calcium, B site is composed of cobalt element, and the supported amount as perovskite type composite oxide is 1. A perovskite-type oxidation catalyst configured to be supported in a range of 15% by weight.
JP61066332A 1986-03-25 1986-03-25 Perovskite type oxidation catalyst Expired - Fee Related JPH0710351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61066332A JPH0710351B2 (en) 1986-03-25 1986-03-25 Perovskite type oxidation catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61066332A JPH0710351B2 (en) 1986-03-25 1986-03-25 Perovskite type oxidation catalyst

Publications (2)

Publication Number Publication Date
JPS62225247A true JPS62225247A (en) 1987-10-03
JPH0710351B2 JPH0710351B2 (en) 1995-02-08

Family

ID=13312786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61066332A Expired - Fee Related JPH0710351B2 (en) 1986-03-25 1986-03-25 Perovskite type oxidation catalyst

Country Status (1)

Country Link
JP (1) JPH0710351B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103933991A (en) * 2014-04-27 2014-07-23 东北石油大学 Perovskite type composite oxide catalyst for producing controllable synthesis gas
CN103962142A (en) * 2014-04-27 2014-08-06 东北石油大学 Preparation method for core-shell perovskite-type catalyst for preparing methanol through methane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103933991A (en) * 2014-04-27 2014-07-23 东北石油大学 Perovskite type composite oxide catalyst for producing controllable synthesis gas
CN103962142A (en) * 2014-04-27 2014-08-06 东北石油大学 Preparation method for core-shell perovskite-type catalyst for preparing methanol through methane

Also Published As

Publication number Publication date
JPH0710351B2 (en) 1995-02-08

Similar Documents

Publication Publication Date Title
JP3858625B2 (en) Composite oxide and its production method, exhaust gas purification catalyst and its production method
US7622418B2 (en) Method for producing exhaust gas purifying catalyst
CN101356005B (en) Catalyst for exhaust gas purification and exhaust gas purification catalyst member
JPH09187649A (en) Catalytic combustion method including consecutive plural catalytic zone
JPS63162043A (en) Catalyst for cleaning exhaust gas
JP2004041868A (en) Exhaust gas purifying catalyst
JPH0586258B2 (en)
JPS61283348A (en) Oxidizing catalyst
JPH0368451A (en) Production of catalyst for purification of exhaust gas
JPH0531367A (en) Catalyst for exhaust gas purification
JP4771681B2 (en) Method for producing noble metal-containing heat-resistant oxide
JP2930975B2 (en) Method for producing combustion catalyst
JP4263542B2 (en) Method for producing exhaust gas purification catalyst
JPS62221448A (en) Production of oxidizing catalyst
JPS60238146A (en) Heat resistant carrier composition
JPH0820054B2 (en) Catalytic combustion method of combustible gas
JPS62225247A (en) Perovskite type oxidation catalyst
JPS63305938A (en) Catalyst for purifying exhaust gas
JP7355775B2 (en) Exhaust gas purification catalyst
JPS63116742A (en) Catalyst for purifying exhaust gas
JP2000051700A (en) Exhaust emission purifying catalyst and its production
JP4203445B2 (en) K2NiF4 type composite oxide production method, exhaust gas purification catalyst, and production method thereof
JPS6022929A (en) Heat resistant carrier for catalyst
JP3270072B2 (en) Combustion catalyst
JPH0653228B2 (en) Complex oxide catalyst

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees