JPS62224414A - Control method for cooling temperature of rolled stock - Google Patents

Control method for cooling temperature of rolled stock

Info

Publication number
JPS62224414A
JPS62224414A JP61065317A JP6531786A JPS62224414A JP S62224414 A JPS62224414 A JP S62224414A JP 61065317 A JP61065317 A JP 61065317A JP 6531786 A JP6531786 A JP 6531786A JP S62224414 A JPS62224414 A JP S62224414A
Authority
JP
Japan
Prior art keywords
temperature
cooling
steel material
control
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61065317A
Other languages
Japanese (ja)
Inventor
Katsuhiko Mori
勝彦 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP61065317A priority Critical patent/JPS62224414A/en
Publication of JPS62224414A publication Critical patent/JPS62224414A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • B21B1/18Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section in a continuous process

Abstract

PURPOSE:To improve the product yield by controlling a coolant flow rate to be constant for a prescribed duration before and after the top of a rolled stock reaches a cooling zone and controlling a coolant flow rate based on a stock temp. in the inlet side of the cooling zone after the above duration. CONSTITUTION:An inlet side steel stock temp. TA is real time measured from the time when a carried inlet side steel stock 10A reaches an inlet side steel stock thermometer 14A and the measured value is sent to a controller 16. Then, a coolant flow rate is controlled to be constant for a prescribed duration by a control valve 26 through an amplifier 22 and a unit 24. The flow rate through the valve 26 is subjected to a feedforward control by a feedforward arithmetic function 18 after the duration. In that method, the temp. throughout the entire length of the stock including the top part is equalized, so that the dimensional accuracy of products is improved and variations in scale are reduced to improve the product yield.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野1 本発明は、圧延中の線材や棒鋼を水冷する際に好適な、
圧延中の圧延材に冷却帯で冷却液を供給して冷却する際
の圧延材の冷却温度制御方法の改良に関する。
[Industrial Application Field 1 The present invention is suitable for water-cooling wire rods and steel bars during rolling.
The present invention relates to an improvement in a method for controlling the cooling temperature of a rolled material when the rolled material is cooled by supplying a cooling liquid in a cooling zone.

【従来の技術] 一般に、線材や棒鋼等の鋼材を圧延する際には、仕上圧
延機を出た時点で該鋼材を水冷し、後続の工程での加工
を容易にすると共に、該鋼材のスケールの生成の抑制を
図っている。 ここで、圧延中の鋼材の水冷過程を第2図に示す水冷制
御装置に基づき説明する。圧延中における鋼材10は、
ある圧延速度Vで水冷ボックス12に侵入し、そこで冷
却水が供給されて所定の温度まで冷却され、該水冷ボッ
クス12を出て法王(?へ進む。この際、鋼材10の最
も簡便な冷却方法として、前記冷却ボックス12で鋼材
10に供給する冷却水を定流■に制御する方法がある。 なお、前記水冷ボックス12人側の鋼材を入側網材10
Aとし、出側の鋼材を出側網材10Bとして、以下説明
する。 この定流母制御は、入側鋼材温度計14Aで測定された
入側鋼材10Aの温度下へに対し、出側例材瀦度計14
Bで測定される出側網材10Bの温rg、T日が所定の
管理温度箱間に入るように圧延材10の全長に亘って定
流■の冷却水を供給して水冷する制御である。このよう
に、m材10の冷却を定流m制御した場合の入側鋼材温
度T^、冷却水の流ff1Q及び出側用材温度T日の関
係の一例を第3図(A)に示す。なお、図において、入
側i間材温度T^は符号A1、流量Qは符号Q1、出側
網材温度T日は符号B1で示す。 この場合、出側用材温度T日の変動幅(図中符号aで示
す)は、入側鋼材温度T^の変動によって決定されるた
め、前記出側招材渇麿丁日の変動幅を小さくするには限
度があり、加熱炉で前記鋼材10を均熱したり、あるい
は圧延中における入側鋼材温度T^の変動を小さくしな
ければならず、エネルギを浪費し、稼動率の低下をもた
らしてしまうという問題点を有していた。 又、前記鋼材10の他の冷却方法として、第2図におけ
る出側鋼材温度T日を出側m材温度計14Bで実時間(
リアルタイム)に測定し、該出側鋼材温度丁日が管理温
度範囲に入るように前記水冷ボックス12から供給する
水■覧を制御する、フィードバック制御を用いた方法が
ある。 しかしながら、このフィードバック制御方法においては
、入側鋼材10Δが水冷ボックス12を通過して出側鋼
材温度計148に到達するまでの時間(図において距即
tL÷圧延速度V)の分だ;プ前記鋼材10に対する冷
却制御の時期(タイミング)がずれてしまう。従って、
特に圧延速度Vが遅い場合には、正確に鋼材10の全長
の温度を均−七することが期待できず、このフィードバ
ック制御方法でも、前記定流m制御と同様に加熱炉等に
よる湿度調V等の対策を必要とするという問題点を有し
ていた。 前記の如き定流m制御やフィードバック制御の問題点を
解消する手段として、水冷ボックス12の入側で検出さ
れた温度に基づき、銅材10に供給する冷却水最を制御
する、フィードフォワード制(卸が考えられる。なお、
このフィードフォワード制御に関する技術には、既に特
開昭55−106616で提案された線材類の圧延にお
ける冷1g1ffl132制御方法がある。この方法で
は、水冷帯からの冷却水噴射聞を、該水冷帯の前段に設
けられた線材温度約検出器で検出される温度信号にC(
づさ調節している。 ここで、前記フィードフォワード制御を、第2図に示す
冷却設備で行う際においては、まず、入ff!lltM
材10Aが入側用材温度計14Aに到達した瞬間力uら
実時間で入側鋼材温rCiT^を測定し、その測定値を
調節計16に送る。この調節計16は、送られた測定値
ht +ろ水冷ボックス12で鋼材1゜に供給する冷却
水の供給タイミング及びその際必要とされる流mをフィ
ードフォワード演t’F (II能18で痺出する。そ
して、算出結果に基づき流化コントロール機能20h日
ら制御信号を出力し、ユニバーサルアンプ22で増幅さ
れた制御信号に基づきユニット24で調節弁26を駆動
することにより、入側m材10Aが入側用材温度計14
△を通過した後所定時間(図において距離LB÷圧延速
度\l)を経過して、前記水冷ボックス12に到達した
時点から水冷制御をu11始するようにし、出側m材温
度Tsが所定の管理温度範囲に入るようにする。なお、
図中28は、冷却水の流ff1Qを検出する流伍計であ
る。 このようにして用材10を全長に亘ってフィードフォワ
ード制御した場合の温度変化状況を第3図< 8’ )
に示す。図において、流mQは符号Q2で出側鋼材温度
Teは符号B2で示す。図から理解されるように、鋼材
1oの先端部を除いた以外の部分については、同図(A
)の符号B1に示す定流■制御に比べて出側鋼材温度T
日の全長における変動の幅(図中符号b)を小さく平滑
化することが可能である。 【発明が解決しようとする問題点】 しかしながら、第3図中の符号B2がら出側用材10B
の先端部の温度変動が大であることが理解され、この部
分の温度変動は、前記鋼材1oを加熱帯においてバー力
を用いて加熱制御等を行い入側鋼材温度TAの変動を小
さくしても根本的な対策とはならず、完全に解消するこ
とはできない。 又、圧延後に水冷する場合には、前記の如く出側鋼材1
0Bの先端部の温度変動が大きいと、その部分にスケー
ル不良等が発生し、製品とする際にその不良が発生した
部分をI、TI断する必要があるため、歩留りの低下を
きたしてしまうという問題点を有していた。
[Prior art] Generally, when rolling steel materials such as wire rods and steel bars, the steel materials are water-cooled upon exiting the finishing mill to facilitate processing in subsequent steps and to reduce the scale of the steel materials. The aim is to suppress the generation of Here, the water cooling process of the steel material during rolling will be explained based on the water cooling control device shown in FIG. The steel material 10 during rolling is
It enters the water-cooling box 12 at a certain rolling speed V, where cooling water is supplied and cooled to a predetermined temperature, and it exits the water-cooling box 12 and proceeds to the water cooling box 12.At this time, the simplest cooling method for the steel material 10 is There is a method in which the cooling water supplied to the steel material 10 in the cooling box 12 is controlled to a constant flow.
A, and the steel material on the exit side is assumed to be the exit side net material 10B, and the following description will be made. This constant flow mother control is performed to reduce the temperature of the inlet steel material 10A measured by the inlet steel material thermometer 14A, while the temperature of the inlet steel material 10A is
This is a control for water cooling by supplying a constant flow of cooling water to the rolled material 10 over the entire length so that the temperature rg and T of the exit net material 10B measured at B are within a predetermined control temperature box. . FIG. 3A shows an example of the relationship between the inlet steel material temperature T^, the cooling water flow ff1Q, and the outlet material temperature T when the cooling of the m material 10 is controlled with a constant flow m in this manner. In addition, in the figure, the temperature T^ of the material between the inlet side i is indicated by the symbol A1, the flow rate Q is indicated by the symbol Q1, and the temperature T of the outlet mesh material T is indicated by the symbol B1. In this case, the range of fluctuation (indicated by the symbol a in the figure) on the day when the temperature of the material for the exit side is determined is determined by the fluctuation of the temperature of the steel material on the entry side, T^, so the range of fluctuation on the day when the temperature of the material on the exit side is exhausted is reduced. There is a limit to how far the steel material 10 can be heated, and it is necessary to soak the steel material 10 in a heating furnace or to reduce fluctuations in the entrance steel material temperature T^ during rolling, which wastes energy and lowers the operating rate. It had the problem of being stored away. In addition, as another method of cooling the steel material 10, the exit side steel material temperature T in FIG. 2 is measured in real time (
There is a method using feedback control, in which the temperature of the steel material on the exit side is measured in real time and the flow of water supplied from the water cooling box 12 is controlled so that the temperature of the steel material on the exit side falls within the controlled temperature range. However, in this feedback control method, the time required for the input steel material 10Δ to pass through the water cooling box 12 and reach the exit steel material thermometer 148 (in the figure, the distance tL÷rolling speed V); The timing of cooling control for the steel material 10 is shifted. Therefore,
Especially when the rolling speed V is slow, it cannot be expected to accurately equalize the temperature over the entire length of the steel material 10, and even with this feedback control method, the humidity control V using a heating furnace etc. is similar to the constant flow m control described above. The problem was that it required countermeasures such as the following. As a means to solve the problems of constant flow m control and feedback control as described above, a feedforward system (feed forward system) which controls the amount of cooling water supplied to the copper material 10 based on the temperature detected at the inlet side of the water cooling box 12 is proposed. Wholesale is possible.In addition,
Techniques related to this feedforward control include a cold 1g1ffl132 control method for rolling wire rods, which was already proposed in Japanese Patent Laid-Open No. 55-106616. In this method, the cooling water injection from the water-cooled zone is converted into a temperature signal detected by a wire temperature sensor installed at the front stage of the water-cooled zone.
I am adjusting the amount. Here, when performing the feedforward control using the cooling equipment shown in FIG. 2, first, the input ff! lltM
The entrance steel material temperature rCiT^ is measured in real time from the instantaneous force u when the material 10A reaches the entrance material thermometer 14A, and the measured value is sent to the controller 16. This controller 16 performs a feed forward calculation t'F (in function II Then, based on the calculation result, the flow control function 20h outputs a control signal, and the control valve 26 is driven by the unit 24 based on the control signal amplified by the universal amplifier 22. 10A is the entry side material thermometer 14
The water cooling control is started from u11 when the water cooling box 12 is reached after a predetermined time (distance LB ÷ rolling speed \l in the figure) after passing through Δ, and the temperature Ts of the outlet m material is maintained at a predetermined value. Keep the temperature within the controlled temperature range. In addition,
In the figure, 28 is a flow meter that detects the flow of cooling water ff1Q. Figure 3 <8') shows the temperature change when feedforward control is performed over the entire length of the lumber 10 in this way.
Shown below. In the figure, the flow mQ is indicated by the symbol Q2, and the exit side steel material temperature Te is indicated by the symbol B2. As can be understood from the figure, the parts other than the tip of the steel material 1o are shown in the same figure (A
) The temperature of the steel material on the exit side T compared to the constant flow control indicated by the symbol B1
It is possible to reduce and smooth the width of fluctuation in the total length of the day (symbol b in the figure). Problems to be Solved by the Invention However, the reference numeral B2 in FIG.
It is understood that the temperature fluctuation at the tip of the steel material 1o is large, and the temperature fluctuation in this part can be reduced by controlling the heating of the steel material 1o using bar force in the heating zone to reduce the fluctuation in the entrance steel material temperature TA. However, it is not a fundamental countermeasure and cannot be completely eliminated. In addition, in the case of water cooling after rolling, the exit side steel material 1 is
If the temperature fluctuation at the tip of 0B is large, scale defects etc. will occur in that part, and when producing a product, it is necessary to cut I and TI at the part where the defect has occurred, resulting in a decrease in yield. There was a problem.

【発明の目的) 本発明は、前記従来の問題点に鑑みてなされたものであって、冷却後の圧延材の温度を先端部も含めて全長に亘り均一化することができる圧延材の冷却温度制御方法を提供することを目的とする。 【問題点を解決するための手段】[Purpose of the invention] The present invention has been made in view of the above-mentioned conventional problems, and provides a cooling temperature control method for a rolled material that can make the temperature of the rolled material after cooling uniform over the entire length including the tip. The purpose is to [Means to solve the problem]

本発明は、圧延中の圧延材に冷却帯で冷却液を供給して
冷却する際に、その要旨を第1図に示丈ように、前記圧
延材先端が前記冷却帯に到達される前及び到達されてか
ら所定時間の間は、前記冷却液を定流届に制御し、前記
所定時間経過(麦は、前記冷7;I]帯入側で測定され
た前記圧延材の温度に基づき、前記冷却液の流量を制御
することにより、前記目的を達成したものである。
In the present invention, when cooling a rolled material during rolling by supplying a cooling liquid in a cooling zone, the gist of the invention is as shown in FIG. For a predetermined period of time after reaching the temperature, the cooling liquid is controlled to a constant flow rate, and the predetermined period of time has elapsed (for wheat, the temperature of the rolled material is measured on the loading side. The above object is achieved by controlling the flow rate of the cooling liquid.

【作用】[Effect]

前述の如ぎフィードフォワード制御をする際に、1ワ1
えば前出第3図(B)中の符号B2に示される出側綱材
温度T日において、出側鋼材10△の先端部の温度変動
が大きい理由として考えられるのは、冷却水流ff1Q
が制御される際の立上がり時に生ずる流母Qの減少(図
中の符号mで示寸)である。この流量減少が生ずる理由
は、例えば第2図において、前記入側鋼材温度計14△
から出力される温度信号に、通常は実際の温度変化に比
べて固有の時間遅れがあるため、第3図中の符号1)で
示す入側鋼材温度T△の立上がり途中の温度を入側fl
’l材10Aの本当の先端温度として捕えてしまい、こ
のことを原因として、該入側網材10△の先端が前記入
側鋼材温度計14△に到達したI’R間に、該入側鋼材
温度計14Aから出力される入側Ml u温度T^が真
の鋼材温度とはならない(即らステップ応答とはならな
い)ためである。 前記の如く圧延材の冷却を全長に亘ってフィードフォワ
ード制御により行うと前記のりnき問題が生ずるため、
・発明者等は、第2図に示す入側鋼材10Aが搬送され
て水冷ボックス12に到達する前から及び該入側鋼材1
0Aが水冷ボックス12に到達してから所定時間の間は
冷ムO液を定流量制御し、前記所定時間を越える瞬間か
ら該冷k】液をフィードフォワード制御する冷却温度制
御方法を考え出した。 従って、本発明によれば、冷却される圧延材の先端部の
温度を確実に下げることができるため、先端部も含めて
圧延材全長に亘って冷却後の湿度の均一化を図ることが
できる。 【実施例1 以下、本発明に係る圧延材の冷却温度制御方法の実施例
について詳細に説明する。 この実施例は前出第2図に示した圧延中の線材、棒組、
ビレット等の鋼材10を冷却する水冷制御装置に本発明
を実施したしのである。この実施例の構成は従来例と同
様なのでその詳細な説明については省略する。 以下、実施例の作用について説明する。 入側鋼材10Aが速度■で搬送され、入側用材)g度肝
14Aに到達した瞬間から実時間(リアルタイム)で入
側網材温度T△を測定する。測定された入側鋼材温度T
△は調節計16に送られ、その内部のフィードフォワー
ド演算n、oヒ18によりWiffされて冷却水の流■
の供給タイミング及び必要流量が算出される。 前記入側鋼材10Aが前記水冷ボックス12に到達する
前と到達してから時間t、までの間は、前記調節計16
内の流mコントロール改能2oの出力する制御信号によ
りユニバーサルアンプ22、ユニット24で調節弁26
を駆動して、冷却ボックス12内の鋼材10に供給する
冷却水の流場を予め定められた定流役に制御211する
。そして、前記時間 11を越えたrs間から前記フィ
ードフォワード演京成能18で演算された必要流量の冷
却水を鋼材10に供給するよう、前記調節弁26を駆動
してフィードフォワード制御を行う。 このようにして、冷却水の流ff1Q(符号Q3)を制
御した場合の出側消材温度T日(符号B3)の例を第3
図(C)に示す。図から、同図(A)、<8)に示す定
流可制御及び全長フィードフォワード制御のように、綱
材10の先端部の渇度変動が大であるのとは異なり、所
定の管理温度範囲(図中の符号C)に出側用材温度Te
が入っていることが理解される。 なお、前記鋼材10の先端部の定流量制御域(時間む≦
 j+)においては、入側精材渇度T^の変動に対して
実時間で流子制御してd3らず、出側鋼材4度T 日を
平均的に下げるだけの制御である。このときの流ff1
Qの値は、前記1節計16で管理温度範囲(図中の符号
C)に入るように計qして制御してもよいし、実際の操
業中で連続的に圧延している場合に、1士前の鋼材10
を冷却した際の実績流mを使用して制御すべき流子を決
定してもよい。又、前記t1は鋼材10の圧延速度Vに
応じて適正値を決定することができる。 更に、前記時間t1を越えた以険のフィードフォワード
制御域(時間1>1+)においては、入側羽tオ温度T
Aの変動に対して実時間で冷却水の流m制御ができ、出
側鋼材温度Tsをより均一化できる。 以上述べたことから、本発明方法により水子を制御して
冷却温度を制御すれば、鋼材10の全長に亘ってフィー
ドフォワード制御した場合の管理温度範囲(第3図中の
符@b)に比べて、その管理温度範囲を小さく (c 
<b )することが可能である。従って、前記鋼材10
全長に亘ってその温度変化を小さくして冷却後の温度を
均一化できるっなJ5、前記実施例においては、第2図
に示されるように1つの水冷ボックスで鋼材10を冷却
制御する水冷制御装置について例示したが、この水冷ボ
ックスは単体のものに限定されるものではなく、?!2
数の水冷ボックスが連続して設置されている場合にも本
発明方法を採用して鋼材10を冷却できることは明らか
である。 又、前記実施例においては、圧延材として線材、枠jに
等の鋼材を例示したが、本発明に係る圧延材はこれらの
ものに限定されるものではなく、他の圧延材の冷却温度
を制御する際に本発明を採用できることは明らかである
。 更に、前記実施例においては、第2図に示される水冷制
御装置で本発明を実施した場合について例示したが、本
発明が採用される冷却装置は、冷去〇液に水が用いられ
、図に示される(を成の冷却装置に限定されず、他の冷
却液が用いられる他の冷却装置に採用できることは明ら
かである。 【発明の効果1 以上説明した通り、本発明によれば、圧延材の先喘分を
含めて全長に亘りその冷却後の温度を均一化させること
ができる。従って、圧延前に圧延材を水冷した場合にお
いては、その全長温度の均一化により圧延後の寸法精度
?向上させることができ、圧延後に圧延材を冷却した場
合においては、圧延材の先端の温度不良を減少させて圧
延材に11着するスケールのばらつきを減少させること
ができるため、圧延製品の歩留りや合格率を向」:さ忙
ることが可能である。又、加熱炉で圧延材を加熱してそ
の全長に亘る温度均一化を行う必要がなくなるため、燃
料原単位を削減することができる等の優れた効果を有す
る。
When performing feedforward control as described above, one
For example, a possible reason for the large temperature fluctuation at the tip of the exit steel material 10Δ on the exit wire temperature T day indicated by the symbol B2 in FIG. 3(B) above is due to the cooling water flow ff1Q.
This is the decrease in the flow base Q (indicated by the symbol m in the figure) that occurs at the time of rise when is controlled. The reason for this decrease in flow rate is, for example, in FIG.
Since there is usually an inherent time delay in the temperature signal output from the temperature signal compared to the actual temperature change, the temperature during the rise of the inlet steel material temperature T
This is taken as the true tip temperature of the entry side net material 10A, and due to this, the entry side net material 10A has a temperature between This is because the inlet Mlu temperature T^ outputted from the steel material thermometer 14A does not become the true steel material temperature (that is, it does not become a step response). If the cooling of the rolled material is performed by feedforward control over the entire length as described above, the above-mentioned glue problem will occur.
・The inventors discovered that before the entrance steel material 10A shown in FIG. 2 was transported and reached the water cooling box 12,
A cooling temperature control method has been devised in which the flow rate of the cold liquid is controlled at a constant rate for a predetermined period of time after 0A reaches the water cooling box 12, and the cooled liquid is feedforward controlled from the moment the predetermined time is exceeded. Therefore, according to the present invention, the temperature at the tip of the rolled material to be cooled can be reliably lowered, so that the humidity after cooling can be made uniform over the entire length of the rolled material, including the tip. . [Example 1] Hereinafter, an example of the method for controlling the cooling temperature of a rolled material according to the present invention will be described in detail. This example is based on the wire rods and bar assembly shown in FIG.
The present invention was implemented in a water cooling control device for cooling a steel material 10 such as a billet. The configuration of this embodiment is similar to that of the conventional example, so detailed explanation thereof will be omitted. The effects of the embodiment will be explained below. The entrance steel material 10A is conveyed at a speed ①, and the temperature T△ of the entrance mesh material is measured in real time from the moment when the entrance steel material 10A reaches the temperature 14A. Measured entrance steel temperature T
△ is sent to the controller 16, and is Wiffed by the internal feedforward calculation n, ohi 18 to reduce the cooling water flow.
The supply timing and required flow rate are calculated. Before the input side steel material 10A reaches the water cooling box 12 and after reaching the time t, the controller 16
The control valve 26 is controlled by the universal amplifier 22 and the unit 24 by the control signal output from the internal flow m control function 2o.
is driven to control 211 the flow field of cooling water supplied to the steel material 10 in the cooling box 12 to a predetermined constant flow rate. Then, feedforward control is performed by driving the control valve 26 so that the required flow rate of cooling water calculated by the feedforward calculation function 18 is supplied to the steel material 10 from the period rs exceeding the time 11. In this way, an example of the exit side waste material temperature T day (code B3) when the cooling water flow ff1Q (code Q3) is controlled is shown in the third example.
Shown in Figure (C). From the figure, it can be seen that unlike the constant flow control and full length feedforward control shown in FIG. The outlet material temperature Te is within the range (symbol C in the figure)
It is understood that this includes Note that the constant flow rate control area (time≦
In j+), flow control is not carried out in real time with respect to fluctuations in the input-side refined material thirst T^, but the control is merely to lower the exit-side steel material 4 degrees T on average. The flow at this time ff1
The value of Q may be controlled by measuring q so that it falls within the control temperature range (symbol C in the figure) using the one-node meter 16, or when rolling is carried out continuously during actual operation. , 1st grade steel material 10
The flow to be controlled may be determined by using the actual flow m when cooling the flow. Further, the appropriate value of t1 can be determined according to the rolling speed V of the steel material 10. Furthermore, in the feedforward control range beyond the time t1 (time 1>1+), the entrance wing temperature T
The cooling water flow m can be controlled in real time in response to fluctuations in A, and the outlet steel material temperature Ts can be made more uniform. From what has been described above, if the cooling temperature is controlled by controlling the water particles using the method of the present invention, the control temperature range (marked @b in Fig. 3) when feedforward control is performed over the entire length of the steel material 10 is achieved. In comparison, the control temperature range is smaller (c
<b) It is possible to do so. Therefore, the steel material 10
It is possible to reduce the temperature change over the entire length and make the temperature after cooling uniform. In the above embodiment, as shown in FIG. 2, water cooling control controls the cooling of the steel material 10 with one water cooling box. Although we have given an example of the device, this water cooling box is not limited to a single unit. ! 2
It is clear that the method of the present invention can be used to cool the steel material 10 even when several water cooling boxes are installed in series. Furthermore, in the above embodiments, wire rods and steel materials such as frame j were exemplified as rolled materials, but the rolled materials according to the present invention are not limited to these materials, and the cooling temperature of other rolled materials may be changed. It is clear that the present invention can be employed in controlling. Furthermore, in the embodiment described above, the case where the present invention is implemented with the water cooling control device shown in FIG. It is clear that the present invention is not limited to a cooling device using a cooling liquid shown in (1) and can be applied to other cooling devices that use other cooling liquids. The temperature after cooling can be made uniform over the entire length of the material, including the tip part. Therefore, when the rolled material is water-cooled before rolling, the dimensional accuracy after rolling can be improved by making the temperature uniform over the entire length. When the rolled material is cooled after rolling, it is possible to reduce temperature defects at the tip of the rolled material and reduce the dispersion of scales that appear on the rolled material, thereby increasing the yield of rolled products. In addition, since there is no need to heat the rolled material in a heating furnace and equalize the temperature over its entire length, the fuel consumption can be reduced. It has excellent effects such as

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の要旨を示す流れ図、第2図は、本発
明に係る圧延材の冷却温度制御方法が実施される冷却温
度制御装置の全体構成を示す、一部平面図を含むブロッ
ク線図、第3図は、従来法及び本発明法により鋼材の冷
却温度制御をした場合の例を比較して示す線図である。 10.10A、10B・・・鋼材、 12・・・水冷ボックス、 14A・・・人側耀材温度計、 14B・・・出側鋼材温度計、 16・・・謂「計、 18・・−フィードフォワード演算機能、20・・・流
層コントロール殿能、 26・・・調節弁、 28・・・流量計。
FIG. 1 is a flowchart illustrating the gist of the present invention, and FIG. 2 is a block diagram including a partial plan view showing the overall configuration of a cooling temperature control device in which the method for controlling the cooling temperature of a rolled material according to the present invention is implemented. The diagram and FIG. 3 are diagrams comparing and showing examples of cooling temperature control of steel materials by the conventional method and the method of the present invention. 10. 10A, 10B... Steel material, 12... Water cooling box, 14A... Person side material thermometer, 14B... Exit side steel material thermometer, 16... So-called "total," 18...- Feedforward calculation function, 20...Flow layer control function, 26...Control valve, 28...Flow meter.

Claims (1)

【特許請求の範囲】[Claims] (1)圧延中の圧延材に冷却帯で冷却液を供給して冷却
する際に、 前記圧延材先端が前記冷却帯に到達される前及び到達さ
れてから所定時間の間は、前記冷却液を定流量に制御し
、 前記所定時間経過後は、前記冷却帯入側で測定された前
記圧延材の温度に基づき、前記冷却液の流量を制御する
ことを特徴とする圧延材の冷却温度制御方法。
(1) When cooling a rolled material during rolling by supplying a cooling fluid in a cooling zone, the cooling fluid is not used before the tip of the rolled material reaches the cooling zone and for a predetermined period of time after reaching the cooling zone. is controlled to a constant flow rate, and after the predetermined time has elapsed, the flow rate of the cooling liquid is controlled based on the temperature of the rolled material measured at the entrance side of the cooling zone. Method.
JP61065317A 1986-03-24 1986-03-24 Control method for cooling temperature of rolled stock Pending JPS62224414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61065317A JPS62224414A (en) 1986-03-24 1986-03-24 Control method for cooling temperature of rolled stock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61065317A JPS62224414A (en) 1986-03-24 1986-03-24 Control method for cooling temperature of rolled stock

Publications (1)

Publication Number Publication Date
JPS62224414A true JPS62224414A (en) 1987-10-02

Family

ID=13283411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61065317A Pending JPS62224414A (en) 1986-03-24 1986-03-24 Control method for cooling temperature of rolled stock

Country Status (1)

Country Link
JP (1) JPS62224414A (en)

Similar Documents

Publication Publication Date Title
US11268765B2 (en) Fast response heaters and associated control systems used in combination with metal treatment furnaces
JP2007160316A (en) Method for controlling water cooling of rolled material
JPS6289515A (en) Temperature control method and device for hot rolling stock
JPH0732024A (en) Method for controlling temperature of hot rolled steel products
JPS62224414A (en) Control method for cooling temperature of rolled stock
JPS61253112A (en) Control method for cooling steel plate
US4742950A (en) Method of and arrangement for soldering aluminum parts
CN111420999B (en) Method for controlling temperature difference between upper surface and lower surface of finish rolling intermediate billet
CN111420998B (en) Method for uniformly heating width of precision rolling intermediate billet in length direction at temperature
TW201910020A (en) Method for controlling temperatures of a heating furnace
JP2004197144A (en) Method for controlling temperature of continuous normalized sheet
JP2004058128A (en) Method and device for controlling rolling temperature of steel pipe
JPH09239423A (en) Method for controlling water cooling in steel bar rolling equipment
JP2005279655A (en) Steel extraction temperature prediction method for continuous heating furnace
KR101169125B1 (en) Material temperature control system in continuous strip material treatment line
JPH02255209A (en) Shape control method for warm or cold rolling of sheet
JPH0636931B2 (en) Temperature control method for rolling and cooling wire rods and bars
JP7141995B2 (en) Hot-rolled steel sheet manufacturing method and hot-rolled steel sheet manufacturing system
KR100250760B1 (en) Controlling method for steel heat treatment in continuous furnace
JPH0381009A (en) Method for controlling plate temperature in warm rolling of stainless steel strip
JPS56136213A (en) Controlling method and apparatus for water cooling for steel material in rolling process
SU1222692A1 (en) Method of regulating temperature of workpieces in multiple-zone continuous induction furnace
JPH07228926A (en) Vertical continuous annealing furnace for steel strip
JPS61199038A (en) Method for controlling temperature of strip in continuous annealing furnace
JPH07258751A (en) Device for controlling temperature of coil in furnace