JPH0732024A - Method for controlling temperature of hot rolled steel products - Google Patents

Method for controlling temperature of hot rolled steel products

Info

Publication number
JPH0732024A
JPH0732024A JP5156543A JP15654393A JPH0732024A JP H0732024 A JPH0732024 A JP H0732024A JP 5156543 A JP5156543 A JP 5156543A JP 15654393 A JP15654393 A JP 15654393A JP H0732024 A JPH0732024 A JP H0732024A
Authority
JP
Japan
Prior art keywords
cooling
control
temperature
learning coefficient
learning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5156543A
Other languages
Japanese (ja)
Other versions
JP2783124B2 (en
Inventor
Naohiro Kubo
直博 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5156543A priority Critical patent/JP2783124B2/en
Publication of JPH0732024A publication Critical patent/JPH0732024A/en
Application granted granted Critical
Publication of JP2783124B2 publication Critical patent/JP2783124B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To provide a method for controlling temperature of a hot rolled steel products that is capable of a cooling control neither too much nor too little even when a learning coefficient is fluctuating in a steel strip. CONSTITUTION:A steel strip is divided into plural temp. control areas in the longitudinal direction (step 101), and numbers of these temp. control areas are decided (step 103). A water injecting pattern is calculated so that the quantity of temp. drop reaches a target quantity in a control area based on the learning coefficient that is calculated based on a control record for each temp. control area (step 105). Then, a water injecting command is outputted to a cooling equipment (step 106). The learning coefficient is renewed after the calculation of the water injecting pattern is repeated until the temp. control area passes through the cooling equipment (step 108); and the temp. control begins on the next temp. control area. The temp. control as such is repeated until the coiling of the steel strip is completed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱間圧延した熱延綱板
を巻取り機に巻取るに先立ってこの熱延鋼材の温度を巻
取りに適した所望の温度まで冷却する熱延鋼材の温度制
御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot-rolled steel sheet which cools the hot-rolled hot-rolled steel sheet to a desired temperature suitable for winding before winding the hot-rolled steel sheet into a winding machine. The present invention relates to a temperature control method.

【0002】[0002]

【従来の技術】熱間圧延設備において、一般に熱延鋼材
である綱帯を巻取り機に巻取るのに適した温度まで冷却
するために冷却設備が利用されている。図2はこのよう
な従来の冷却設備のブロック図である。1は仕上げ圧延
機、2aは冷却設備内の後述するフィードフォワード制
御用の冷却部、2bは同じくフィードバック制御用の冷
却部、3は巻取り機、4は仕上げ圧延機1を出て冷却設
備に送り込まれる綱帯の温度を測定する入側温度計、5
は仕上げ圧延後の綱帯の板厚を測定する板厚計、6は冷
却設備への綱帯の供給速度である仕上げ圧延機1の綱帯
の搬出速度を測定する入側速度検出器である。
2. Description of the Related Art In hot rolling equipment, cooling equipment is generally used to cool a steel strip, which is generally a hot rolled steel material, to a temperature suitable for winding it on a winding machine. FIG. 2 is a block diagram of such a conventional cooling facility. 1 is a finish rolling mill, 2a is a cooling unit for feed-forward control in the cooling facility, which will be described later, 2b is a feedback control cooling unit, 3 is a winder, 4 is a finishing rolling mill, and 1 Entry-side thermometer, which measures the temperature of the rope that is sent in, 5
Is a thickness gauge for measuring the strip thickness of the strip after finish rolling, and 6 is an inlet-side velocity detector for measuring the strip unloading speed of the finish rolling mill 1, which is the strip feeding speed to the cooling equipment. .

【0003】また、7は巻取り時の綱帯の温度を測定す
る出側温度計、8は冷却設備からの綱帯の搬出速度であ
る巻取り機3の綱帯の巻取り速度を測定する出側速度検
出器、9は綱帯を所望の巻取り温度に冷却するために冷
却部2a、2bへの注水パターンを算出する冷却制御
部、10は冷却制御部9による注水パターンの算出のた
めに後述する学習係数を決定して冷却制御部9に出力す
る学習制御部、11は冷却制御部9から出力された注水
量に基づいて冷却部2a、2bに注水指令を出力するバ
ンク開閉入出力部、Sは熱延鋼材である綱帯、Rは冷却
設備である。
Further, 7 is an outlet thermometer for measuring the temperature of the rope at the time of winding, and 8 is a winding speed of the rope of the winder 3 which is the speed of carrying out the rope from the cooling equipment. An outlet speed detector, 9 is a cooling control unit that calculates a water injection pattern to the cooling units 2a and 2b in order to cool the rope to a desired winding temperature, and 10 is a water injection pattern calculated by the cooling control unit 9. A learning control unit that determines a learning coefficient, which will be described later, and outputs the learning coefficient to the cooling control unit 9, 11 is a bank opening / closing input / output that outputs a water injection command to the cooling units 2a and 2b based on the water injection amount output from the cooling control unit 9. Part, S is a steel strip made of hot rolled steel, and R is a cooling facility.

【0004】仕上げ圧延機1で圧延形成された綱帯S
は、ランアウトテーブル上を走行して巻取り機3に巻取
られる。ランアウトテーブルには綱帯Sを巻取りに適し
た温度まで冷却する冷却設備Rが配置されている。冷却
設備Rは、ランアウトテーブルを挟んで上下に分割され
ると共に、ランアウトテーブルの前半に配置されたフィ
ードフォワード制御用の冷却部2aと後半に配置された
フィードバック制御用の冷却部2bとに分割されてい
る。更に、これらの冷却部2a、2bはそれぞれ複数の
冷却バンクに分割されている。そして、このような冷却
部2a、2bの各バンクへの注水量を調節することによ
り綱帯Sに対する冷却量を制御する。
The rope S formed by the finish rolling mill 1
Runs on the run-out table and is wound up by the winder 3. Cooling equipment R for cooling the rope S to a temperature suitable for winding is arranged on the runout table. The cooling equipment R is divided into an upper part and a lower part with the runout table sandwiched therebetween, and is divided into a feedforward control cooling part 2a arranged in the first half of the runout table and a feedback control cooling part 2b arranged in the latter half. ing. Further, each of the cooling units 2a and 2b is divided into a plurality of cooling banks. Then, the amount of cooling of the rope S is controlled by adjusting the amount of water supplied to each bank of the cooling units 2a and 2b.

【0005】次に、この冷却設備Rのフィードフォワー
ド制御の動作について説明する。冷却制御部9は、綱帯
Sを全長にわたって所望の巻取り温度に維持するために
フィードフォワード制御用の冷却部2aの各バンクへの
注水パターンを次式によって算出する。
Next, the operation of the feedforward control of the cooling equipment R will be described. The cooling control unit 9 calculates the water injection pattern to each bank of the cooling unit 2a for feedforward control in order to maintain the desired winding temperature of the rope S over the entire length by the following formula.

【0006】[0006]

【数1】 [Equation 1]

【0007】ここで、△Tは冷却設備Rによる綱帯Sの
巻取り時までの温度降下量(予測値)、dは後述する学
習制御部10から出力される学習係数、△TUi、△T
Diはそれぞれ上部、下部の冷却部2a中のiバンクの
冷却作用による綱帯Sの温度降下量、△TAiはiバン
クにおける空冷(放熱)による綱帯Sの温度降下量であ
る。
Here, ΔT is a temperature drop amount (predicted value) before the rope S is wound by the cooling equipment R, d is a learning coefficient output from a learning control unit 10 described later, and ΔTUi, ΔT.
Di is the temperature drop amount of the rope S due to the cooling action of the i bank in the upper and lower cooling portions 2a, and ΔTAi is the temperature drop amount of the rope S due to air cooling (heat dissipation) in the i bank.

【0008】そして、冷却制御部9は、予測値である温
度降下量△T、学習係数d、あらかじめ求められている
空冷による温度降下量△TAi、入側温度計4で測定さ
れた仕上げ圧延後の温度、板厚計5で測定された板厚、
入側速度検出器6及び出側速度検出器8で測定された速
度に基づいて注水パターンの算出を行う。すなわち、こ
れらに基づき式(1)を用いて、温度降下量△Tが目標
温度降下量になるように上部冷却部2aの各バンクの温
度降下量△TUi、下部冷却部2aの各バンクの温度降
下量△TDiを算出する。
The cooling control unit 9 then predicts the temperature drop ΔT, the learning coefficient d, the temperature drop ΔTAi obtained in advance by air cooling, and the finish rolling measured by the inlet side thermometer 4. Temperature, the thickness measured by the thickness gauge 5,
The water injection pattern is calculated based on the speeds measured by the inlet speed detector 6 and the outlet speed detector 8. That is, using the formula (1) based on these, the temperature drop amount ΔTUi of each bank of the upper cooling unit 2a and the temperature of each bank of the lower cooling unit 2a are adjusted so that the temperature drop amount ΔT becomes the target temperature drop amount. The amount of fall ΔTDi is calculated.

【0009】よって、これらの温度降下量△TUi、△
TDiから冷却部2aの各バンクの注水量が算出され、
この各バンクの注水量がバンク開閉入出力部11に出力
されてバンク開閉入出力部11から各バンクに注水指令
が出力されることにより冷却制御が行われる。そして、
このような注水パターンの算出と冷却制御は、最終的な
温度降下量△Tが目標温度降下量になるまで一定時間又
は一定距離ごとに注水パターンを変えながら繰り返し行
われる。
Therefore, these temperature drops ΔTUi, Δ
The amount of water injection in each bank of the cooling unit 2a is calculated from TDi,
Cooling control is performed by outputting the water injection amount of each bank to the bank opening / closing input / output unit 11 and outputting a water injection command from the bank opening / closing input / output unit 11 to each bank. And
The calculation of the water injection pattern and the cooling control as described above are repeatedly performed until the final temperature decrease amount ΔT reaches the target temperature decrease amount while changing the water injection pattern at regular intervals or at constant intervals.

【0010】次に、学習制御部10は、上記のような注
水パターンの算出で用いる学習係数dを以下のような手
順で決定する。まず、式(1)より導出される次式によ
り綱帯S内の一点jにおける学習係数djを求める
Next, the learning control section 10 determines the learning coefficient d used in the calculation of the water injection pattern as described above in the following procedure. First, the learning coefficient dj at one point j in the rope S is calculated by the following equation derived from the equation (1).

【0011】[0011]

【数2】 [Equation 2]

【0012】ここで、△TRjはj点における綱帯Sの
温度降下量である。この温度降下量△TRjは入側温度
計4による仕上げ圧延後の温度の実測値と出側温度計7
による巻取り時の温度の実測値から求められる。また、
上部冷却部2aによる温度降下量Σ△TUi、下部冷却
部2aによる温度降下量Σ△TDi、空冷による温度降
下量Σ△TAiは過去の綱帯Sの冷却制御時の注水量、
速度等の実績から求められる。
Here, ΔTRj is the temperature drop amount of the rope S at point j. This temperature drop amount ΔTRj is the measured value of the temperature after finishing rolling by the inlet side thermometer 4 and the outlet side thermometer 7.
It can be obtained from the measured value of the temperature at the time of winding. Also,
The temperature drop amount ΣΔTUi by the upper cooling part 2a, the temperature drop amount ΣΔTDi by the lower cooling part 2a, and the temperature drop amount ΣΔTAi by air cooling are the water injection amount during the cooling control of the past rope S,
Calculated from actual results such as speed.

【0013】よって、学習制御部10は、式(2)より
綱帯Sのj点における学習係数djを決定するが、同様
にしてm個の学習ポイントにて学習係数djを求め、こ
れらを次式のように平均して最終的な学習係数dを求め
る。
Therefore, the learning control unit 10 determines the learning coefficient dj at the j point of the rope S from the equation (2). Similarly, the learning coefficient dj is obtained at m learning points, and these are calculated as follows. The final learning coefficient d is obtained by averaging as in the formula.

【0014】[0014]

【数3】 [Equation 3]

【0015】この学習係数dが学習制御部10から冷却
制御部9へ出力されることにより上記のような冷却制御
が行われることになる。ただし、実際の制御においては
綱帯S内の各学習係数djはそれぞれの学習ポイントご
とに異なることがある。このような綱帯S内における学
習係数djの変動は、圧延速度の加速変化とそれに対す
る速度予測値の誤差、各バンクの冷却能力の経時的変
化、注水指令に対する注水装置の応答遅れの変動等に起
因するものである。
By outputting the learning coefficient d from the learning control unit 10 to the cooling control unit 9, the cooling control as described above is performed. However, in the actual control, each learning coefficient dj in the rope S may be different for each learning point. The variation of the learning coefficient dj in the rope S as described above is caused by the acceleration change of the rolling speed and the error of the predicted speed value, the change of the cooling capacity of each bank over time, the variation of the response delay of the water injection device to the water injection command, and the like. It is due to.

【0016】図3はこのような綱帯S内における学習係
数djの変動の例を示す図である。d1 、d2 、d3 は
それぞれ綱帯Sの先端部、中央部、尾端部における学習
係数、△TRは綱帯Sの温度降下量の実績値、△TPは
同じくその予測値である。図3では本来予測値△TPの
ような温度降下量になるはずのものが、実際は△TRの
ように綱帯Sの先端部で過冷却、尾端部で冷却不足が発
生していることを示している。この実績△TRから式
(2)によって求められた学習係数djは先端部d1 、
中央部d2 、尾端部d3 でそれぞれ1.1、1.0、
0.9となっている。したがって、これら3点の学習係
数djを平均した学習係数dは1.0であり、次に冷却
する綱帯Sにおいても過冷却及び冷却不足を補償しない
ままとなる。
FIG. 3 is a diagram showing an example of the variation of the learning coefficient dj in such a rope S. d1, d2, and d3 are learning coefficients at the tip, center, and tail of the rope S, respectively, ΔTR is the actual value of the temperature drop amount of the rope S, and ΔTP is the predicted value thereof. In FIG. 3, what is supposed to be the temperature drop amount like the predicted value ΔTP is actually overcooled at the tip end of the rope S and undercooled at the tail end like ΔTR. Shows. The learning coefficient dj obtained by the equation (2) from the actual result ΔTR is the tip portion d1,
1.1, 1.0 at the central portion d2 and the tail end portion d3, respectively.
It is 0.9. Therefore, the learning coefficient d obtained by averaging the learning coefficients dj at these three points is 1.0, and even in the rope S to be cooled next, overcooling and undercooling remain uncompensated.

【0017】[0017]

【発明が解決しようとする課題】従来の温度制御方法で
は以上のように綱帯内の複数の学習ポイントにおける学
習係数から平均値として1つの学習係数を求めてこれを
学習制御に用いていたので、綱帯内の学習係数が変動し
ていると綱帯内における過冷却や冷却不足を補償できな
いという問題点があった。本発明は、上記課題を解決す
るために、綱帯内において学習係数が変動している場合
でも過不足のない冷却制御ができる熱延鋼材の温度制御
方法を提供することを目的とする。
As described above, in the conventional temperature control method, one learning coefficient is obtained as an average value from the learning coefficients at a plurality of learning points in the rope, and this is used for learning control. However, if the learning coefficient in the band changes, there is a problem that it is not possible to compensate for overcooling or undercooling in the band. In order to solve the above problems, an object of the present invention is to provide a temperature control method for hot-rolled steel material, which can perform cooling control without excess or deficiency even when the learning coefficient changes in the rope.

【0018】[0018]

【課題を解決するための手段】本発明は、熱延鋼材を複
数の温度制御領域に区分し、温度制御領域ごとに制御実
績に基づく学習係数を求め、学習係数を用いて冷却設備
による温度制御領域の温度降下量を算出し、温度降下量
が目標温度降下量になるように冷却制御することを特徴
とする。
The present invention divides a hot rolled steel material into a plurality of temperature control areas, obtains a learning coefficient based on the control record for each temperature control area, and uses the learning coefficient to control the temperature by a cooling facility. It is characterized in that the amount of temperature drop in the region is calculated and cooling is controlled so that the amount of temperature drop becomes the target amount of temperature drop.

【0019】[0019]

【作用】本発明によれば、熱延鋼材が複数の温度制御領
域に区分され、その温度制御領域ごとに制御実績に基づ
いて学習係数が算出される。そして、温度制御領域が冷
却設備に達したときに、学習係数に基づいて冷却設備に
よる温度制御領域の温度降下量が算出され、その温度降
下量が目標温度降下量になるように冷却設備の注水パタ
ーンが決定される。
According to the present invention, the hot rolled steel material is divided into a plurality of temperature control regions, and the learning coefficient is calculated for each temperature control region based on the control record. Then, when the temperature control area reaches the cooling equipment, the temperature drop amount of the temperature control area by the cooling equipment is calculated based on the learning coefficient, and the cooling equipment water injection is performed so that the temperature drop amount becomes the target temperature drop amount. The pattern is determined.

【0020】[0020]

【実施例】図1は本発明の1実施例を示す熱延鋼材の温
度制御方法のフローチャートを示す図である。本実施例
は、この温度制御方法をフィードフォワード制御に適用
した例であるが、冷却設備としては図2の例と同様であ
り、したがって図2の符号をそのまま用いてその手順を
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a flowchart showing a method of controlling the temperature of hot rolled steel according to one embodiment of the present invention. The present embodiment is an example in which this temperature control method is applied to feedforward control, but the cooling equipment is the same as the example in FIG. 2, and therefore the procedure will be described using the reference numerals in FIG. 2 as they are.

【0021】まず、冷却制御がスタートすると(ステッ
プ100)、冷却制御部9は、綱帯Sが仕上げ圧延機1
に達したときに綱帯Sの全長(予測値)を計算し、次い
で綱帯Sを長手方向に複数の温度制御領域に区分けしそ
の制御領域の領域長を計算する(ステップ101)。そ
して、綱帯Sの巻取りが完了したかどうかを判定し(ス
テップ102)、巻取り途中ならば判定Noとなってス
テップ103に進む。
First, when the cooling control is started (step 100), the cooling control unit 9 causes the rope S to finish the rolling mill 1.
When the total length (predicted value) of the rope S is reached, the rope S is divided into a plurality of temperature control areas in the longitudinal direction and the area length of the control area is calculated (step 101). Then, it is determined whether or not the winding of the rope S has been completed (step 102), and if the winding is in progress, a determination No is made and the process proceeds to step 103.

【0022】次に、冷却制御部9は、入側速度検出器6
及び出側速度検出器8で測定された圧延速度により綱帯
Sの先端から現在入側温度計4の直下にある温度制御領
域、すなわちこれから冷却設備Rに入る温度制御領域ま
での距離を測定し、これと前述の領域長によってこの温
度制御領域の番号(以下、jとする)を決定しこの制御
領域番号jを学習制御部10に出力する(ステップ10
3)。
Next, the cooling controller 9 controls the entrance speed detector 6
And the distance from the tip of the rope S to the temperature control region right below the inlet thermometer 4, that is, the temperature control region to enter the cooling equipment R, is measured by the rolling speed measured by the output speed detector 8. The temperature control area number (hereinafter referred to as j) is determined based on this and the area length described above, and the control area number j is output to the learning control unit 10 (step 10).
3).

【0023】学習制御部10には、温度制御領域ごとに
設けられた学習ポイントにおいて図2の例と同様にして
算出された学習係数djがあらかじめ記憶されている。
そして、学習制御部10は冷却制御部9から制御領域番
号jが出力されるとこの温度制御領域の学習係数djを
冷却制御部9に出力する(ステップ104)。
The learning control unit 10 stores in advance a learning coefficient dj calculated in the same manner as in the example of FIG. 2 at a learning point provided for each temperature control area.
Then, when the control region number j is output from the cooling control unit 9, the learning control unit 10 outputs the learning coefficient dj of this temperature control region to the cooling control unit 9 (step 104).

【0024】次に、冷却制御部9は、この学習係数d
j、入側温度計4で測定された圧延後の温度、板厚計5
で測定された板厚、入側速度検出器6及び出側速度検出
器8で測定された圧延速度等に基づき、式(1)と同様
の次式によって番号jの温度制御領域における温度降下
量△Tjが目標温度降下量になるように注水パターンを
算出する(ステップ105)。
Next, the cooling controller 9 determines the learning coefficient d.
j, temperature after rolling measured by inlet side thermometer 4, plate thickness gauge 5
The amount of temperature drop in the temperature control region of the number j by the following equation similar to the equation (1) based on the plate thickness measured in step 1 and the rolling speed measured by the inlet speed detector 6 and the outlet speed detector 8 The water injection pattern is calculated so that ΔTj becomes the target temperature drop amount (step 105).

【0025】[0025]

【数4】 [Equation 4]

【0026】そして、バンク開閉入出力部11にこの注
水パターンを出力することによりフィードフォワード制
御用の冷却部2aの各バンクに注水指令が出力され温度
制御が行われる(ステップ106)。次いで、番号jの
温度制御領域が出側温度計7を通過、すなわち冷却設備
Rを通過したかどうかを判定し(ステップ107)、通
過していないときは判定Noとなってステップ105に
戻り注水パターンの算出を行う。
By outputting this water injection pattern to the bank opening / closing input / output unit 11, a water injection command is output to each bank of the cooling unit 2a for feedforward control, and temperature control is performed (step 106). Next, it is determined whether or not the temperature control area of the number j has passed the outlet thermometer 7, that is, the cooling facility R (step 107). If not, a determination No is returned to step 105 and water injection is performed. Calculate the pattern.

【0027】この注水パターンの算出は一定時間又は綱
帯Sの一定長ごとに繰り返し行われ、同一の温度制御領
域中では同一の学習係数djが用いられることになる。
次に、ステップ107において番号jの温度制御領域が
出側温度計7を通過し終えると、学習制御部10は、冷
却部2a及び2bの注水パターン実績、巻取り温度実
績、その他の圧延実績からこの温度制御領域の学習係数
djを再計算して更新する(ステップ108)。ここ
で、算出された各温度制御領域の学習係数djは次の綱
帯Sの温度制御において使用される。
This calculation of the water injection pattern is repeated for a fixed time or for each fixed length of the rope S, and the same learning coefficient dj is used in the same temperature control region.
Next, in step 107, when the temperature control area of number j has finished passing through the outlet thermometer 7, the learning control unit 10 determines from the water injection pattern results of the cooling units 2a and 2b, the winding temperature results, and other rolling results. The learning coefficient dj of this temperature control region is recalculated and updated (step 108). Here, the calculated learning coefficient dj of each temperature control region is used in the temperature control of the next rope S.

【0028】そして、ステップ102に戻って綱帯Sが
全て巻取り機3に巻取られるまでは判定Noとして次の
温度制御領域の温度制御に移り、上記のような処理を各
温度制御領域について綱帯Sの巻取り完了まで繰り返
す。よって、綱帯S内の各温度制御領域ごとに個別の学
習係数djを用いて温度制御を行うことになる。これを
図3の例で説明すると、図3の例では以前の綱帯Sの先
端部で過冷却、尾端部で冷却不足が発生していてその学
習係数djがそれぞれ1.1、0.9である。
Then, returning to step 102, until the entire rope S is completely wound up by the winder 3, as the judgment No, the temperature control of the next temperature control region is performed, and the above-mentioned processing is performed for each temperature control region. Repeat until the winding of the rope S is completed. Therefore, the temperature control is performed using the individual learning coefficient dj for each temperature control region in the rope S. This will be described with reference to the example of FIG. 3. In the example of FIG. 3, supercooling occurs at the front end of the former rope S and insufficient cooling occurs at the tail end, and the learning coefficients dj are 1.1, 0. It is 9.

【0029】本実施例では次に冷却する綱帯Sにおい
て、先端部で学習係数dj=1.1を使用し(式(4)
より温度降下量△Tjが同じだとすると注水量が減って
過冷却を補償する方向に働く)、尾端部で学習係数dj
=0.9を使用する(同じく注水量が増えて冷却不足を
補償する)ことにより過冷却及び冷却不足を補償できる
ことになる。したがって、学習係数djが温度制御領域
ごとに変動していたとしても適切な注水パターンによる
過不足のない温度制御が可能となる。
In this embodiment, the learning coefficient dj = 1.1 is used at the tip of the rope S to be cooled next (Equation (4)).
If the temperature drop amount ΔTj is the same, the amount of water injection is reduced to work in the direction of compensating for supercooling), and the learning coefficient dj at the tail end.
By using = 0.9 (also compensating for insufficient cooling due to increased water injection amount), it is possible to compensate for overcooling and undercooling. Therefore, even if the learning coefficient dj fluctuates in each temperature control region, it is possible to perform temperature control without excess or deficiency by an appropriate water injection pattern.

【0030】図1の実施例ではフィードフォワード制御
に適用したが、フィードバック制御に適用することもで
きる。フィードバック制御においては、フィードフォワ
ード制御の制御誤差を補う微調整を行うため綱帯Sの出
側温度計7による巻取り温度の実測値と目標温度とを比
較し、その誤差を補正するようにフィードバック制御用
の冷却部2bの各バンクの注水量を決定している。
Although the embodiment of FIG. 1 is applied to the feedforward control, it may be applied to the feedback control. In the feedback control, in order to make a fine adjustment to compensate for the control error of the feedforward control, the actual measurement value of the winding temperature by the outlet side thermometer 7 of the rope S is compared with the target temperature, and feedback is performed to correct the error. The water injection amount of each bank of the control cooling unit 2b is determined.

【0031】その注水量は、次式において温度降下量△
Tを巻取り温度の実測値と目標値の誤差の比例積分値と
し、冷却部2bの各バンクの注水パターンを変化させる
ことにより決定される。
The water injection amount is the temperature drop amount Δ in the following equation.
It is determined by setting T to be a proportional integral value of an error between the measured value of the winding temperature and the target value, and changing the water injection pattern of each bank of the cooling unit 2b.

【0032】[0032]

【数5】 [Equation 5]

【0033】冷却制御部9は、このフィードバック制御
によってフィードフォワード制御の結果を微調整するよ
うにしている。次に、このようなフィードバック制御に
本発明の温度制御方法を適用したときの手順を説明す
る。その手順は基本的に図1の例と同様であり、冷却制
御部9は、図1の例と同じ学習係数djに基づいて番号
jの温度制御領域が冷却部2bの直下にあるときの注水
パターンを次式にて算出する。
The cooling control unit 9 finely adjusts the result of the feedforward control by this feedback control. Next, a procedure when the temperature control method of the present invention is applied to such feedback control will be described. The procedure is basically the same as in the example of FIG. 1, and the cooling control unit 9 injects water when the temperature control region of number j is immediately below the cooling unit 2b based on the same learning coefficient dj as in the example of FIG. The pattern is calculated by the following formula.

【0034】[0034]

【数6】 [Equation 6]

【0035】したがって、フィードバック制御にも学習
係数djを導入し、綱帯S内の各温度制御領域ごとに個
別の学習係数djを用いることによってより高精度の温
度制御を行うことができる。
Therefore, by introducing the learning coefficient dj also in the feedback control and using the individual learning coefficient dj for each temperature control region in the rope S, more accurate temperature control can be performed.

【0036】また、本発明の温度制御方法を特開昭64
―62206号で提案された温度制御に適用することも
できる。この温度制御では次式のように学習係数dを上
部冷却部のiバンクにおける学習係数ai、下部冷却部
のiバンクにおける学習係数bi、空冷の学習係数ci
に分離して制御している。
Further, the temperature control method of the present invention is disclosed in JP-A-64
It can also be applied to the temperature control proposed in No. 62206. In this temperature control, the learning coefficient d is the learning coefficient ai in the i bank of the upper cooling section, the learning coefficient bi in the i bank of the lower cooling section, and the learning coefficient ci of the air cooling as in the following equation.
It is controlled separately.

【0037】[0037]

【数7】 [Equation 7]

【0038】この温度制御においても各学習係数は綱帯
S内では一定である。そこで、図1の例と同様に綱帯S
を区分けして番号jの温度制御領域における上部冷却部
の学習係数aij、下部冷却部の学習係数bij、空冷
の学習係数cijを用いて温度制御領域ごとに温度降下
量△Tjが目標温度降下量になるように制御することに
より高精度の制御を行うことができる。
Even in this temperature control, each learning coefficient is constant in the rope S. Therefore, as in the example of FIG.
And the learning coefficient aij of the upper cooling section, the learning coefficient bij of the lower cooling section, and the learning coefficient cij of the air cooling in the temperature control area of number j are used to determine the temperature decrease amount ΔTj for each temperature control area. It is possible to perform highly accurate control by controlling so that

【0039】[0039]

【数8】 [Equation 8]

【0040】[0040]

【発明の効果】本発明によれば、熱延鋼材内の各温度制
御領域ごとに個別の学習係数を使用して冷却設備の注水
パターンを算出するので、熱延鋼材内において熱流速が
変動し学習係数が変動する場合でも、熱延鋼材の全長に
わたって適切な注水パターンによる過不足のない高精度
な温度制御を行うことができる。
According to the present invention, since the water injection pattern of the cooling equipment is calculated by using the individual learning coefficient for each temperature control region in the hot rolled steel material, the heat flow velocity varies in the hot rolled steel material. Even if the learning coefficient fluctuates, it is possible to perform accurate temperature control without excess or deficiency by an appropriate water injection pattern over the entire length of the hot rolled steel material.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例を示す熱延鋼材の温度制御方
法のフローチャートを示す図である。
FIG. 1 is a diagram showing a flowchart of a temperature control method for hot-rolled steel according to an embodiment of the present invention.

【図2】従来の冷却設備のブロック図である。FIG. 2 is a block diagram of conventional cooling equipment.

【図3】綱帯内における学習係数の変動の例を示す図で
ある。
FIG. 3 is a diagram showing an example of a variation of a learning coefficient within a rope.

【符号の説明】[Explanation of symbols]

1 仕上げ圧延機 2a フィードフォワード制御用の冷却部 2b フィードバック制御用の冷却部 3 巻取り機 4 入側温度計 5 板厚計 6 入側速度検出器 7 出側温度計 8 出側速度検出器 9 冷却制御部 10 学習制御部 11 バンク開閉入出力部 S 綱帯 R 冷却設備 dj 温度制御領域の学習係数 △Tj 温度制御領域の温度降下量 1 Finishing Rolling Mill 2a Feed Forward Control Cooling Section 2b Feedback Control Cooling Section 3 Winder 4 Inlet Thermometer 5 Plate Thickness Gauge 6 Inlet Speed Detector 7 Outlet Thermometer 8 Outlet Speed Detector 9 Cooling control unit 10 Learning control unit 11 Bank opening / closing input / output unit S Steel band R Cooling equipment dj Learning coefficient of temperature control region ΔTj Temperature drop amount of temperature control region

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年10月15日[Submission date] October 15, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【書類名】 明細書[Document name] Statement

【発明の名称】 熱延鋼材の温度制御方法Title: Method for controlling temperature of hot rolled steel

【特許請求の範囲】[Claims]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱間圧延した熱延綱板
を巻取り機に巻取るに先立ってこの熱延鋼材の温度を巻
取りに適した所望の温度まで冷却する熱延鋼材の温度制
御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot-rolled steel sheet which cools the hot-rolled hot-rolled steel sheet to a desired temperature suitable for winding before winding the hot-rolled steel sheet into a winding machine. The present invention relates to a temperature control method.

【0002】[0002]

【従来の技術】熱間圧延設備において、一般に熱延鋼材
である帯を巻取り機に巻取るのに適した温度まで冷却
するために冷却設備が利用されている。図2はこのよう
な従来の冷却設備のブロック図である。1は仕上げ圧延
機、2aは冷却設備内の後述するフィードフォワード制
御用の冷却部、2bは同じくフィードバック制御用の冷
却部、3は巻取り機、4は仕上げ圧延機1を出て冷却設
備に送り込まれる帯の温度を測定する入側温度計、5
は仕上げ圧延後の帯の板厚を測定する板厚計、6は冷
却設備への帯の供給速度である仕上げ圧延機1の
の搬出速度を測定する入側速度検出器である。
2. Description of the Related Art In hot rolling equipment, cooling equipment is generally used to cool a steel strip, which is a hot rolled steel material , to a temperature suitable for winding it on a winding machine. FIG. 2 is a block diagram of such a conventional cooling facility. 1 is a finish rolling mill, 2a is a cooling unit for feed-forward control in the cooling facility, which will be described later, 2b is a feedback control cooling unit, 3 is a winder, 4 is a finishing rolling mill, and 1 Entry-side thermometer, which measures the temperature of the steel strip fed in, 5
Is a plate thickness gauge for measuring the strip thickness of the steel strip after finish rolling, and 6 is an inlet side velocity detector for measuring the steel strip unloading speed of the finish rolling mill 1, which is the supply rate of the steel strip to the cooling equipment. .

【0003】また、7は巻取り時の帯の温度を測定す
る出側温度計、8は冷却設備からの帯の搬出速度であ
る巻取り機3の帯の巻取り速度を測定する出側速度検
出器、9は帯を所望の巻取り温度に冷却するために冷
却部2a、2bへの注水パターンを算出する冷却制御
部、10は冷却制御部9による注水パターンの算出のた
めに後述する学習係数を決定して冷却制御部9に出力す
る学習制御部、11は冷却制御部9から出力された注水
量に基づいて冷却部2a、2bに注水指令を出力するバ
ンク開閉入出力部、Sは熱延鋼材である帯、Rは冷却
設備である。
Further, 7 is an outlet thermometer for measuring the temperature of the steel strip at the time of winding, and 8 is the winding speed of the steel strip of the winder 3 which is the delivery speed of the steel strip from the cooling equipment. An outlet speed detector, 9 is a cooling control unit that calculates a water injection pattern to the cooling units 2a and 2b in order to cool the steel strip to a desired coiling temperature, and 10 is a calculation of the water injection pattern by the cooling control unit 9. A learning control unit that determines a learning coefficient, which will be described later, and outputs the learning coefficient to the cooling control unit 9, 11 is a bank opening / closing input / output that outputs a water injection command to the cooling units 2a and 2b based on the water injection amount output from the cooling control unit 9. Part, S is a steel strip that is a hot rolled steel material , and R is a cooling facility.

【0004】仕上げ圧延機1で圧延形成された帯S
は、ランアウトテーブル上を走行して巻取り機3に巻取
られる。ランアウトテーブルには帯Sを巻取りに適し
た温度まで冷却する冷却設備Rが配置されている。冷却
設備Rは、ランアウトテーブルを挟んで上下に分割され
ると共に、ランアウトテーブルの前半に配置されたフィ
ードフォワード制御用の冷却部2aと後半に配置された
フィードバック制御用の冷却部2bとに分割されてい
る。更に、これらの冷却部2a、2bはそれぞれ複数の
冷却バンクに分割されている。そして、このような冷却
部2a、2bの各バンクへの注水量を調節することによ
帯Sに対する冷却量を制御する。
A steel strip S formed by rolling by the finish rolling mill 1
Runs on the run-out table and is wound up by the winder 3. Cooling equipment R for cooling the steel strip S to a temperature suitable for winding is arranged on the run-out table. The cooling equipment R is divided into an upper part and a lower part with the runout table sandwiched therebetween, and is divided into a feedforward control cooling part 2a arranged in the first half of the runout table and a feedback control cooling part 2b arranged in the latter half. ing. Further, each of the cooling units 2a and 2b is divided into a plurality of cooling banks. Then, the cooling amount for the steel strip S is controlled by adjusting the amount of water injected into each bank of the cooling units 2a, 2b.

【0005】次に、この冷却設備Rのフィードフォワー
ド制御の動作について説明する。冷却制御部9は、
Sを全長にわたって所望の巻取り温度に維持するために
フィードフォワード制御用の冷却部2aの各バンクへの
注水パターンを次式によって算出する。
Next, the operation of the feedforward control of the cooling equipment R will be described. The cooling control unit 9 calculates the water injection pattern to each bank of the cooling unit 2a for feedforward control in order to maintain the desired winding temperature of the steel strip S over the entire length by the following formula.

【0006】[0006]

【数1】 [Equation 1]

【0007】ここで、△Tは冷却設備Rによる帯Sの
巻取り時までの温度降下量(予測値)、dは後述する学
習制御部10から出力される学習係数、△TUi、△T
Diはそれぞれ上部、下部の冷却部2a中のiバンクの
冷却作用による帯Sの温度降下量、△TAiはiバン
クにおける空冷(放熱)による帯Sの温度降下量であ
る。
Here, ΔT is a temperature drop amount (predicted value) until the steel strip S is wound by the cooling facility R, d is a learning coefficient output from a learning control unit 10 described later, ΔTUi, ΔT.
Di is the temperature drop of the steel strip S due to the cooling action of the i bank in the upper and lower cooling parts 2a, and ΔTAi is the temperature drop of the steel strip S due to air cooling (heat dissipation) in the i bank.

【0008】そして、冷却制御部9は、予測値である温
度降下量△T、学習係数d、あらかじめ求められている
空冷による温度降下量△TAi、入側温度計4で測定さ
れた仕上げ圧延後の温度、板厚計5で測定された板厚、
入側速度検出器6及び出側速度検出器8で測定された速
度に基づいて注水パターンの算出を行う。すなわち、こ
れらに基づき式(1)を用いて、温度降下量△Tが目標
温度降下量になるように上部冷却部2aの各バンクの温
度降下量△TUi、下部冷却部2aの各バンクの温度降
下量△TDiを算出する。
The cooling control unit 9 then predicts the temperature drop ΔT, the learning coefficient d, the temperature drop ΔTAi obtained in advance by air cooling, and the finish rolling measured by the inlet side thermometer 4. Temperature, the thickness measured by the thickness gauge 5,
The water injection pattern is calculated based on the speeds measured by the inlet speed detector 6 and the outlet speed detector 8. That is, using the formula (1) based on these, the temperature drop amount ΔTUi of each bank of the upper cooling unit 2a and the temperature of each bank of the lower cooling unit 2a are adjusted so that the temperature drop amount ΔT becomes the target temperature drop amount. The amount of fall ΔTDi is calculated.

【0009】よって、これらの温度降下量△TUi、△
TDiから冷却部2aの各バンクの注水量が算出され、
この各バンクの注水量がバンク開閉入出力部11に出力
されてバンク開閉入出力部11から各バンクに注水指令
が出力されることにより冷却制御が行われる。そして、
このような注水パターンの算出と冷却制御は、最終的な
温度降下量△Tが目標温度降下量になるまで一定時間又
は一定距離ごとに注水パターンを変えながら繰り返し行
われる。
Therefore, these temperature drops ΔTUi, Δ
The amount of water injection in each bank of the cooling unit 2a is calculated from TDi,
Cooling control is performed by outputting the water injection amount of each bank to the bank opening / closing input / output unit 11 and outputting a water injection command from the bank opening / closing input / output unit 11 to each bank. And
The calculation of the water injection pattern and the cooling control as described above are repeatedly performed until the final temperature decrease amount ΔT reaches the target temperature decrease amount while changing the water injection pattern at regular intervals or at constant intervals.

【0010】次に、学習制御部10は、上記のような注
水パターンの算出で用いる学習係数dを以下のような手
順で決定する。まず、式(1)より導出される次式によ
帯S内の一点jにおける学習係数djを求める
Next, the learning control section 10 determines the learning coefficient d used in the calculation of the water injection pattern as described above in the following procedure. First, the learning coefficient dj at one point j in the steel strip S is calculated by the following equation derived from the equation (1).

【0011】[0011]

【数2】 [Equation 2]

【0012】ここで、△TRjはj点における帯Sの
温度降下量である。この温度降下量△TRjは入側温度
計4による仕上げ圧延後の温度の実測値と出側温度計7
による巻取り時の温度の実測値から求められる。また、
上部冷却部2aによる温度降下量Σ△TUi、下部冷却
部2aによる温度降下量Σ△TDi、空冷による温度降
下量Σ△TAiは過去の帯Sの冷却制御時の注水量、
速度等の実績から求められる。
Here, ΔTRj is the temperature drop amount of the steel strip S at point j. This temperature drop amount ΔTRj is the measured value of the temperature after finishing rolling by the inlet side thermometer 4 and the outlet side thermometer 7.
It can be obtained from the measured value of the temperature at the time of winding. Also,
The temperature drop amount ΣΔTUi by the upper cooling part 2a, the temperature drop amount ΣΔTDi by the lower cooling part 2a, and the temperature drop amount ΣΔTAi by air cooling are the water injection amount during the cooling control of the past steel strip S,
Calculated from actual results such as speed.

【0013】よって、学習制御部10は、式(2)より
帯Sのj点における学習係数djを決定するが、同様
にしてm個の学習ポイントにて学習係数djを求め、こ
れらを次式のように平均して最終的な学習係数dを求め
る。
Therefore, the learning control unit 10 uses the equation (2)
The learning coefficient dj at point j of the steel strip S is determined, and similarly, the learning coefficient dj is obtained at m learning points, and these are averaged as in the following equation to obtain the final learning coefficient d.

【0014】[0014]

【数3】 [Equation 3]

【0015】この学習係数dが学習制御部10から冷却
制御部9へ出力されることにより上記のような冷却制御
が行われることになる。ただし、実際の制御においては
帯S内の各学習係数djはそれぞれの学習ポイントご
とに異なることがある。このような帯S内における学
習係数djの変動は、圧延速度の加速変化とそれに対す
る速度予測値の誤差、各バンクの冷却能力の経時的変
化、注水指令に対する注水装置の応答遅れの変動等に起
因するものである。
By outputting the learning coefficient d from the learning control unit 10 to the cooling control unit 9, the cooling control as described above is performed. However, in actual control
Each learning coefficient dj in the steel strip S may be different for each learning point. Such a variation of the learning coefficient dj in the steel strip S is caused by an acceleration change of the rolling speed and an error of the speed prediction value corresponding thereto, a change with time of the cooling capacity of each bank, a change of the response delay of the water injection device with respect to the water injection instruction, It is due to.

【0016】図3はこのような帯S内における学習係
数djの変動の例を示す図である。d1 、d2 、d3 は
それぞれ帯Sの先端部、中央部、尾端部における学習
係数、△TRは帯Sの温度降下量の実績値、△TPは
同じくその予測値である。図3では本来予測値△TPの
ような温度降下量になるはずのものが、実際は△TRの
ように帯Sの先端部で過冷却、尾端部で冷却不足が発
生していることを示している。この実績△TRから式
(2)によって求められた学習係数djは先端部d1 、
中央部d2 、尾端部d3 でそれぞれ1.1、1.0、
0.9となっている。したがって、これら3点の学習係
数djを平均した学習係数dは1.0であり、次に冷却
する帯Sにおいても過冷却及び冷却不足を補償しない
ままとなる。
FIG. 3 is a diagram showing an example of the variation of the learning coefficient dj in the steel strip S as described above. d1, d2, d3 respectively tip of the steel strip S, the central portion, the learning coefficient at the tail end, △ TR is the actual value of the temperature drop of the steel strip S, △ TP is also the predicted value. In FIG. 3, what is supposed to be the temperature drop amount like the predicted value ΔTP is actually overcooled at the tip end of the steel strip S and undercooled at the tail end like ΔTR. Shows. The learning coefficient dj obtained by the equation (2) from the actual result ΔTR is the tip portion d1,
1.1, 1.0 at the central portion d2 and the tail end portion d3, respectively.
It is 0.9. Therefore, the learning coefficient d obtained by averaging the learning coefficients dj at these three points is 1.0, and the steel strip S to be cooled next remains uncompensated for overcooling and undercooling.

【0017】[0017]

【発明が解決しようとする課題】従来の温度制御方法で
は以上のように帯内の複数の学習ポイントにおける学
習係数から平均値として1つの学習係数を求めてこれを
学習制御に用いていたので、帯内の学習係数が変動し
ていると帯内における過冷却や冷却不足を補償できな
いという問題点があった。本発明は、上記課題を解決す
るために、帯内において学習係数が変動している場合
でも過不足のない冷却制御ができる熱延鋼材の温度制御
方法を提供することを目的とする。
As described above, in the conventional temperature control method, one learning coefficient is obtained as an average value from the learning coefficients at a plurality of learning points in the steel strip, and this is used for learning control. However, if the learning coefficient in the steel strip fluctuates, there is a problem that it is not possible to compensate for overcooling or undercooling in the steel strip. An object of the present invention is to provide a temperature control method for hot-rolled steel material, which is capable of performing cooling control without excess or deficiency even when the learning coefficient changes in the steel strip in order to solve the above problems.

【0018】[0018]

【課題を解決するための手段】本発明は、熱延鋼材を複
数の温度制御領域に区分し、温度制御領域ごとに制御実
績に基づく学習係数を求め、学習係数を用いて冷却設備
による温度制御領域の温度降下量を算出し、温度降下量
が目標温度降下量になるように冷却制御することを特徴
とする。また、熱延鋼材を複数の温度制御領域に区分
し、温度制御領域ごとに制御実績に基づく学習係数を求
め、学習係数を用いて冷却設備による温度制御領域の温
度降下量を算出し、温度降下量が目標温度降下量になる
ようにフィードフォワード制御用の冷却部を制御するこ
とを特徴とする。また、熱延鋼材を複数の温度制御領域
に区分し、温度制御領域ごとに制御実績に基づく学習係
数を求め、学習係数を用いて冷却設備による温度制御領
域の温度降下量を算出し、温度降下量が目標温度降下量
になるようにフィードバック制御用の冷却部を制御する
ことを特徴とする。また、熱延鋼材を複数の温度制御領
域に区分し、制御実績に基づいて上部冷却部、下部冷却
部、及び空冷の学習係数を温度制御領域ごとに求め、上
部冷却部、下部冷却部、及び空冷の学習係数を用いて冷
却設備による温度制御領域の温度降下量を算出し、温度
降下量が目標温度降下量になるように冷却制御すること
を特徴とする。
The present invention divides a hot rolled steel material into a plurality of temperature control areas, obtains a learning coefficient based on the control record for each temperature control area, and uses the learning coefficient to control the temperature by a cooling facility. It is characterized in that the amount of temperature drop in the region is calculated and cooling is controlled so that the amount of temperature drop becomes the target amount of temperature drop. In addition, the hot rolled steel material is divided into multiple temperature control areas.
Then, the learning coefficient based on the control results is calculated for each temperature control area.
Therefore, the learning coefficient is used to control the temperature of the temperature control area by the cooling equipment.
Calculate the temperature drop amount and the temperature drop amount becomes the target temperature drop amount
Control the cooling unit for feed-forward control.
And are characterized. In addition, hot rolled steel can be
The learning section based on the control results for each temperature control area.
Number, and use the learning coefficient to control the temperature by cooling equipment.
Calculate the temperature drop amount of the area, and the temperature drop amount is the target temperature drop amount.
The cooling unit for feedback control so that
It is characterized by In addition, the hot rolled steel material can be
Divided into areas, upper cooling section, lower cooling based on control results
Part and air-cooling learning coefficient for each temperature control area,
Cooling using the learning coefficient
The temperature drop in the temperature control area due to
Cooling control so that the amount of drop is the target amount of temperature drop
Is characterized by.

【0019】[0019]

【作用】本発明によれば、熱延鋼材が複数の温度制御領
域に区分され、その温度制御領域ごとに制御実績に基づ
いて学習係数が算出される。そして、温度制御領域が冷
却設備に達したときに、学習係数に基づいて冷却設備に
よる温度制御領域の温度降下量が算出され、その温度降
下量が目標温度降下量になるように冷却設備の注水パタ
ーンが決定される。また、温度制御領域の温度降下量が
目標温度降下量になるようにフィードフォワード制御用
の冷却部の注水パターンが決定される。また、温度制御
領域の温度降下量が目標温度降下量になるようにフィー
ドバック制御用の冷却部の注水パターンが決定される。
また、温度制御領域ごとに制御実績に基づいて上部冷却
部、下部冷却部、及び空冷の学習係数が算出され、これ
ら上部冷却部、下部冷却部、及び空冷の学習係数に基づ
いて温度制御領域の温度降下量が算出され、その温度降
下量が目標温度降下量になるように冷却制御が行われ
る。
According to the present invention, the hot rolled steel material is divided into a plurality of temperature control regions, and the learning coefficient is calculated for each temperature control region based on the control record. Then, when the temperature control area reaches the cooling equipment, the temperature drop amount of the temperature control area by the cooling equipment is calculated based on the learning coefficient, and the cooling equipment water injection is performed so that the temperature drop amount becomes the target temperature drop amount. The pattern is determined. Also, the amount of temperature drop in the temperature control area
For feedforward control so that the target temperature drop amount is achieved
The water injection pattern of the cooling section of is determined. Also temperature control
Set the amount of temperature drop in the area to match the target amount of temperature drop.
The water injection pattern of the cooling unit for the feedback control is determined.
In addition, upper cooling is performed based on the control results for each temperature control area.
Learning coefficients for the cooling section, lower cooling section, and air cooling are calculated.
Based on the learning coefficient of upper cooling unit, lower cooling unit, and air cooling.
The temperature drop amount in the temperature control area is calculated and
Cooling control is performed so that the lower amount becomes the target temperature drop amount.
It

【0020】[0020]

【実施例】図1は本発明の1実施例を示す熱延鋼材の温
度制御方法のフローチャートを示す図である。本実施例
は、この温度制御方法をフィードフォワード制御に適用
した例であるが、冷却設備としては図2の例と同様であ
り、したがって図2の符号をそのまま用いてその手順を
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a flowchart showing a method of controlling the temperature of hot rolled steel according to one embodiment of the present invention. The present embodiment is an example in which this temperature control method is applied to feedforward control, but the cooling equipment is the same as the example in FIG. 2, and therefore the procedure will be described using the reference numerals in FIG. 2 as they are.

【0021】まず、冷却制御がスタートすると(ステッ
プ100)、冷却制御部9は、帯Sが仕上げ圧延機1
に達したときに帯Sの全長(予測値)を計算し、次い
帯Sを長手方向に複数の温度制御領域に区分けしそ
の制御領域の領域長を計算する(ステップ101)。そ
して、帯Sの巻取りが完了したかどうかを判定し(ス
テップ102)、巻取り途中ならば判定Noとなってス
テップ103に進む。
First, when the cooling control is started (step 100), the cooling control unit 9 causes the steel strip S to finish the rolling mill 1.
When the steel strip S is reached, the total length (predicted value) of the steel strip S is calculated, then the steel strip S is divided into a plurality of temperature control regions in the longitudinal direction, and the region length of the control region is calculated (step 101). Then, it is determined whether or not the winding of the steel strip S is completed (step 102), and if it is in the middle of winding, the determination becomes No and the process proceeds to step 103.

【0022】次に、冷却制御部9は、入側速度検出器6
及び出側速度検出器8で測定された圧延速度により
Sの先端から現在入側温度計4の直下にある温度制御領
域、すなわちこれから冷却設備Rに入る温度制御領域ま
での距離を測定し、これと前述の領域長によってこの温
度制御領域の番号(以下、jとする)を決定しこの制御
領域番号jを学習制御部10に出力する(ステップ10
3)。
Next, the cooling controller 9 controls the entrance speed detector 6
And, the distance from the tip of the steel strip S to the temperature control region right below the inlet side thermometer 4, that is, the temperature control region entering the cooling facility R from the tip of the steel strip S is measured by the rolling speed measured by the outlet speed detector 8. The temperature control area number (hereinafter referred to as j) is determined based on this and the area length described above, and the control area number j is output to the learning control unit 10 (step 10).
3).

【0023】学習制御部10には、温度制御領域ごとに
設けられた学習ポイントにおいて図2の例と同様にして
算出された学習係数djがあらかじめ記憶されている。
そして、学習制御部10は冷却制御部9から制御領域番
号jが出力されるとこの温度制御領域の学習係数djを
冷却制御部9に出力する(ステップ104)。
The learning control unit 10 stores in advance a learning coefficient dj calculated in the same manner as in the example of FIG. 2 at a learning point provided for each temperature control area.
Then, when the control region number j is output from the cooling control unit 9, the learning control unit 10 outputs the learning coefficient dj of this temperature control region to the cooling control unit 9 (step 104).

【0024】次に、冷却制御部9は、この学習係数d
j、入側温度計4で測定された圧延後の温度、板厚計5
で測定された板厚、入側速度検出器6及び出側速度検出
器8で測定された圧延速度等に基づき、式(1)と同様
の次式によって番号jの温度制御領域における温度降下
量△Tjが目標温度降下量になるように注水パターンを
算出する(ステップ105)。
Next, the cooling controller 9 determines the learning coefficient d.
j, temperature after rolling measured by inlet side thermometer 4, plate thickness gauge 5
The amount of temperature drop in the temperature control region of the number j by the following equation similar to the equation (1) based on the plate thickness measured in step 1 and the rolling speed measured by the inlet speed detector 6 and the outlet speed detector 8 The water injection pattern is calculated so that ΔTj becomes the target temperature drop amount (step 105).

【0025】[0025]

【数4】 [Equation 4]

【0026】そして、バンク開閉入出力部11にこの注
水パターンを出力することによりフィードフォワード制
御用の冷却部2aの各バンクに注水指令が出力され温度
制御が行われる(ステップ106)。次いで、番号jの
温度制御領域が出側温度計7を通過、すなわち冷却設備
Rを通過したかどうかを判定し(ステップ107)、通
過していないときは判定Noとなってステップ105に
戻り注水パターンの算出を行う。
By outputting this water injection pattern to the bank opening / closing input / output unit 11, a water injection command is output to each bank of the cooling unit 2a for feedforward control, and temperature control is performed (step 106). Next, it is determined whether or not the temperature control area of the number j has passed the outlet thermometer 7, that is, the cooling facility R (step 107). If not, a determination No is returned to step 105 and water injection is performed. Calculate the pattern.

【0027】この注水パターンの算出は一定時間又は
帯Sの一定長ごとに繰り返し行われ、同一の温度制御領
域中では同一の学習係数djが用いられることになる。
次に、ステップ107において番号jの温度制御領域が
出側温度計7を通過し終えると、学習制御部10は、冷
却部2a及び2bの注水パターン実績、巻取り温度実
績、その他の圧延実績からこの温度制御領域の学習係数
djを再計算して更新する(ステップ108)。ここ
で、算出された各温度制御領域の学習係数djは次の
帯Sの温度制御において使用される。
The calculation of the water injection pattern is repeated for a certain period of time or every certain length of the steel strip S, and the same learning coefficient dj is used in the same temperature control region.
Next, in step 107, when the temperature control area of number j has finished passing through the outlet thermometer 7, the learning control unit 10 determines from the water injection pattern results of the cooling units 2a and 2b, the winding temperature results, and other rolling results. The learning coefficient dj of this temperature control region is recalculated and updated (step 108). Here, the calculated learning coefficient dj of each temperature control region is used in the temperature control of the next steel strip S.

【0028】そして、ステップ102に戻って帯Sが
全て巻取り機3に巻取られるまでは判定Noとして次の
温度制御領域の温度制御に移り、上記のような処理を各
温度制御領域について帯Sの巻取り完了まで繰り返
す。よって、帯S内の各温度制御領域ごとに個別の学
習係数djを用いて温度制御を行うことになる。これを
図3の例で説明すると、図3の例では以前の帯Sの先
端部で過冷却、尾端部で冷却不足が発生していてその学
習係数djがそれぞれ1.1、0.9である。
Then, returning to step 102, until the steel strip S is completely wound up by the winding machine 3, as the judgment No, the temperature control of the next temperature control region is started, and the above-mentioned processing is performed for each temperature control region. Repeat until the winding of the steel strip S is completed. Therefore, the temperature control is performed using the individual learning coefficient dj for each temperature control region in the steel strip S. This will be described with reference to the example of FIG. 3. In the example of FIG. 3, supercooling occurs at the tip of the previous steel strip S and insufficient cooling occurs at the tail, and the learning coefficients dj are 1.1, 0. It is 9.

【0029】本実施例では次に冷却する帯Sにおい
て、先端部で学習係数dj=1.1を使用し(式(4)
より温度降下量△Tjが同じだとすると注水量が減って
過冷却を補償する方向に働く)、尾端部で学習係数dj
=0.9を使用する(同じく注水量が増えて冷却不足を
補償する)ことにより過冷却及び冷却不足を補償できる
ことになる。したがって、学習係数djが温度制御領域
ごとに変動していたとしても適切な注水パターンによる
過不足のない温度制御が可能となる。
In this embodiment, the learning coefficient dj = 1.1 is used at the tip of the steel strip S to be cooled next (Equation (4)).
If the temperature drop amount ΔTj is the same, the amount of water injection is reduced to work in the direction of compensating for supercooling), and the learning coefficient dj at the tail end.
By using = 0.9 (also compensating for insufficient cooling due to increased water injection amount), it is possible to compensate for overcooling and undercooling. Therefore, even if the learning coefficient dj fluctuates in each temperature control region, it is possible to perform temperature control without excess or deficiency by an appropriate water injection pattern.

【0030】図1の実施例ではフィードフォワード制御
に適用したが、フィードバック制御に適用することもで
きる。フィードバック制御においては、フィードフォワ
ード制御の制御誤差を補う微調整を行うため帯Sの出
側温度計7による巻取り温度の実測値と目標温度とを比
較し、その誤差を補正するようにフィードバック制御用
の冷却部2bの各バンクの注水量を決定している。
Although the embodiment of FIG. 1 is applied to the feedforward control, it may be applied to the feedback control. In the feedback control, in order to make a fine adjustment to compensate for the control error of the feedforward control, the actual measurement value of the winding temperature of the steel strip S by the output side thermometer 7 is compared with the target temperature, and feedback is performed to correct the error. The water injection amount of each bank of the control cooling unit 2b is determined.

【0031】その注水量は、次式において温度降下量△
Tを巻取り温度の実測値と目標値の誤差の比例積分値と
し、冷却部2bの各バンクの注水パターンを変化させる
ことにより決定される。
The water injection amount is the temperature drop amount Δ in the following equation.
It is determined by setting T to be a proportional integral value of an error between the measured value of the winding temperature and the target value, and changing the water injection pattern of each bank of the cooling unit 2b.

【0032】[0032]

【数5】 [Equation 5]

【0033】冷却制御部9は、このフィードバック制御
によってフィードフォワード制御の結果を微調整するよ
うにしている。次に、このようなフィードバック制御に
本発明の温度制御方法を適用したときの手順を説明す
る。その手順は基本的に図1の例と同様であり、冷却制
御部9は、図1の例と同じ学習係数djに基づいて番号
jの温度制御領域が冷却部2bの直下にあるときの注水
パターンを次式にて算出する。
The cooling control unit 9 finely adjusts the result of the feedforward control by this feedback control. Next, a procedure when the temperature control method of the present invention is applied to such feedback control will be described. The procedure is basically the same as in the example of FIG. 1, and the cooling control unit 9 injects water when the temperature control region of number j is immediately below the cooling unit 2b based on the same learning coefficient dj as in the example of FIG. The pattern is calculated by the following formula.

【0034】[0034]

【数6】 [Equation 6]

【0035】したがって、フィードバック制御にも学習
係数djを導入し、帯S内の各温度制御領域ごとに個
別の学習係数djを用いることによってより高精度の温
度制御を行うことができる。
Therefore, by introducing the learning coefficient dj also in the feedback control and using the individual learning coefficient dj for each temperature control region in the steel strip S, more accurate temperature control can be performed.

【0036】また、本発明の温度制御方法を特開昭64
―62206号で提案された温度制御に適用することも
できる。この温度制御では次式のように学習係数dを上
部冷却部のiバンクにおける学習係数ai、下部冷却部
のiバンクにおける学習係数bi、空冷の学習係数ci
に分離して制御している。
Further, the temperature control method of the present invention is disclosed in JP-A-64
It can also be applied to the temperature control proposed in No. 62206. In this temperature control, the learning coefficient d is the learning coefficient ai in the i bank of the upper cooling section, the learning coefficient bi in the i bank of the lower cooling section, and the learning coefficient ci of the air cooling as in the following equation.
It is controlled separately.

【0037】[0037]

【数7】 [Equation 7]

【0038】この温度制御においても各学習係数は
S内では一定である。そこで、図1の例と同様に帯S
を区分けして番号jの温度制御領域における上部冷却部
の学習係数aij、下部冷却部の学習係数bij、空冷
の学習係数cijを用いて温度制御領域ごとに温度降下
量△Tjが目標温度降下量になるように制御することに
より高精度の制御を行うことができる。
Even in this temperature control, each learning coefficient is constant in the steel strip S. Therefore, the steel strip as in the example of FIG. 1 S
And the learning coefficient aij of the upper cooling section, the learning coefficient bij of the lower cooling section, and the learning coefficient cij of the air cooling in the temperature control area of number j are used to determine the temperature decrease amount ΔTj for each temperature control area. It is possible to perform highly accurate control by controlling so that

【0039】[0039]

【数8】 [Equation 8]

【0040】[0040]

【発明の効果】本発明によれば、熱延鋼材内の各温度制
御領域ごとに個別の学習係数を使用して冷却設備の注水
パターンを算出するので、熱延鋼材内において熱流速が
変動し学習係数が変動する場合でも、熱延鋼材の全長に
わたって適切な注水パターンによる過不足のない高精度
な温度制御を行うことができる。また、フィードフォワ
ード制御において、熱延鋼材内の各温度制御領域ごとに
個別の学習係数を用いるようにしたので、鋼材内におい
て学習係数が変動する場合でも高精度な温度制御を行う
ことができる。また、フィードバック制御において、学
習係数を導入し各温度制御領域ごとに個別の学習係数を
用いるようにしたので、従来のフィードバック制御と比
べてより高精度な温度制御を行うことができる。また、
学習係数を上部冷却部、下部冷却部、及び空冷の学習係
数に分離して冷却制御を行う場合に、これらの学習係数
を温度制御領域ごとに算出して用いるようにしたので、
鋼材内において学習係数が変動する場合でも高精度な温
度制御を行うことができる。
According to the present invention, since the water injection pattern of the cooling equipment is calculated by using the individual learning coefficient for each temperature control region in the hot rolled steel material, the heat flow velocity varies in the hot rolled steel material. Even if the learning coefficient fluctuates, it is possible to perform accurate temperature control without excess or deficiency by an appropriate water injection pattern over the entire length of the hot rolled steel material. Also feed forward
Mode control, for each temperature control area in the hot rolled steel
Since the individual learning coefficient is used,
Highly accurate temperature control even when the learning coefficient fluctuates
be able to. In feedback control, learning
The learning coefficient is introduced and an individual learning coefficient is set for each temperature control area.
Since it was used, it is
It is possible to perform more accurate temperature control. Also,
The learning coefficient is assigned to the upper cooling unit, the lower cooling unit, and the air cooling learning unit.
These learning coefficients are used when cooling control is performed separately for each number.
Is calculated for each temperature control area and used,
Even if the learning coefficient fluctuates in the steel material, the temperature can be adjusted with high accuracy.
Degree control can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例を示す熱延鋼材の温度制御方
法のフローチャートを示す図である。
FIG. 1 is a diagram showing a flowchart of a temperature control method for hot-rolled steel according to an embodiment of the present invention.

【図2】従来の冷却設備のブロック図である。FIG. 2 is a block diagram of conventional cooling equipment.

【図3】帯内における学習係数の変動の例を示す図で
ある。
FIG. 3 is a diagram showing an example of variation of a learning coefficient in a steel strip.

【符号の説明】 1 仕上げ圧延機 2a フィードフォワード制御用の冷却部 2b フィードバック制御用の冷却部 3 巻取り機 4 入側温度計 5 板厚計 6 入側速度検出器 7 出側温度計 8 出側速度検出器 9 冷却制御部 10 学習制御部 11 バンク開閉入出力部 S 帯 R 冷却設備 dj 温度制御領域の学習係数 △Tj 温度制御領域の温度降下量[Explanation of symbols] 1 finishing rolling mill 2a cooling unit for feedforward control 2b cooling unit for feedback control 3 winding machine 4 inlet side thermometer 5 plate thickness gauge 6 inlet side speed detector 7 outlet side thermometer 8 outlet Side speed detector 9 Cooling control unit 10 Learning control unit 11 Bank opening / closing input / output unit S Steel strip R Cooling equipment dj Learning coefficient of temperature control region ΔTj Temperature drop amount of temperature control region

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 熱間圧延された熱延鋼材を巻取り機に巻
取るのに適した温度まで冷却する熱延鋼材の温度制御方
法において、 熱延鋼材を複数の温度制御領域に区分し、 温度制御領域ごとに制御実績に基づく学習係数を求め、 前記学習係数を用いて冷却設備による温度制御領域の温
度降下量を算出し、 前記温度降下量が目標温度降下量になるように冷却制御
することを特徴とする熱延鋼材の温度制御方法。
1. A temperature control method for a hot rolled steel material, comprising cooling the hot rolled hot rolled steel material to a temperature suitable for winding in a winder, dividing the hot rolled steel material into a plurality of temperature control regions, A learning coefficient based on the control performance is obtained for each temperature control area, the temperature drop amount of the temperature control area by the cooling equipment is calculated using the learning coefficient, and cooling control is performed so that the temperature drop amount becomes the target temperature drop amount. A method for controlling the temperature of a hot rolled steel material, comprising:
JP5156543A 1993-06-28 1993-06-28 Temperature control method for hot rolled steel Expired - Lifetime JP2783124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5156543A JP2783124B2 (en) 1993-06-28 1993-06-28 Temperature control method for hot rolled steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5156543A JP2783124B2 (en) 1993-06-28 1993-06-28 Temperature control method for hot rolled steel

Publications (2)

Publication Number Publication Date
JPH0732024A true JPH0732024A (en) 1995-02-03
JP2783124B2 JP2783124B2 (en) 1998-08-06

Family

ID=15630101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5156543A Expired - Lifetime JP2783124B2 (en) 1993-06-28 1993-06-28 Temperature control method for hot rolled steel

Country Status (1)

Country Link
JP (1) JP2783124B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020052723A (en) * 2000-12-26 2002-07-04 이구택 coiling temperature control method of hot strip using learning method
KR100425602B1 (en) * 1999-12-14 2004-04-03 주식회사 포스코 Cooling control method of hot strip
KR100431834B1 (en) * 1999-09-22 2004-05-20 주식회사 포스코 A Method for Cooling Hot-Rolled Steel Sheet
KR100507575B1 (en) * 2000-12-23 2005-08-10 주식회사 포스코 Method for controlling cooling of steel in hot rolling by middle temperature
KR100563260B1 (en) * 2001-06-19 2006-03-27 주식회사 포스코 Cooling control method for compensating set-up temperature by recalculating amount of cooling water
KR100568358B1 (en) * 2001-12-22 2006-04-05 주식회사 포스코 Hot strip cooling control mothode for chage target temperature
KR100711387B1 (en) * 2005-12-21 2007-04-30 주식회사 포스코 Method for controlling longitudinal direction temperature of hot-rolled steel plate
US7210918B2 (en) 2004-03-29 2007-05-01 Fanuc Ltd Mold clamping force adjustment device of toggle type injection molding machine
JP2007237285A (en) * 2006-03-13 2007-09-20 Hitachi Ltd Device and method for controlling winding temperature
KR100775750B1 (en) * 2001-12-12 2007-11-12 주식회사 포스코 Method for cooling of slab on run-out table
WO2008078908A1 (en) * 2006-12-22 2008-07-03 Posco Temperature controlling method and apparatus in hot strip mill
KR100912153B1 (en) * 2005-10-26 2009-08-14 가부시키가이샤 히타치세이사쿠쇼 Device and method for controlling coiling temperature
JP2011200914A (en) * 2010-03-25 2011-10-13 Jfe Steel Corp Device and method for controlling winding temperature
JP2014180670A (en) * 2013-03-18 2014-09-29 Jfe Steel Corp Cooling control method for hot-rolled material
JPWO2022038751A1 (en) * 2020-08-20 2022-02-24

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102284511A (en) * 2011-07-28 2011-12-21 山西太钢不锈钢股份有限公司 Band steel laminar flow cooling temperature self-adaptive method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03198905A (en) * 1989-12-26 1991-08-30 Sumitomo Metal Ind Ltd Control method for cooling rolled stock

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03198905A (en) * 1989-12-26 1991-08-30 Sumitomo Metal Ind Ltd Control method for cooling rolled stock

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100431834B1 (en) * 1999-09-22 2004-05-20 주식회사 포스코 A Method for Cooling Hot-Rolled Steel Sheet
KR100425602B1 (en) * 1999-12-14 2004-04-03 주식회사 포스코 Cooling control method of hot strip
KR100507575B1 (en) * 2000-12-23 2005-08-10 주식회사 포스코 Method for controlling cooling of steel in hot rolling by middle temperature
KR20020052723A (en) * 2000-12-26 2002-07-04 이구택 coiling temperature control method of hot strip using learning method
KR100563260B1 (en) * 2001-06-19 2006-03-27 주식회사 포스코 Cooling control method for compensating set-up temperature by recalculating amount of cooling water
KR100775750B1 (en) * 2001-12-12 2007-11-12 주식회사 포스코 Method for cooling of slab on run-out table
KR100568358B1 (en) * 2001-12-22 2006-04-05 주식회사 포스코 Hot strip cooling control mothode for chage target temperature
US7210918B2 (en) 2004-03-29 2007-05-01 Fanuc Ltd Mold clamping force adjustment device of toggle type injection molding machine
KR100922459B1 (en) * 2005-10-26 2009-10-21 가부시키가이샤 히타치세이사쿠쇼 Device and method for controlling coiling temperature
KR100912153B1 (en) * 2005-10-26 2009-08-14 가부시키가이샤 히타치세이사쿠쇼 Device and method for controlling coiling temperature
KR100711387B1 (en) * 2005-12-21 2007-04-30 주식회사 포스코 Method for controlling longitudinal direction temperature of hot-rolled steel plate
JP2007237285A (en) * 2006-03-13 2007-09-20 Hitachi Ltd Device and method for controlling winding temperature
JP4605054B2 (en) * 2006-03-13 2011-01-05 株式会社日立製作所 Winding temperature control device and control method
WO2008078908A1 (en) * 2006-12-22 2008-07-03 Posco Temperature controlling method and apparatus in hot strip mill
JP2011200914A (en) * 2010-03-25 2011-10-13 Jfe Steel Corp Device and method for controlling winding temperature
JP2014180670A (en) * 2013-03-18 2014-09-29 Jfe Steel Corp Cooling control method for hot-rolled material
JPWO2022038751A1 (en) * 2020-08-20 2022-02-24
WO2022038751A1 (en) * 2020-08-20 2022-02-24 東芝三菱電機産業システム株式会社 Control device for hot rolling line

Also Published As

Publication number Publication date
JP2783124B2 (en) 1998-08-06

Similar Documents

Publication Publication Date Title
JPH0732024A (en) Method for controlling temperature of hot rolled steel products
JPS6121729B2 (en)
CN114126777B (en) Method for controlling a cooling device in a rolling train
JP2004034122A (en) Winding temperature controller
US6185967B1 (en) Strip threading speed controlling apparatus for tandem rolling mill
KR19990047916A (en) Cooling control method of hot-rolled steel sheet
JP2001300628A (en) Method for cooling joined steel sheet
KR100568358B1 (en) Hot strip cooling control mothode for chage target temperature
JPH11267730A (en) Device for controlling temperature of hot rolled sheet and its method
KR910010145B1 (en) Method of controlling winding temperature in hot rolling
JPH02179825A (en) Controller for cooling hot-rolled steel sheet
JPH0275409A (en) Method for controlling winding temperature of hot rolled steel sheet
KR100531145B1 (en) Sheet width control method in hot rolling
JP2744415B2 (en) Hot rolled steel coiling temperature control device
JPH08252624A (en) Method for controlling finishing temperature in continuous hot rolling
JP3767832B2 (en) Thickness control method in hot rolling
JPH08300024A (en) Method for controlling plate width in hot rolling
JPH09174136A (en) Cooling controller for hot rolled plate
JPH03287720A (en) Method for controlling hot finish rolling temperature of strip
JP3403330B2 (en) Strip width control method in hot rolling
KR100496824B1 (en) Cooling control method of hot strip using intermediate pyrometer on run-out table
JPS61266524A (en) Method for controlling cooling of steel product
JP2001334304A (en) Device for controlling temperature on outlet side of hot finishing rolling mill
JP3194447B2 (en) Rolled material cooling control method
RU2184632C2 (en) Method for controlling cooling conditions of rolled pieces

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080522

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090522

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100522

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110522

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110522

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 16

EXPY Cancellation because of completion of term