JP2014180670A - Cooling control method for hot-rolled material - Google Patents

Cooling control method for hot-rolled material Download PDF

Info

Publication number
JP2014180670A
JP2014180670A JP2013054811A JP2013054811A JP2014180670A JP 2014180670 A JP2014180670 A JP 2014180670A JP 2013054811 A JP2013054811 A JP 2013054811A JP 2013054811 A JP2013054811 A JP 2013054811A JP 2014180670 A JP2014180670 A JP 2014180670A
Authority
JP
Japan
Prior art keywords
hot
rolled material
heat transfer
control unit
transfer coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013054811A
Other languages
Japanese (ja)
Other versions
JP5928377B2 (en
Inventor
Masato Nakazawa
将人 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013054811A priority Critical patent/JP5928377B2/en
Publication of JP2014180670A publication Critical patent/JP2014180670A/en
Application granted granted Critical
Publication of JP5928377B2 publication Critical patent/JP5928377B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cooling control method for a hot-rolled material, capable of controlling a winding temperature with high accuracy over the full length of the hot-rolled material.SOLUTION: When dividing a hot-rolled material into a plurality of control units in the long direction and controlling a temperature by use of a heat transfer coefficient obtained by multiplying a heat transfer coefficient determined by a model expression by a prescribed learning value in each control unit, the control unit is classified into three parts of a tip part, a steady part, and a tail end part along the long direction of the hot-rolled material, a learning coefficient of the heat transfer coefficient of each control unit belonging to each part is calculated in each of the three parts, and an average value thereof is used as the learning value of the heat transfer coefficient of each part. In the temperature control performed in each control unit, the learning value of the heat transfer coefficient corresponding to the part to which the control unit belongs is used. In a boundary part between the parts, the learning value varied stepwise in each control unit is used.

Description

本発明は、熱間圧延設備において圧延された熱延鋼板等の熱間圧延材のランナウトテーブルにおける冷却制御方法に関する。熱間圧延材はそれぞれ巻き取り温度の目標が定められており、巻取温度が目標の公差範囲内に入るように、巻取温度制御装置によって冷却制御を実施している。   The present invention relates to a cooling control method for a run-out table of a hot rolled material such as a hot rolled steel sheet rolled in a hot rolling facility. Each hot-rolled material has a target coiling temperature, and cooling control is performed by the coiling temperature control device so that the coiling temperature falls within the target tolerance range.

巻取温度制御は、熱延鋼板等の熱間圧延材を長手方向に定長単位で区切った制御単位(切板と呼ばれる)毎に、仕上圧延機(仕上げミル)出側の温度実績をもとに冷却パターンを決定するフィードフォワード(FF)制御と、巻き取り温度実績をもとに冷却量を修正するフィードバック(FB)制御とから成り立っている。   Winding temperature control is based on the temperature results on the exit side of the finish rolling mill (finishing mill) for each control unit (called a cutting plate) in which hot-rolled steel sheets such as hot-rolled steel sheets are divided in the lengthwise direction into constant length units. And feedforward (FF) control for determining the cooling pattern, and feedback (FB) control for correcting the cooling amount based on the actual winding temperature.

これら制御に用いる温度計算を行う際の鋼板の熱伝達係数は、モデル式によって決定される熱伝達係数に、鋼種や板厚、目標温度等によって区分けされた圧延材グループ毎に持つ学習値を乗じた値が採用される。   The heat transfer coefficient of the steel sheet when performing the temperature calculation used for these controls is obtained by multiplying the heat transfer coefficient determined by the model formula with the learning value for each rolled material group divided by the steel type, sheet thickness, target temperature, etc. Values are adopted.

この熱伝達係数の学習値の温度計算への反映方法として、様々な手法が用いられているが、一般的には、鋼板長手方向に一定ピッチ間隔で、切板の巻取り温度実績から求まる熱伝達係数の学習係数を算出し、それらの平均値を当該鋼板の熱伝達係数の学習値として同一圧延グループの学習値を更新する技術が行われている。各切板の学習係数は、特許文献1〜3やその他の多くの文献に記載されているように、逐次型最小二乗法によって求められる。   Various methods are used to reflect the learned value of this heat transfer coefficient in the temperature calculation. Generally, the heat obtained from the actual winding temperature of the cut plate at regular pitch intervals in the longitudinal direction of the steel plate. A technique for calculating a learning coefficient of a transfer coefficient and updating the learning value of the same rolling group using the average value as a learning value of a heat transfer coefficient of the steel sheet is performed. As described in Patent Documents 1 to 3 and many other documents, the learning coefficient of each cut plate is obtained by a sequential least square method.

また、鋼板の長手方向では温度変動の特性が異なり、特に鋼板長手方向の先端部や尾端部は定常部と比較して巻取温度の制御精度が悪いことが知られている。   In addition, it is known that the temperature fluctuation characteristics differ in the longitudinal direction of the steel sheet, and in particular, the control accuracy of the coiling temperature is poor at the front end and tail end in the longitudinal direction of the steel sheet as compared with the stationary part.

この点に関して、上記特許文献1では、鋼板先端部の温度変動を抑止するための技術が示されている。具体的には、先端部の熱伝達係数の学習値として、先端部の学習係数の平均値を用い、同一圧延グループの熱伝達係数の学習値を更新している。注水設定を行う温度計算においては、先端部の熱伝達係数にのみ学習値を反映しており、先端部とそれ以外の部分とを分けて扱っている。   In this regard, Patent Document 1 discloses a technique for suppressing temperature fluctuations at the front end of the steel plate. Specifically, the learning value of the heat transfer coefficient of the same rolling group is updated using the average value of the learning coefficient of the tip part as the learning value of the heat transfer coefficient of the tip part. In the temperature calculation for setting water injection, the learning value is reflected only on the heat transfer coefficient of the tip, and the tip and the other parts are handled separately.

また、上記特許文献2に記載された技術では、鋼板の長手方向で温度変動の特性の違いに着目し、一つの鋼板を長手方向にいくつかの区分に分割し、分割する区分毎に熱伝達係数学習値を持たせる仕組みを採用している。ただし、圧延材の種類に応じた学習値は設けていない。   In the technique described in Patent Document 2, paying attention to the difference in temperature fluctuation characteristics in the longitudinal direction of the steel sheet, one steel sheet is divided into several sections in the longitudinal direction, and heat transfer is performed for each divided section. A mechanism that gives coefficient learning values is adopted. However, no learning value according to the type of rolled material is provided.

特開平11−33616号公報JP-A-11-33616 特許第2783124号公報Japanese Patent No. 2783124 特公平6−88060号公報Japanese Patent Publication No. 6-88060

上記特許文献1および2に示された技術に基づいて、鋼板の先端部および尾端部における巻取温度の制御精度を向上させるための方式として、鋼板を長手方向に、先端部、定常部、尾端部の3つの部位に分類し、それぞれに熱伝達係数の学習値を持たせるようにし、各部位の熱伝達係数の平均値を使用してそれぞれの熱伝達係数の学習値を更新し、温度計算においては、計算対象の切板が属する部位の学習値を用いて熱伝達係数を補正するように制御する方式が考えられる。   Based on the techniques shown in Patent Documents 1 and 2 above, as a method for improving the control accuracy of the coiling temperature at the tip and tail ends of the steel plate, the steel plate in the longitudinal direction, the tip portion, the steady portion, Classify into three parts of the tail end, each to have a learning value of the heat transfer coefficient, update the learning value of each heat transfer coefficient using the average value of the heat transfer coefficient of each part, In the temperature calculation, a method of controlling so as to correct the heat transfer coefficient using the learning value of the part to which the cutting plate to be calculated belongs can be considered.

しかしながら、この方式により、鋼板の長手方向の先端部、定常部、尾端部の3つの部位において熱伝達係数の学習値を異なる値として注水制御を行うと、熱伝達係数の学習値が切り替わる境界において注水パターンが急激に変化することになり、その境界部分では巻取温度を高精度で制御することが困難である。   However, by this method, when water injection control is performed with the learning value of the heat transfer coefficient being different in the three parts of the steel sheet in the longitudinal direction, the stationary part, and the tail end, the boundary at which the learning value of the heat transfer coefficient is switched. In this case, the water injection pattern changes abruptly, and it is difficult to control the coiling temperature with high accuracy at the boundary portion.

本発明はかかる事情に鑑みてなされたものであって、熱間圧延材全長に亘って高精度で巻取温度を制御することができる熱間圧延材の冷却制御方法を提供することを課題とする。   The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a method for controlling the cooling of a hot rolled material that can control the coiling temperature with high accuracy over the entire length of the hot rolled material. To do.

本発明者は、上記課題を解決するために検討した結果、熱伝達係数の学習計算において、熱延鋼板等の熱間圧延材の長手方向に区分けした制御単位(切板)毎に算出される学習係数は、対象の制御単位が熱延材の長手方向のどの部位(先端部、尾端部、定常部)に属するかによって傾向が異なり、これらの境界において学習値に段差が形成されて温度制御精度に問題が生じるおそれがあるが、これら部位の境界部の制御単位において学習係数を滑らかに変化させることにより、熱間圧延材全長において巻取温度を高精度で制御できることを見出した。   As a result of investigations to solve the above problems, the present inventor is calculated for each control unit (cut plate) divided in the longitudinal direction of a hot-rolled material such as a hot-rolled steel plate in the learning calculation of the heat transfer coefficient. The learning coefficient has a different tendency depending on which part (tip, tail, and steady part) in the longitudinal direction of the hot-rolled material the target control unit belongs to. Although there is a possibility that a problem occurs in the control accuracy, it has been found that the coiling temperature can be controlled with high accuracy over the entire length of the hot-rolled material by smoothly changing the learning coefficient in the control unit at the boundary portion of these parts.

すなわち、本発明は、熱間圧延設備において圧延された熱間圧延材を冷却設備により冷却して所定の巻取温度に制御するにあたり、前記熱間圧延材を長手方向に複数の制御単位に区分けし、前記制御単位毎に、モデル式によって決定される熱伝達係数に所定の学習値を乗じた熱伝達係数を用いて温度制御する熱間圧延材の冷却制御方法であって、前記制御単位を、熱間圧延材の長手方向に沿って先端部、定常部、尾端部の3つの部位に分類し、これら3つの部位毎に、各部位に属する前記制御単位毎の熱伝達係数の学習係数を算出し、それらの平均値を前記部位毎の熱伝達係数の学習値として用い、前記制御単位毎に行われる温度制御においては、当該制御単位が属する部位に応じた熱伝達係数の学習値を用い、これら部位の境界部においては、前記制御単位毎に段階的に変化させた学習値を用いることを特徴とする熱間圧延材の冷却制御方法を提供する。   That is, according to the present invention, when the hot rolled material rolled in the hot rolling facility is cooled by the cooling facility and controlled to a predetermined winding temperature, the hot rolled material is divided into a plurality of control units in the longitudinal direction. A cooling control method for a hot-rolled material that performs temperature control using a heat transfer coefficient obtained by multiplying a heat transfer coefficient determined by a model formula by a predetermined learning value for each control unit, the control unit being Categorized into three parts, a tip part, a steady part, and a tail part, along the longitudinal direction of the hot rolled material, and for each of these three parts, a learning coefficient of a heat transfer coefficient for each control unit belonging to each part In the temperature control performed for each control unit, the learning value of the heat transfer coefficient corresponding to the part to which the control unit belongs is used as the learning value of the heat transfer coefficient for each part. At the boundary of these parts Provides a cooling control method for hot-rolled, which comprises using a learned value is varied stepwise for each of the control units.

前記境界部に属する前記制御単位の熱伝達係数の学習値を、前記境界部の両側の部位の学習値を按分するように変化させるか、または熱間圧延材長手方向に曲線的に増加または減少させることが好ましい。   Change the learning value of the heat transfer coefficient of the control unit belonging to the boundary part so as to apportion the learning value of the parts on both sides of the boundary part, or increase or decrease in a curve in the longitudinal direction of the hot rolled material It is preferable to make it.

本発明によれば、熱間圧延材の長手方向の先端部、定常部、尾端部の境界部において、熱伝達係数の学習値を制御単位毎に段階的に変化させるので、境界部における温度変動を抑制することが可能となり高精度で熱間圧延材の巻取温度を制御することができる。   According to the present invention, the learning value of the heat transfer coefficient is changed stepwise for each control unit at the boundary between the front end, the steady portion, and the tail end in the longitudinal direction of the hot rolled material. The fluctuation can be suppressed, and the coiling temperature of the hot rolled material can be controlled with high accuracy.

本発明の熱間圧延材の冷却制御方法を実施するための圧延冷却設備の一例を示す概略図である。It is the schematic which shows an example of the rolling cooling equipment for enforcing the cooling control method of the hot rolling material of this invention. 前回の同一圧延グループを圧延した実績から逆算した切板毎の熱伝達係数の学習係数をコイル(熱間圧延材)長手方向位置に対して求めた結果と設定学習値を示す図である。It is a figure which shows the result and setting learning value which calculated | required the learning coefficient of the heat-transfer coefficient for every cut plate back-calculated from the performance which rolled the same rolling group last time with respect to a coil (hot rolling material) longitudinal direction position. 切板を、熱間圧延材の長手方向に沿って先端部(LE)、定常部(MID)、尾端部(TE)の3つの部位に分類し、これら3つの部位毎に熱伝達係数の学習値を求めた結果を示す図である。The cut plate is classified into three parts, that is, a tip part (LE), a steady part (MID), and a tail part (TE) along the longitudinal direction of the hot-rolled material, and the heat transfer coefficient is determined for each of these three parts. It is a figure which shows the result of having calculated | required the learning value. 本発明の先端部(LE)、定常部(MID)、尾端部(TE)の境界部に属する複数の切板の学習値を、境界部の両側の部位の学習値を按分するように変化させた場合を示す図である。The learning values of a plurality of cut plates belonging to the boundary part of the tip part (LE), the stationary part (MID), and the tail part (TE) of the present invention are changed so as to apportion the learning values of the parts on both sides of the boundary part. It is a figure which shows the case where it was made to do. 本発明の先端部(LE)、定常部(MID)、尾端部(TE)の境界部に属する複数の切板の学習値を曲線的に変化させた場合を示す図である。It is a figure which shows the case where the learning value of the some cut plate which belongs to the boundary part of the front-end | tip part (LE) of this invention, a stationary part (MID), and a tail end part (TE) is changed in a curve. 熱間圧延材の通板速度の変化(加減速率)の例を示す図である。It is a figure which shows the example of the change (acceleration / deceleration rate) of the plate | board speed of a hot rolling material.

まず、本発明に至った考え方について説明する。
熱間圧延材の真の熱伝達係数は、熱間圧延材の長手方向における先端部、定常部、尾端部の各部位毎に変化し、一般的に、それぞれの境界において急激に変化するものではなく、一本の鋼板の中で滑らかに変化する。この点を考慮すると、背景技術に基づき、熱間圧延材を先端部、定常部、尾端部に区分し、それぞれに熱伝達係数の学習値を持たせるようにし、各部の熱伝達係数の平均値を使用してそれぞれの学習値を更新する場合には、各部位の境界では温度予測と実績との誤差が生じると考えられる。
First, the concept that led to the present invention will be described.
The true heat transfer coefficient of hot-rolled material changes for each part of the tip, steady part, and tail end in the longitudinal direction of the hot-rolled material, and generally changes abruptly at each boundary. Instead, it changes smoothly in a single steel plate. In consideration of this point, based on the background art, the hot rolled material is divided into a tip portion, a steady portion, and a tail end portion, each having a learning value of the heat transfer coefficient, and the average of the heat transfer coefficient of each part. When each learning value is updated using the value, it is considered that an error between the temperature prediction and the actual result occurs at the boundary of each part.

一方、真の熱伝達係数が各部位の境界で急激に変化する場合には、上記背景技術に基づき、計算上の注水設定と実際の冷却実績が完全に同期できれば、その境界において温度外れは発生しないはずである。しかし、実際には熱間圧延材の通板速度の変化等により、熱間圧延材長手方向の計算上の注水位置と実際の冷却位置とのトラッキング誤差が生じ、注水設定と冷却実績が一致しないことがあり、温度外れの要因となる。   On the other hand, if the true heat transfer coefficient changes abruptly at the boundary of each part, if the calculated water injection setting and the actual cooling performance can be completely synchronized based on the above background technology, a temperature deviation will occur at that boundary. Should not. However, due to changes in the sheeting speed of the hot rolled material, etc., there is actually a tracking error between the calculated water injection position in the longitudinal direction of the hot rolled material and the actual cooling position, and the water injection setting and cooling results do not match. Sometimes, it becomes a factor of temperature deviation.

このため、本発明では、これらの不都合が生じないように、熱間圧延材の長手方向における先端部、定常部、尾端部の各部位の境界部において、各制御単位(切板)毎に段階的に変化させた熱伝達係数の学習値を段階的に変化させる。   For this reason, in the present invention, in order to prevent these inconveniences, each control unit (cut plate) at the boundary portion of the tip portion, the steady portion, and the tail end portion in the longitudinal direction of the hot rolled material. The learning value of the heat transfer coefficient changed stepwise is changed stepwise.

以下、添付図面を参照して本発明について具体的に説明する。
図1は、本発明の熱間圧延材の冷却制御方法を実施するための圧延冷却設備の一例を示す概略図である。この圧延冷却設備1は、仕上圧延機21(最終スタンドのみを図示する)の下流側に設けられたランナウトテーブル22に設けられている。仕上圧延機21で圧延された熱間圧延材(例えば鋼帯)Sは、ランナウトテーブル22上を走行して巻取機(ダウンコイラー)23に巻取られる。
Hereinafter, the present invention will be specifically described with reference to the accompanying drawings.
FIG. 1 is a schematic view showing an example of rolling cooling equipment for carrying out the method for controlling cooling of a hot rolled material according to the present invention. The rolling cooling equipment 1 is provided on a runout table 22 provided on the downstream side of a finishing mill 21 (only the final stand is shown). The hot-rolled material (for example, steel strip) S rolled by the finish rolling mill 21 runs on the run-out table 22 and is wound on a winder (down coiler) 23.

圧延冷却設備1は、上下に配置され冷却水を熱間圧延材Sに注水する冷却部2を有している。冷却部2には冷却水供給手段(図示せず)から冷却水が供給される。これらの冷却部2はそれぞれ複数の冷却バンク3に分割されている。そして、このような冷却部2の各バンク3への注水量を調節することにより熱間圧延材Sに対する冷却量が制御される。   The rolling cooling facility 1 has a cooling unit 2 that is arranged above and below to inject cooling water into the hot rolled material S. Cooling water is supplied to the cooling unit 2 from a cooling water supply means (not shown). Each of these cooling units 2 is divided into a plurality of cooling banks 3. And the cooling amount with respect to the hot-rolled material S is controlled by adjusting the water injection amount to each bank 3 of such a cooling part 2. FIG.

また、圧延冷却設備1は、仕上圧延機21を出て冷却設備1に送り込まれる熱間圧延材Sの温度を測定する入側温度計4と、仕上圧延後の熱間圧延材Sの板厚を測定する板厚計5と、冷却設備への熱間圧延材Sの供給速度である仕上圧延機21の熱間圧延材Sの搬出速度を測定する入側速度検出器6と、巻取り時の熱間圧延材Sの温度を測定する出側温度計7と、冷却設備からの熱間圧延材Sの搬出速度である巻取機23の熱間圧延材の巻取速度を測定する出側速度検出器8とを有している。また、圧延冷却設備1は、熱間圧延材Sを所望の巻取温度に冷却制御するために冷却部2への注水パターンを算出する冷却制御部9と、冷却制御部9による注水パターンの算出のために熱伝達係数の学習値を演算して冷却制御部9に出力する学習値演算部10と、冷却制御部9から出力された注水量に基づいて冷却部2に注水指令を出力するバンク開閉入出力部11とを有する。 Moreover, the rolling cooling facility 1 includes an entry-side thermometer 4 that measures the temperature of the hot rolled material S that leaves the finish rolling mill 21 and is fed into the cooling facility 1, and the thickness of the hot rolled material S after finish rolling. A thickness gauge 5 that measures the temperature, an inlet speed detector 6 that measures the unwinding speed of the hot rolled material S of the finishing mill 21 that is the supply speed of the hot rolled material S to the cooling facility, and the winding time A delivery-side thermometer 7 for measuring the temperature of the hot-rolled material S and a delivery-side for measuring the take-up speed of the hot-rolled material of the winder 23 that is the take-out speed of the hot-rolled material S from the cooling facility. And a speed detector 8. In addition, the rolling cooling facility 1 includes a cooling control unit 9 that calculates a water injection pattern to the cooling unit 2 in order to control the hot rolled material S to a desired winding temperature, and calculation of the water injection pattern by the cooling control unit 9. For this purpose, a learning value calculation unit 10 that calculates a learning value of a heat transfer coefficient and outputs it to the cooling control unit 9 and a bank that outputs a water injection command to the cooling unit 2 based on the water injection amount output from the cooling control unit 9 And an open / close input / output unit 11.

次に、圧延冷却設備1による冷却制御動作について説明する。
冷却制御部9は、熱間圧延材Sを全長にわたって所望の巻取温度に冷却するために冷却部2の各バンク3への注水パターンを算出し、これによって熱間圧延材Sの巻取温度を制御する。このときの制御は、熱間圧延材Sを長手方向に定長単位である切板毎に、仕上圧延機21出側の入側温度計4で得られる温度実績をもとに冷却パターンを決定するフィードフォワード(FF)制御と、出側温度計7で得られる巻取温度実績をもとに冷却量を修正するフィードバック(FB)制御とから成り立っている。例えば、FF制御では、入側温度計4で得られる温度実績と熱間圧延材の熱伝達係数を用いて求められる温度降下量、さらには、板厚計5により求められる熱間圧延材Sの板厚、および入側速度検出器6および出側速度検出器8で測定された搬送速度に基づいて注水パターンを算出する。
Next, the cooling control operation by the rolling cooling facility 1 will be described.
The cooling control unit 9 calculates a water injection pattern to each bank 3 of the cooling unit 2 in order to cool the hot rolled material S to a desired winding temperature over the entire length, and thereby the winding temperature of the hot rolled material S To control. The control at this time determines the cooling pattern based on the temperature results obtained by the inlet side thermometer 4 on the exit side of the finish rolling mill 21 for each cut plate which is a constant length unit in the longitudinal direction of the hot rolled material S. Feedforward (FF) control, and feedback (FB) control that corrects the cooling amount based on the actual winding temperature obtained by the delivery-side thermometer 7. For example, in the FF control, the temperature drop obtained by using the actual temperature obtained by the inlet side thermometer 4 and the heat transfer coefficient of the hot rolled material, and further, the hot rolled material S obtained by the plate thickness meter 5 A water injection pattern is calculated based on the plate thickness and the conveyance speed measured by the entry side speed detector 6 and the exit side speed detector 8.

このとき、冷却制御部9のFF制御およびFB制御において温度計算を行う際に用いる熱間圧延材の熱伝達係数は、モデル式によって決定される熱伝達係数に、鋼種や板厚、目標温度等によって区分けされた圧延材グループ毎に持つ学習値を乗じた値が採用される。この熱伝達係数の学習値は、学習値演算部10で演算されて冷却制御部9の注水パターン算出に反映される。学習値演算部10では、前回の同一圧延グループを圧延した際の実績に基づいて演算され更新された学習値が用いられる。   At this time, the heat transfer coefficient of the hot-rolled material used when performing temperature calculation in the FF control and FB control of the cooling control unit 9 includes the steel type, sheet thickness, target temperature, etc. A value obtained by multiplying the learning value of each rolled material group divided by the above is adopted. The learning value of the heat transfer coefficient is calculated by the learning value calculation unit 10 and reflected in the water injection pattern calculation of the cooling control unit 9. The learning value calculation unit 10 uses a learning value that is calculated and updated based on the results when the same rolling group was rolled last time.

このようにして各バンク3の注水量が算出され、算出されたバンク3の注水量がバンク開閉入出力部11に出力されてバンク開閉入出力部11から各バンク3に注水指令が出力されて冷却制御が行われる。   In this way, the water injection amount of each bank 3 is calculated, the calculated water injection amount of the bank 3 is output to the bank opening / closing input / output unit 11, and the water injection command is output from the bank opening / closing input / output unit 11 to each bank 3. Cooling control is performed.

ところで、従来は、このような熱伝達係数の学習値として、切板毎の熱伝達係数の学習係数を例えば逐次型最小二乗法によって算出し、その平均値を用いていた。   By the way, conventionally, as a learning value of such a heat transfer coefficient, a learning coefficient of a heat transfer coefficient for each cut plate is calculated by, for example, a sequential least square method, and an average value thereof is used.

しかし、熱間圧延材の長手方向での温度変動特性が異なり、特に熱間圧延材長手方向の先端部や尾端部は定常部と比較して巻取温度の制御精度が悪く、過冷却や冷却不足による温度不良の発生頻度が高い。前回の同一圧延グループを圧延した実績から逆算した切板毎の学習係数をコイル(熱間圧延材)長手方向位置に対して求めると、図2に示すように、設定された学習値に対して先端部(LE)および尾端部(TE)の学習係数の誤差が大きく、巻取温度実績が公差を外れてしまう。また、先端部(LE)および尾端部(TE)の学習係数が設定学習値から大きく外れているため、当該コイル巻取完了後、定常部(MID)の切板の学習係数のみの平均値を今回学習値として算出し、同一圧延グループの学習値を更新するが、この場合には先端部および尾端部における学習係数と設定学習値との誤差(温度誤差)は次回の設定に反映されない。   However, the temperature fluctuation characteristics in the longitudinal direction of the hot-rolled material are different.In particular, the tip and tail ends in the longitudinal direction of the hot-rolled material have poor control accuracy of the coiling temperature compared to the steady portion, and supercooling and The frequency of defective temperatures due to insufficient cooling is high. When the learning coefficient for each cut plate calculated backward from the actual result of rolling the same rolling group is obtained with respect to the coil (hot rolled material) longitudinal position, as shown in FIG. The learning coefficient error at the front end (LE) and the tail end (TE) is large, and the actual winding temperature is out of tolerance. In addition, since the learning coefficients of the front end (LE) and the tail end (TE) are greatly deviated from the set learning value, the average value of only the learning coefficient of the cut plate of the stationary part (MID) after the coil winding is completed. Is calculated as the learning value this time, and the learning value of the same rolling group is updated. In this case, the error (temperature error) between the learning coefficient and the set learning value at the tip and tail ends is not reflected in the next setting. .

なお、先端部(LE)、定常部(MID)、尾端部(TE)は、以下のように定義される。
先端部(LE):熱間圧延材先端から、先端部がコイラーに巻き付いた瞬間にランナウトテーブル上にある切板
尾端部(TE):熱間圧延材尾端が仕上げミルを抜けた瞬間にコイラー巻取前でランナウトテーブル上にある切板
定常部(MID):先端部(LE)、尾端部(TE)以外の切り板
In addition, a front-end | tip part (LE), a stationary part (MID), and a tail end part (TE) are defined as follows.
Tip (LE): From the hot rolled material tip, the cut plate on the run-out table at the moment when the tip winds around the coiler. Tail end (TE): At the moment when the hot rolled material tail passes through the finishing mill. Cut plate on the run-out table before coiler winding Stationary portion (MID): Cut plate other than tip (LE) and tail (TE)

このため、本発明では、上記特許文献1、2に基づいて、制御単位である切板を、熱間圧延材の長手方向に沿って先端部(LE)、定常部(MID)、尾端部(TE)の3つの部位に分類し、これら3つの部位毎に、各部位に属する切板毎の熱伝達係数の学習係数を算出し、それらの平均値を部位毎の熱伝達係数の学習値として用い、切板毎に行われる温度制御においては、当該切板が属する部位に応じた熱伝達係数の学習値を用いることとした。   For this reason, in this invention, based on the said patent documents 1 and 2, a cutting plate which is a control unit is made into a front-end | tip part (LE), a stationary part (MID), and a tail end part along the longitudinal direction of a hot-rolled material. (TE) is classified into three parts, and for each of these three parts, the learning coefficient of the heat transfer coefficient for each cutting plate belonging to each part is calculated, and the average value thereof is the learned value of the heat transfer coefficient for each part. In the temperature control performed for each cut plate, the learning value of the heat transfer coefficient corresponding to the part to which the cut plate belongs is used.

しかし、そのままでは、図3に示すように、先端部(LE)、定常部(MID)、尾端部(TE)の熱伝達係数の学習値は互いに異なっているため、各部位の境界においては段差が生じ、その部分で注水パターンが急激に変化し、温度制御精度に問題が生じるおそれがある。   However, as shown in FIG. 3, the learning values of the heat transfer coefficients of the tip (LE), the steady part (MID), and the tail end (TE) are different from each other as shown in FIG. There is a possibility that a level difference occurs and the water injection pattern changes abruptly at that portion, causing a problem in temperature control accuracy.

そこで、本発明では、これら部位の境界部において、制御単位である切板毎に段階的に変化させた学習値を用いる。   Therefore, in the present invention, a learning value that is changed stepwise for each cutting plate as a control unit is used at the boundary between these parts.

例えば、境界部に属する複数の切板の学習値を、境界部の両側の部位の学習値を按分するように変化させることが挙げられる。具体的には、図4に示すように、先端部(LE)の学習値が0.7であり、定常部(MID)の学習値が0.8であるとし、それらの境界部の切板数をN(任意の数)とすると、境界部1切板目、2切板目、・・・、N切板目の学習値は、それぞれ、0.7+{(0.8−0.7)/(N+1)}×1、0.7+{(0.8−0.7)/(N+1)}×2、・・・、0.7+{(0.8−0.7)/(N+1)}×Nとなる。   For example, the learning values of a plurality of cut plates belonging to the boundary part may be changed so as to apportion the learning values of the parts on both sides of the boundary part. Specifically, as shown in FIG. 4, it is assumed that the learning value of the front end portion (LE) is 0.7, the learning value of the stationary portion (MID) is 0.8, and the cutting plates of those boundary portions Assuming that the number is N (arbitrary number), the learning values of the first cut plate, the second cut plate,..., The N cut plate are 0.7 + {(0.8−0.7 ) / (N + 1)} × 1, 0.7 + {(0.8−0.7) / (N + 1)} × 2,..., 0.7 + {(0.8−0.7) / (N + 1) )} × N.

このように学習値を按分する代わりに、例えば、境界部の切板の学習値が、図5に示すように熱間圧延材長手方向に曲線的に増加または減少するように設定してもよい。これは、境界部のN個の切板学習値の変化が曲線に近似されるように設定することにより実現することができる。   Instead of apportioning the learning value in this way, for example, the learning value of the cut plate at the boundary portion may be set so as to increase or decrease in a curve in the longitudinal direction of the hot rolled material as shown in FIG. . This can be realized by setting the change in the learning value of the N cut plates at the boundary to be approximated by a curve.

境界部長さ(つまり切板の数)は任意であるが、熱間圧延材の通板速度に応じて設定することができる。すなわち、熱間圧延材の通板速度は一定ではなく、図6に示すように、先端巻き取り後、尾端仕上抜け後に加減速するから、この熱間圧延の通板速度の変化(加減速率)によって決定することができる。例えば、加速率40mpm/sのときは、境界部を4切板として先端部学習値から定常部学習値へ遷移する例、減速率20mpm/sのときは、境界部を8切板として定常部学習値から尾端部学習値へ遷移する例を挙げることができる。   The boundary length (that is, the number of cut plates) is arbitrary, but can be set according to the plate speed of the hot rolled material. That is, since the sheet passing speed of the hot rolled material is not constant, as shown in FIG. 6, acceleration / deceleration is performed after winding the tip and after finishing the tail end. ) Can be determined. For example, when the acceleration rate is 40 mpm / s, the boundary part is a four-cut plate and the tip part learning value is changed to the steady part learning value. When the deceleration rate is 20 mpm / s, the boundary part is an eight-cut plate and the steady part An example of transition from the learning value to the tail end learning value can be given.

このように、先端部(LE)、定常部(MID)、尾端部(TE)の境界部において、切板毎に段階的に変化させた学習値を用いることにより、その部分の注水パターンが急激に変化することが防止され、境界部における温度変動を抑制することが可能となり高精度で熱間圧延材の巻取温度を制御することができる。   In this way, at the boundary between the tip (LE), the stationary part (MID), and the tail end (TE), by using the learning value that is changed step by step for each cut plate, the water injection pattern of that part is A sudden change is prevented, temperature fluctuations at the boundary can be suppressed, and the coiling temperature of the hot rolled material can be controlled with high accuracy.

実際に本発明を適用することにより、先端部(LE)および尾端部(TE)の巻取温度精度が悪い熱間圧延材であっても、CT不良率を0.62%と極めて低くすることができた。   By actually applying the present invention, even if it is a hot-rolled material with poor winding temperature accuracy at the front end (LE) and the tail end (TE), the CT defect rate is extremely low as 0.62%. I was able to.

1 圧延冷却設備
2 冷却部
3 冷却バンク
4 入側温度計
5 板厚計
6 入側速度検出器
7 出側温度計
8 出側速度検出器
9 冷却制御部
10 学習値演算部
11 バンク開閉入出力部
21 仕上圧延機
22 ランナウトテーブル
23 巻取機
DESCRIPTION OF SYMBOLS 1 Rolling cooling equipment 2 Cooling part 3 Cooling bank 4 Incoming side thermometer 5 Thickness gauge 6 Incoming side speed detector 7 Outlet side thermometer 8 Outlet side speed detector 9 Cooling control part 10 Learning value calculating part 11 Bank opening / closing input / output Part 21 Finishing mill 22 Runout table 23 Winding machine

Claims (3)

熱間圧延設備において圧延された熱間圧延材を冷却設備により冷却して所定の巻取温度に制御するにあたり、前記熱間圧延材を長手方向に複数の制御単位に区分けし、前記制御単位毎に、モデル式によって決定される熱伝達係数に所定の学習値を乗じた熱伝達係数を用いて温度制御する熱間圧延材の冷却制御方法であって、
前記制御単位を、熱間圧延材の長手方向に沿って先端部、定常部、尾端部の3つの部位に分類し、これら3つの部位毎に、各部位に属する前記制御単位毎の熱伝達係数の学習係数を算出し、それらの平均値を前記部位毎の熱伝達係数の学習値として用い、
前記制御単位毎に行われる温度制御においては、当該制御単位が属する部位に応じた熱伝達係数の学習値を用い、これら部位の境界部においては、前記制御単位毎に段階的に変化させた学習値を用いることを特徴とする熱間圧延材の冷却制御方法。
When the hot rolled material rolled in the hot rolling facility is cooled by the cooling facility and controlled to a predetermined coiling temperature, the hot rolled material is divided into a plurality of control units in the longitudinal direction. In addition, a method for controlling the cooling of a hot-rolled material that performs temperature control using a heat transfer coefficient obtained by multiplying a heat transfer coefficient determined by a model formula by a predetermined learning value,
The control unit is classified into three parts, a tip part, a steady part, and a tail part, along the longitudinal direction of the hot-rolled material, and heat transfer for each control unit belonging to each part is made for each of these three parts. Calculate the learning coefficient of the coefficient, use the average value thereof as the learning value of the heat transfer coefficient for each part,
In the temperature control performed for each control unit, the learning value of the heat transfer coefficient corresponding to the part to which the control unit belongs is used, and learning that is changed stepwise for each control unit at the boundary part of these parts. A method for controlling cooling of a hot-rolled material, characterized by using a value.
前記境界部に属する前記制御単位の熱伝達係数の学習値を、前記境界部の両側の部位の学習値を按分するように変化させることを特徴とする請求項1に記載の熱間圧延材の冷却制御方法。   2. The hot rolled material according to claim 1, wherein the learning value of the heat transfer coefficient of the control unit belonging to the boundary portion is changed so as to apportion the learning values of the portions on both sides of the boundary portion. Cooling control method. 前記境界部に属する前記制御単位の熱伝達係数の学習値を、熱間圧延材長手方向に曲線的に増加または減少させることを特徴とする請求項1に記載の熱間圧延材の冷却制御方法。   The method for controlling cooling of a hot-rolled material according to claim 1, wherein the learning value of the heat transfer coefficient of the control unit belonging to the boundary portion is increased or decreased in a curved manner in the longitudinal direction of the hot-rolled material. .
JP2013054811A 2013-03-18 2013-03-18 Cooling control method for hot rolled material Expired - Fee Related JP5928377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013054811A JP5928377B2 (en) 2013-03-18 2013-03-18 Cooling control method for hot rolled material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013054811A JP5928377B2 (en) 2013-03-18 2013-03-18 Cooling control method for hot rolled material

Publications (2)

Publication Number Publication Date
JP2014180670A true JP2014180670A (en) 2014-09-29
JP5928377B2 JP5928377B2 (en) 2016-06-01

Family

ID=51699879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013054811A Expired - Fee Related JP5928377B2 (en) 2013-03-18 2013-03-18 Cooling control method for hot rolled material

Country Status (1)

Country Link
JP (1) JP5928377B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114423537A (en) * 2020-08-20 2022-04-29 东芝三菱电机产业系统株式会社 Control device of hot rolling production line

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732024A (en) * 1993-06-28 1995-02-03 Mitsubishi Electric Corp Method for controlling temperature of hot rolled steel products

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732024A (en) * 1993-06-28 1995-02-03 Mitsubishi Electric Corp Method for controlling temperature of hot rolled steel products

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114423537A (en) * 2020-08-20 2022-04-29 东芝三菱电机产业系统株式会社 Control device of hot rolling production line

Also Published As

Publication number Publication date
JP5928377B2 (en) 2016-06-01

Similar Documents

Publication Publication Date Title
JP5054369B2 (en) Winding temperature control device and control method
JP5647917B2 (en) Control apparatus and control method
KR20120130786A (en) Rolled material cooling control device, rolled material cooling control method, and rolled material cooling control program
JP2009113111A (en) Device and method for controlling winding temperature
JP6187603B2 (en) Energy consumption prediction device for rolling line
JP5679914B2 (en) Steel temperature prediction method
JP2012170963A (en) Control apparatus of hot rolling line
JP2012040593A (en) Device for controlling finishing temperature in hot rolling
KR102313235B1 (en) Temperature control device of endless rolling line
JP5861436B2 (en) Hot finishing temperature control method, hot finishing temperature control device, and hot rolled metal sheet manufacturing method
JP5928377B2 (en) Cooling control method for hot rolled material
JP5948967B2 (en) Temperature prediction method, cooling control method and cooling control device for metal plate in hot rolling
JP6668280B2 (en) Winding cooling control device and winding cooling control method
JP2015167976A (en) Winding temperature control method of hot rolled steel sheet
JP6015033B2 (en) Mill pacing control device and mill pacing control method
JP2022021794A (en) Tension variation prediction method, generation method of tension variation prediction model, flying plate thickness changing method, and manufacturing method of steel plate
JP2012011448A (en) Cooling control method of rolled material, and continuous rolling mill to which the cooling control method is applied
JP4701794B2 (en) Automatic adjustment device for nonlinear water-cooled heat transfer coefficient model
JP2015205331A (en) Control device and control method of hot rolling mill
JP2009160599A (en) Method of predicting temperature of rolled stock, method of controlling cooling system for rolled stock and continuous rolling equipment
WO2010029624A1 (en) Rolling speed control method of cool tandem rolling machine
JP5691222B2 (en) Winding temperature control method for metal strip in hot rolling line
JP7230880B2 (en) Rolling load prediction method, rolling method, method for manufacturing hot-rolled steel sheet, and method for generating rolling load prediction model
JP5202157B2 (en) Sheet thickness tension control method and sheet thickness tension control apparatus for tandem rolling mill
KR20030053621A (en) Hot strip cooling control mothode for chage target temperature

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160411

R150 Certificate of patent or registration of utility model

Ref document number: 5928377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees