JPS62225027A - Variable frequency divider - Google Patents

Variable frequency divider

Info

Publication number
JPS62225027A
JPS62225027A JP6710386A JP6710386A JPS62225027A JP S62225027 A JPS62225027 A JP S62225027A JP 6710386 A JP6710386 A JP 6710386A JP 6710386 A JP6710386 A JP 6710386A JP S62225027 A JPS62225027 A JP S62225027A
Authority
JP
Japan
Prior art keywords
output
latch circuit
subtraction
circuit
addition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6710386A
Other languages
Japanese (ja)
Inventor
Minoru Sasaki
実 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6710386A priority Critical patent/JPS62225027A/en
Publication of JPS62225027A publication Critical patent/JPS62225027A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manipulation Of Pulses (AREA)

Abstract

PURPOSE:To obtain an optional frequency division output signal stable at all times with a simple circuit by using a triangle wave whose frequency is equal to the frequency division, smapling and holding it by a clock pulse, converting the result into an analog signal and obtaining a desired output via an LPF. CONSTITUTION:In obtaining a 4/30 frequency division output of an input clock pulse CP, when an output of a latch circuit 14 is zero at first, an addend 4 is given to an addition/subtraction circuit 11 to apply the addition of 0+4=4. Then 4 is added to the result of addition at each arrival of the pulse CP and when the result reaches the relation of 12+4=16, since it exceeds 15, an overflow signal Cl is outputted to bring an addition/subtraction circuit 12 into the subtraction mode, a minuend 30 is inputted to the circuit 12 to apply subtraction of 30-16=14. In such a case, the circuit 11 is brought into the subtraction mode by an output Q of the circuit 14 to output the result of 14&-4=10 and when the result reaches '2', an underflow signal C2 is outputted, '0' is inputted to the circuit 12 to apapaly subtraction of 0-(&-2)=2 and the state is restored to the initial state. An output of a latch circuit 13 is inputted to an LPF 18 via a ROM 16 and a D/A converter 17 and a desired frequency division output signal is obtained from the output.

Description

【発明の詳細な説明】 〔発明の技術分野〕 〔発明の技術的背景とその問題点〕 従来分周回路は第8図に示す如く入力信号fin(方形
波)をプリップフロップに入力し%分周出力を得るのが
一般である。またフリップフロップを図の如く複数段縦
続接属することにより3AMの出力を得ることができる
。その他に出力のデユーティは50%でないが1/N(
Nlは2以上の整数)の分周回路も多数考案されている
5一方、M/N(但し822M)の如き任意の分周比の
分周回路は、M/Nに最も近い1/(整数)の分周回路
全作成しその分周出力によシ入カクロックパルスに一定
数のパルスを挿入したり1間引い念シすることで所望の
出力全書ている。しかしながらこの方法では出力のデユ
ーティは全くでたらめで、ただ単に一定時間内のパルス
数が入力に比べM/N個になったにすぎない。
[Detailed Description of the Invention] [Technical Field of the Invention] [Technical Background of the Invention and Problems Therewith] A conventional frequency divider circuit inputs an input signal fin (square wave) to a flip-flop and divides it into percentages as shown in FIG. It is common to obtain the circumferential output. Further, by cascading multiple stages of flip-flops as shown in the figure, an output of 3 AM can be obtained. In addition, the output duty is not 50% but 1/N (
Many frequency divider circuits have been devised where Nl is an integer greater than or equal to 2.5 On the other hand, a frequency divider circuit with an arbitrary frequency division ratio such as M/N (however, 822M) has been devised using 1/(an integer ), and by inserting a certain number of pulses into the input clock pulse or thinning it out by one, the desired output can be written using the divided output. However, in this method, the output duty is completely random, and the number of pulses within a certain period of time is simply M/N compared to the input.

従来この様な目的には第9図に示す様にPLL(7エー
ズ・ロックド・ループ)を使用していた。
Conventionally, a PLL (7A locked loop) has been used for this purpose as shown in FIG.

すなわち、入力周波数Thl/Hに1出力周波数を1/
Mに分周し両分部に出力を位相比較器(P、D)に入力
しP、D出力′ltフィルタ(L、P、F)全通しVC
O(電圧制御発振器)に入力し出力周波数foutが入
力M/Nとなる様にループ制御を行う。
In other words, 1 output frequency is 1/1/H to input frequency Thl/H.
Divide the frequency into M, input the outputs of both divisions to the phase comparator (P, D), P, D output 'lt filter (L, P, F) all through VC
0 (voltage controlled oscillator) and loop control is performed so that the output frequency fout becomes the input M/N.

しかしながらこの方法ではPLLの引込み時間。However, with this method, the PLL pull-in time.

プルインレンジ、ロックレンジ等により出力の周波数の
安定数およびジッタ等に問題が起ることが多い。
Problems with output frequency stability and jitter often occur due to pull-in ranges, lock ranges, etc.

〔発明の目的〕[Purpose of the invention]

本発明は上記問題点を解決すべくなされたものでその目
的は常に安定してM/Hの分局出力全書〔発明の概要〕 本発明はデジタル値で設定された整数M(M≧0)と、
デジタル値をクロックパルスに同期してサンプル・ホー
ルドするラッチ回路の出力とを加算し。
The present invention has been made to solve the above-mentioned problems, and its purpose is to always stably output all M/H branch outputs [Summary of the Invention] ,
The output of the latch circuit that samples and holds the digital value in synchronization with the clock pulse is added.

この加算結果をクロックパルスに同期して前記ラッチ回
路でホールドすることをクロックパルス毎にくり返し、
前記加算結果(N3)が所定値(Nl )以上となっ念
場合、2×N1から前記加算結果(N3)を減算しこの
減算結果をクロックに同期して前記ラッチ回路(ホール
ドし、しかる後前記ラッチ回路からの出力から前記整数
(M)を減算し、この減算結果を前記ラッチ回路に入力
することをクロックパルス入力毎にくり返し、この減算
結果(N4)が所定値(N2)以下となっ念場合前記2
×N2から前記減算結果(N4)Th減算し、この減算
結果をクロックに同期し前記ラッチ回路にホールドし、
しかる後前記ラッチ回路からの出力と前記整数Mとを加
算することヲ<シ返し、前記ラッチ回路から出力される
デジタル値をD−A変換器に入力することによりアナロ
グ値に変換し、このアナログ値をフィルタにより前記り
iツクパルスのM/((2(〔発明の効果〕 本発明によればM/Nなる任意の分周比の出力が簡単な
回路で安定して得られる。
Holding this addition result in the latch circuit in synchronization with the clock pulse is repeated for each clock pulse,
If the addition result (N3) is greater than or equal to the predetermined value (Nl), the addition result (N3) is subtracted from 2×N1, and this subtraction result is held in the latch circuit (in synchronization with the clock). Subtracting the integer (M) from the output from the latch circuit and inputting this subtraction result to the latch circuit is repeated every time a clock pulse is input to make sure that the subtraction result (N4) is less than or equal to a predetermined value (N2). Case 2 above
subtracting the subtraction result (N4) Th from ×N2, and holding this subtraction result in the latch circuit in synchronization with the clock;
Thereafter, the output from the latch circuit and the integer M are added together, and the digital value output from the latch circuit is input to a DA converter to convert it into an analog value. According to the present invention, an output of an arbitrary frequency division ratio of M/N can be stably obtained by using a simple circuit.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を図面を参照して詳述する。 An embodiment of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の一実施例であり入力の4/3゜分周の
出力を得る場合を例にとり説明する。分周すべき入力f
inはクロックパルスとして各回路に供給される。第1
の加減回路11の被加数はラッチ回路13の出力Dou
tが加えられ、加数は分周比の分子の数Dioが与えら
れる(この場合4)、初期状態としてラッチ回路13よ
シの出力はDo u t =0とする。まず第1の加減
算回路11にてDinとDoutが加算されその出力は
0+4=4となる第1の加減算回路の出力が15以上な
らOverflowC1が出力されO以下ならUnde
rflaw C2が出力される。上記第1ステツプでは
0(4(15であるからCI、C2共に出力されない、
第2の加減算回路12の被加算入力Aには第1の加減算
回路11の加算出力が入力され、加算入力はOであシそ
の出力は第1の加算出力と同一となり、クロックパルス
Cpによりラッチ回路13で第2の加減算回路12の出
力結果を保持させDoutとする(この場合4)。
FIG. 1 shows an embodiment of the present invention, which will be explained by taking as an example a case where an output is obtained by dividing the input frequency by 4/3°. Input f to be divided
in is supplied to each circuit as a clock pulse. 1st
The summand of the adder/subtractor 11 is the output Dou of the latch circuit 13.
t is added, and the addend is given the number Dio of the numerator of the frequency division ratio (4 in this case). As an initial state, the output of the latch circuit 13 is set to Do u t =0. First, Din and Dout are added in the first addition/subtraction circuit 11, and the output is 0+4=4.If the output of the first addition/subtraction circuit is 15 or more, OverflowC1 is output, and if it is O or less, Unde is output.
rflow C2 is output. In the first step above, since it is 0 (4 (15), neither CI nor C2 is output.
The addition output of the first addition/subtraction circuit 11 is input to the augend input A of the second addition/subtraction circuit 12, and the addition input is O, and its output is the same as the first addition output, and is latched by the clock pulse Cp. The circuit 13 holds the output result of the second addition/subtraction circuit 12 and sets it as Dout (4 in this case).

第2のステップでは加減算回路11の出力はDout 
+Din=4 + 4= 8となり引き続くクロックパ
ルスによりラッチ回路は8を保持しDout=8となる
In the second step, the output of the addition/subtraction circuit 11 is Dout
+Din=4+4=8, and with subsequent clock pulses, the latch circuit holds 8 and Dout=8.

同様に第3のステップではDout=8+4=12とな
る。
Similarly, in the third step, Dout=8+4=12.

第4ステツプでは第1の加減算回路11の出力は12+
4に16となt) OverflowC1が出力される
In the fourth step, the output of the first addition/subtraction circuit 11 is 12+
4 to 16) OverflowC1 is output.

C1出力はゲート回路15を経て第2の加減算回路12
を減算モードとする。一方C1・出力によシ第2の加減
算回路12被減算数として分周の分母=30が入力され
る。第2の加減算回路12出力は3O−16=14とな
る。一方c1出力はゲート回路15により記憶され出力
p−6得る。引き続くクロックパルスによりラッチ回路
14によシ出力Q’を得る。第5ステツプでは第1の加
減算回路11はQにより減算モードとなすDouをDi
nを出力する(14−4=10)。C1もC2も出力さ
れず第2の加減算回路12は加算モードとジOが加算さ
れその出力は10となpラッチ回路13によりDout
=10となる。同様に第6ステツプではDout=10
 4=6第7ステツプではDout=6−4=2となる
。第8ステツプでは第1の加減算回路11出力は2−4
=−2となりUnderfluw C2が出力されゲー
ト回路15によシ第2の加減算回路12は減算モードと
なシまた被減算数としてOが入力される。従って箒2の
加減算回路は12出力は0−(−2)=2となり、引き
続くクロックパルスによ5Dout=2となる。一方C
2によシゲート回路15の出力Pはリセットされ、クロ
ックパルスにより出力Qは初期状態に復帰する。第9ス
テツプは第1ステツプに戻りDout=2+4=6とな
る。以後同様に加減算をくシ返し順次Doutを得る。
The C1 output passes through the gate circuit 15 to the second addition/subtraction circuit 12.
is in subtraction mode. On the other hand, the denominator of frequency division=30 is inputted to the output of C1 as the subtractable number of the second addition/subtraction circuit 12. The output of the second addition/subtraction circuit 12 is 3O-16=14. On the other hand, the c1 output is stored by the gate circuit 15 and an output p-6 is obtained. With subsequent clock pulses, the latch circuit 14 obtains an output Q'. In the fifth step, the first addition/subtraction circuit 11 converts Dou into subtraction mode by Q into Di.
Output n (14-4=10). Neither C1 nor C2 is output, and the second addition/subtraction circuit 12 adds the addition mode and diO, and its output becomes 10, and the p latch circuit 13 outputs Dout.
=10. Similarly, in the sixth step, Dout=10
4=6 In the seventh step, Dout=6-4=2. In the eighth step, the output of the first addition/subtraction circuit 11 is 2-4.
=-2, Underfluw C2 is output, and the second addition/subtraction circuit 12 is in the subtraction mode and O is input as the subtractable number. Therefore, the 12 output of the addition/subtraction circuit of the broom 2 becomes 0-(-2)=2, and the subsequent clock pulse makes 5Dout=2. On the other hand, C
2, the output P of the switching gate circuit 15 is reset, and the clock pulse returns the output Q to the initial state. In the ninth step, the process returns to the first step and becomes Dout=2+4=6. Thereafter, addition and subtraction are repeated in the same manner to sequentially obtain Dout.

以上の動作タイミングを第2図を用いて示す。The above operation timing is shown using FIG. 2.

まず第2図(a)においてDoutは入力クロックパル
スが印加されるたびに4ずつ加減算ヲ<り返し、振幅が
151周波数がクロックパルスの4/3oである三角波
をクロックパルスでサンプリングしたものと等しくなる
。Doutは第1図のD−A変換器17によりアナログ
信号に変換され、ローパスフィルタ(あるいはバンドパ
スフィルタ)18により基本波を得る。フィルタ出力か
らはクロックパルスの4/30なる正弦波が得られる。
First, in Figure 2 (a), Dout repeats addition and subtraction by 4 each time an input clock pulse is applied, and is equal to the sampled triangular wave with an amplitude of 151 and a frequency of 4/3 of the clock pulse using a clock pulse. Become. Dout is converted into an analog signal by the DA converter 17 in FIG. 1, and a fundamental wave is obtained by the low-pass filter (or band-pass filter) 18. A sine wave of 4/30 of the clock pulse is obtained from the filter output.

方形波出力を得る場合はこの正弦波をコンパレータによ
シ波形整形すれば容易に得られる。上記説明では4/3
゜分周について説明したがDlnの値を変えることによ
、j70/30〜15/30の分周比が得られる、tた
加iR3を回路、ラッチ回路のビット数を増加すること
によシ各種の分局比(0〜3A)が容易に得られる。
A square wave output can be easily obtained by shaping the sine wave using a comparator. In the above explanation, 4/3
゜We have explained about frequency division, but by changing the value of Dln, a frequency division ratio of j70/30 to 15/30 can be obtained. Various branching ratios (0 to 3A) can be easily obtained.

ま次入力finがデユーティ50チの方形波であれば方
形波の立上り、立下り双方でラッチ回路を動作させれば
0〜1迄の任意の分局比が得られる。
If the secondary input fin is a square wave with a duty of 50, any division ratio between 0 and 1 can be obtained by operating the latch circuit at both the rise and fall of the square wave.

更にフィルター出力をフリップフロップ回路に入力しよ
り高い分周比の出力を得ることも可能である。
Furthermore, it is also possible to input the filter output to a flip-flop circuit to obtain an output with a higher frequency division ratio.

第1図の回路においてD−A変換器17の出力は第2図
に示す如く三角波をサンプリングし念ものであシ高周波
が多くフィルターは2次高周波以上の周波数を除去する
ものでなくてはならない。
In the circuit shown in Fig. 1, the output of the D-A converter 17 samples a triangular wave as shown in Fig. 2, and the filter has many high frequencies, so the filter must be able to remove frequencies higher than the secondary high frequency. .

Dinの値を変え出力周波数を変える場合にはフィルタ
ーの特性をその都度質えねばならず不都合である。この
様な場合には第3図に示す如くラッチ回路13とD−A
変換器17の間にROM(あるいは几AM)s 6を挿
入し三角波−8in波の変換をする。ROM16を挿入
することにより高周波の発生は抑えられフィルターL、
P、f13はナイキスト条件を満すfin/2以上全除
去するフィルターであれば良い。
When changing the value of Din and changing the output frequency, it is inconvenient that the characteristics of the filter must be evaluated each time. In such a case, the latch circuit 13 and the D-A
A ROM (or AM) s6 is inserted between the converters 17 to convert a triangular wave to an 8 inch wave. By inserting ROM16, the generation of high frequencies can be suppressed and the filter L,
P and f13 may be any filter that satisfies the Nyquist condition and completely removes fin/2 or more.

flIJ4図に第3図の具体的構成図上示す、同一機能
ブロックは同一記号を用いている。第1.第2の加減算
回路(11,12) 12は6ビツトのものを用い第1
の加減算回路11の5ビツト 出力1kQverfln
w出力とし、6ビツト f Underf low出力
として用い4.Dinは4すなわちバイナリ−で100
″を入力する。加減算回路11.12のコントロール端
子CがHルベルとなると2の補数による減算モードとな
りLoレベルで加算モードである。上述のゲート回路1
5は図に示す様に0verf low、Underfl
ow出力を入力とするEX−OR2G 、 AND 2
1 、0R23とRSラッチ回路23により簡単に青酸
できる。
The same symbols are used for the same functional blocks shown in the detailed configuration diagram of FIG. 3 in FIG. flIJ4. 1st. Second addition/subtraction circuit (11, 12) 12 is a 6-bit circuit;
5-bit output of addition/subtraction circuit 11 1kQverfln
w output and used as 6-bit f Underf low output4. Din is 4 or 100 in binary
'' is input. When the control terminals C of the addition/subtraction circuits 11 and 12 become H level, the subtraction mode is based on two's complement, and when it is at Lo level, it is the addition mode. The gate circuit 1 described above
5 is 0verf low, Underfl as shown in the figure.
EX-OR2G with ow output as input, AND 2
1. Hydrocyanic acid can be easily generated using 0R23 and the RS latch circuit 23.

Overflow出力によシ第2の加減算回路12は減
算モードとなシ被減数として30.バイナリ−で” 1
1110”がEX−0几20により与えられる。Ove
 rflow出力が無いとき、すなわちFX−OR20
がLOレベルのときは第2の加減算回路12被減数入力
は全て0となる。ROMt e、は16X4=64ビツ
トのメモリーで良くま7t、  D、/Aも4bit精
度のもので良い。
The overflow output causes the second addition/subtraction circuit 12 to enter the subtraction mode and outputs 30. Binary” 1
1110'' is given by EX-0 几20.Ove
When there is no rflow output, that is, FX-OR20
When is at the LO level, all the subtractive inputs of the second addition/subtraction circuit 12 become 0. The ROMte may be a 16×4=64-bit memory, and the ROMt, D, and /A may also be 4-bit precision ones.

第5図に第4図の動作タイミングチャートを示す、上述
のラッチ13の出力は振幅15.周波数−finの三角
波tanでサンプルし念ものと等しくまた上述のROM
16の出力は振幅15周波数↓finの正弦波tfin
でサンプルしたものと等しくなる、又、上述のfin、
EX−OR20、AND21 。
FIG. 5 shows the operation timing chart of FIG. 4. The output of the latch 13 described above has an amplitude of 15. Sampled with a triangular wave tan of frequency -fin, the same as the above ROM
The output of 16 is a sine wave tfin with amplitude 15 frequency ↓fin
and the above fin,
EX-OR20, AND21.

0R22,ラッチ23 、24各々の出力信号のタイミ
ングは図に示す通りである。
The timing of each output signal of 0R22, latches 23 and 24 is as shown in the figure.

第6図は上述の加算器25のみを使用し加減算回路を実
現する場合の一例でありSWがHiかり。
FIG. 6 is an example in which an addition/subtraction circuit is implemented using only the adder 25 described above, and SW is Hi.

で加算器出力はA−BあるいはA+Bの加減算結果が得
られる。
As the adder output, the addition/subtraction result of A-B or A+B can be obtained.

第7図は第1図の他の具体的構成図であり。FIG. 7 is another specific configuration diagram of FIG. 1.

Overflow、Underflowiデジタル比較
器31 、32によシ判定している。すなわちOver
flow出力は比較器32にて設定値N1以上で出力さ
れ、 Underflowは比較器31にて設定値N2
以下で出力される。例えば、N1=13.N2:2と設
定し第2の加減算回路12a被減数として4あるいは2
6を与えればラッチ回路13は2−13の間をとる三角
波をサンプルしたものと等しくなJ、D−A変換器17
゜L、P、F 18通過後の出力は−finなる正弦波
が得られる、もちろんROM16の内容はデータが2〜
13の範囲で変化する時最適正弦波を出力する様に変更
される。N1=15.Nz=:0とすれば第4図の′例
と同一出力が得られる。
Overflow and Underflow digital comparators 31 and 32 are used to determine whether the flow is overflow or underflow. That is, Over
The flow output is outputted by the comparator 32 at the set value N1 or more, and the Underflow is outputted by the comparator 31 at the set value N2.
The following is output. For example, N1=13. N2: set to 2, and the second addition/subtraction circuit 12a sets 4 or 2 as the minuend.
If 6 is given, the latch circuit 13 is equivalent to a sampled triangular wave between 2 and 13, and the DA converter 17
゜The output after passing through L, P, F 18 is a sine wave called -fin.Of course, the contents of ROM 16 are data 2~
It is changed so that the optimum sine wave is output when changing within the range of 13. N1=15. If Nz=:0, the same output as the example '' in FIG. 4 can be obtained.

以上Dinを4ビツト、加減算回路を6ビツト精度、R
OM、D/A変換回路等を4ビット精度で説明したがビ
ット数を拡張すれば素子化誤差が減少し周波数精度が向
上する。例えばDin を8ビツトとすれば加減算回路
を10ビツトとしROM、A−A変換器等を8ビツトと
すれば良い。
Above, Din is 4 bits, addition/subtraction circuit is 6 bits precision, R
Although the OM, D/A conversion circuit, etc. have been described with 4-bit precision, expanding the number of bits will reduce deviceization errors and improve frequency precision. For example, if Din is 8 bits, the addition/subtraction circuit may be 10 bits, and the ROM, A-A converter, etc. may be 8 bits.

以上説明した様に本発明によればM/N(M≦N/2)
なる任意の分局比の出力が簡尋な回路で得られ、無調整
であり分周比もデジタル値で設定でき、また変更も容易
であり、長期的変動も無い。
As explained above, according to the present invention, M/N (M≦N/2)
An output with an arbitrary division ratio can be obtained with a simple circuit, no adjustment is required, the division ratio can be set as a digital value, it can be easily changed, and there is no long-term fluctuation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る原理図、第2図は第1図を説明す
るためのタイミングチャート、第3図は本発明に係る実
施例の構成図、第4図は本発明に係る実施例の回路構成
図、第5図は第4図を説明するためのタイミングチャー
ト、第6図は加算器の構成図、第7図は本発明に係る実
施例の構成図、第8図は外周回路のブロック図、第9図
は従来のPLIe用いた分周回路のブロック図である。 ブシクtV人77A 第  6 図
FIG. 1 is a principle diagram of the present invention, FIG. 2 is a timing chart for explaining FIG. 1, FIG. 3 is a configuration diagram of an embodiment of the present invention, and FIG. 4 is an embodiment of the present invention. 5 is a timing chart for explaining FIG. 4, FIG. 6 is a configuration diagram of an adder, FIG. 7 is a configuration diagram of an embodiment according to the present invention, and FIG. 8 is an outer peripheral circuit. FIG. 9 is a block diagram of a conventional frequency dividing circuit using PLIe. Busik tV person 77A Figure 6

Claims (1)

【特許請求の範囲】 1)順次入力されるデジタル値で設定された整数M(M
≧0)と、デジタル値をクロックパルスに同期してサン
プル・ホールドするラッチ回路の出力とを加算し、この
加算出力をクロックパルスに同期して前記ラッチ回路で
ホールドすることをクロックパルス毎にくり返し、前記
加算出力(N_3)が所定値(N_1)以上となった場
合、2×N_1から前記加算出力(N_3)と減算し、
この減算結果をクロックに同期して前記ラッチ回路にホ
ールドし、しかる後、前記ラッチ回路からの出力から前
記整数(M)を減算し、この減算出力を前記ラッチ回路
に入力することをクロックパルス入力毎にくり返し、こ
の減算出力(N_4)が所定値(N_2)以下となった
場合前記2×N_2から前記減算出力(N_4)を減算
し、この減算出力をクロックに同期し前記ラッチ回路に
ホールドし、しかる後前記ラッチ回路から出力されるデ
ジタル値をD−A変換器に入力することによりアナログ
値に変換し、このアナログ値をフィルタにより前記クロ
ックパルスのM/{3(N_1−N_2)}(M≦N_
1−N_2)の分周出力信号を得る可変分周器。 2)ラッチ回路からの出力されるデジタル値をメモリに
よりデータ変換を行った後デジタルアナログ変換しこの
デジタルアナログ出力を前記クロックパルスの1/2以
下の周波数を通過させるローパスフィルタを使用し分周
出力信号を得ることを特徴とする可変分周器。 3)所定値(N_1)、(N_2)がN_1=2^k−
1(k>0)、N_2=0でかつ整数(M)を2進数の
Kビットで表現されるとき、前記加減算回路をK+2ビ
ット演算とし、加算結果(N_3)のK+1ビット目が
“1”、K+2ビット目が0となったら2(2^k1)
−N_3をラッチ回路にホールトし、以後ラッチ回路出
力より2の補数により整数(M)を2進法で減算し、減
算出力(N_4)のK+1ビット目、K+2ビット目が
共に“1”となったら0−N_4をラッチ回路にホール
ドし、しかる後ラッチ回路からの出力と整数(M)を2
進法で加算し、ラッチ回路からの出力をアドレスとする
ROMあるいはRAMのデータ出力をデジタルアナログ
変換しローパスフィルタにより分周出力を得ることを特
徴とする特許請求の範囲第1項記載の可変分周器。
[Claims] 1) An integer M (M
≧0) and the output of a latch circuit that samples and holds digital values in synchronization with clock pulses, and this addition output is held in the latch circuit in synchronization with clock pulses, which is repeated every clock pulse. , if the addition output (N_3) is equal to or greater than a predetermined value (N_1), subtract the addition output (N_3) from 2×N_1;
This subtraction result is held in the latch circuit in synchronization with the clock, and then the integer (M) is subtracted from the output from the latch circuit, and a clock pulse is input to input this subtraction output to the latch circuit. If the subtraction output (N_4) becomes less than a predetermined value (N_2), the subtraction output (N_4) is subtracted from the 2×N_2, and this subtraction output is synchronized with the clock and held in the latch circuit. , After that, the digital value output from the latch circuit is input to a DA converter to convert it into an analog value, and this analog value is converted to the clock pulse by M/{3(N_1-N_2)}( M≦N_
A variable frequency divider that obtains a divided output signal of 1-N_2). 2) Data conversion is performed on the digital value output from the latch circuit using a memory, and then digital-to-analog conversion is performed. This digital-to-analog output is divided and output using a low-pass filter that passes a frequency of 1/2 or less of the clock pulse. A variable frequency divider characterized by obtaining a signal. 3) The predetermined values (N_1) and (N_2) are N_1=2^k-
1 (k>0), N_2=0, and when the integer (M) is expressed by K bits of binary number, the addition/subtraction circuit is used as a K+2 bit operation, and the K+1 bit of the addition result (N_3) is "1". , if the K+2nd bit becomes 0, 2(2^k1)
-N_3 is held in the latch circuit, and after that, the integer (M) is subtracted from the latch circuit output using two's complement in binary notation, and both the K+1 bit and K+2 bit of the subtraction output (N_4) become "1". Then hold 0-N_4 in the latch circuit, and then convert the output from the latch circuit and the integer (M) to 2.
The variable component according to claim 1, wherein data output from a ROM or RAM is added in base format, and the data output from a ROM or RAM using an output from a latch circuit as an address is converted into digital/analog to obtain a frequency-divided output using a low-pass filter. Peripheral organs.
JP6710386A 1986-03-27 1986-03-27 Variable frequency divider Pending JPS62225027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6710386A JPS62225027A (en) 1986-03-27 1986-03-27 Variable frequency divider

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6710386A JPS62225027A (en) 1986-03-27 1986-03-27 Variable frequency divider

Publications (1)

Publication Number Publication Date
JPS62225027A true JPS62225027A (en) 1987-10-03

Family

ID=13335217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6710386A Pending JPS62225027A (en) 1986-03-27 1986-03-27 Variable frequency divider

Country Status (1)

Country Link
JP (1) JPS62225027A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0296429A (en) * 1988-09-30 1990-04-09 Nippon Seiki Co Ltd Digital frequency divider
JPH02148913A (en) * 1988-11-29 1990-06-07 Nippon Seiki Co Ltd Digital frequency divider
JPH045726U (en) * 1990-05-07 1992-01-20
JP2005198296A (en) * 2003-12-29 2005-07-21 Teradyne Inc Multi-stage numeric counter oscillator
KR101180895B1 (en) 2004-11-24 2012-09-07 소니 주식회사 Clock frequency divider circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0296429A (en) * 1988-09-30 1990-04-09 Nippon Seiki Co Ltd Digital frequency divider
JPH02148913A (en) * 1988-11-29 1990-06-07 Nippon Seiki Co Ltd Digital frequency divider
JPH045726U (en) * 1990-05-07 1992-01-20
JP2005198296A (en) * 2003-12-29 2005-07-21 Teradyne Inc Multi-stage numeric counter oscillator
KR101180895B1 (en) 2004-11-24 2012-09-07 소니 주식회사 Clock frequency divider circuit

Similar Documents

Publication Publication Date Title
KR102656504B1 (en) High linearity phase interpolator
US4933890A (en) Digital frequency synthesizer
JPH08321753A (en) Delayed clock generating circuit
US6147632A (en) Sampling frequency conversion apparatus and fractional frequency dividing apparatus for sampling frequency conversion
EP1311935A2 (en) Noise-shaped digital frequency synthesis
US5546032A (en) Clock signal regeneration method and apparatus
WO1990012451A1 (en) Frequency modulator
US6169504B1 (en) Device and method for converting analog signal to digital signal using interleaving sampling
JPS62225027A (en) Variable frequency divider
JPH02292911A (en) Pulse generator
Larson High speed direct digital synthesis techniques and applications
CN115145353A (en) High-frequency resolution digital sine wave generator
US6914472B2 (en) Phase modulating system
TW202046647A (en) Digital-to-analog converter device and digital-to-analog converting method
JP2001021596A (en) Comparator of binary signal and pll circuit using it
US20220038106A1 (en) Digital loop filter in all-digital phase-locked loop
JP2733528B2 (en) Partial pulse height reference frequency generator for phase locked loop
US11509314B2 (en) All-digital phase-locked loop
CN114204937B (en) Frequency divider circuit and frequency synthesizer
US5157344A (en) Digital quadrature phase detector for angle modulated signals
JPH01144818A (en) Numerical value control type oscillation circuit
JP2901113B2 (en) Sampling rate converter
JP2715211B2 (en) Partial-integral superposition type reference frequency generation method for phase locked loop, and reference frequency generation circuit thereof
JPS63185105A (en) Generating circuit for high frequency optional signal
JPS5934017B2 (en) digital phase locked loop