JPH07258751A - Device for controlling temperature of coil in furnace - Google Patents
Device for controlling temperature of coil in furnaceInfo
- Publication number
- JPH07258751A JPH07258751A JP5223194A JP5223194A JPH07258751A JP H07258751 A JPH07258751 A JP H07258751A JP 5223194 A JP5223194 A JP 5223194A JP 5223194 A JP5223194 A JP 5223194A JP H07258751 A JPH07258751 A JP H07258751A
- Authority
- JP
- Japan
- Prior art keywords
- coil
- temperature
- temp
- annealing
- furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Control Of Heat Treatment Processes (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、鉄鋼・金属加工プラン
ト等の各種の炉に利用されるコイル温度制御装置に係わ
り、特に温度制御用パターンおよび炉内通板容量を用い
た時のコイル目標温度の設定手段を改良した炉のコイル
温度制御装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coil temperature control device used in various furnaces such as steel and metal processing plants, and more particularly to a coil target when a temperature control pattern and a plate passing capacity in the furnace are used. The present invention relates to a furnace coil temperature control device having improved temperature setting means.
【0002】[0002]
【従来の技術】一般に、連続焼鈍炉等のコイル温度制御
装置においては、図5に示すブロックフローのように構
成されている。同図において1は連続焼鈍炉であって、
これは例えば4つのゾーンZ1〜Z4から構成され、こ
れらゾーンZ1〜Z4にはそれぞれヒータ2が設置さ
れ、さらに各ヒータ2を個別に温度制御するためのPI
D調節演算部3が設けられている。各PID調節演算部
3は、炉温目標値SVと各ゾーンごとの温度検出器4の
検出温度PVとの偏差に基づいて各ゾーンの温度操作信
号を求めた後、各ゾーン対応のヒータ2を加熱すること
により、焼鈍炉1内部を連続的に通板するコイル5の焼
鈍温度を制御する構成となっている。2. Description of the Related Art Generally, a coil temperature controller for a continuous annealing furnace or the like is constructed as shown in the block flow of FIG. In the figure, 1 is a continuous annealing furnace,
This is composed of, for example, four zones Z1 to Z4, heaters 2 are installed in these zones Z1 to Z4, respectively, and a PI for controlling the temperature of each heater 2 individually.
A D adjustment calculator 3 is provided. Each PID adjustment calculation unit 3 obtains the temperature operation signal of each zone based on the deviation between the furnace temperature target value SV and the temperature PV detected by the temperature detector 4 for each zone, and then determines the heater 2 corresponding to each zone. By heating, the annealing temperature of the coil 5 that continuously passes through the inside of the annealing furnace 1 is controlled.
【0003】ところで、従来、各PID調節演算部3に
対する炉温目標値SVの設定には、第1のゾーンZ1〜
第4のゾーンZ4の順序でコイル5の目標温度を徐々に
高めるような焼鈍温度パターンを発生する焼鈍パターン
発生部6、コイル5の温度制御上必要な各種のデータを
出力するコイルデータ部7および各ゾーンごとの炉温目
標値SVを決定するゾーン対応の目標温度演算部8,…
が設けられている。By the way, conventionally, the setting of the furnace temperature target value SV for each PID adjustment calculation unit 3 is performed in the first zone Z1.
An annealing pattern generation unit 6 that generates an annealing temperature pattern that gradually increases the target temperature of the coil 5 in the order of the fourth zone Z4, a coil data unit 7 that outputs various data necessary for controlling the temperature of the coil 5, and A zone-specific target temperature calculation unit 8, which determines a furnace temperature target value SV for each zone, ...
Is provided.
【0004】そして、焼鈍パターン発生部6からは各ゾ
ーンごとのコイル加熱目標温度Ti-1 ,Ti (Ti-1 :
各ゾーン入り側温度、Ti :各ゾーン出口温度)を発生
し、また、コイルデータ部7からは板厚d,板幅w,比
重ρ,比熱Cp,熱伝導率α等のコイルデータxを出力
し、ラインスピードvとともにゾーン対応の目標温度演
算部8に導入する。Then, from the annealing pattern generating section 6, the coil heating target temperatures T i-1 , T i (T i-1 :
Temperature at each zone entrance, T i : outlet temperature of each zone), and coil data x such as plate thickness d, plate width w, specific gravity ρ, specific heat Cp, and thermal conductivity α is generated from the coil data section 7. It is output and introduced into the zone-specific target temperature calculation unit 8 together with the line speed v.
【0005】従って、各目標温度演算部8は、前記焼鈍
パターン発生部6およびコイルデータ部7等から得られ
る信号Ti-1 ,Ti ,x,vを用いて従来公知の種々の
熱負荷炉温演算方式により炉温目標値TFi(TF1〜
TF4)を決定し、ゾーン対応のPID調節演算部3に対
して炉温目標値SVとして供給する。Therefore, each target temperature calculating section 8 uses the signals T i-1 , T i , x, v obtained from the annealing pattern generating section 6, the coil data section 7 and the like to obtain various conventionally known heat loads. The furnace temperature target value TFi (T F1 ~
T F4 ) is determined and supplied to the PID adjustment calculation unit 3 corresponding to the zone as the furnace temperature target value SV.
【0006】[0006]
【発明が解決しようとする課題】ところで、以上のよう
なコイルの焼鈍温度勾配,ひいては焼鈍温度パターンの
Ti-1 −Ti 間の勾配は、通常,該当設備で最も多く生
産される肉厚をもった,いわゆる常用最多肉厚のコイル
5における炉の加熱容量と操業目標ラインスピード等か
ら決定されている。By the way, the above-mentioned annealing temperature gradient of the coil, and hence the gradient between T i-1 and T i of the annealing temperature pattern, is usually the wall thickness produced most in the corresponding equipment. It is determined based on the heating capacity of the furnace in the so-called common use thickest coil 5 and the operation target line speed.
【0007】そこで、同じ焼鈍品質のものを得るに際
し、常用最多肉厚よりも厚肉のコイル5の場合にはライ
ンスピードを下げて操業するようにしているが、逆に薄
肉のコイル5の場合には設備等の能力から操業ラインス
ピードを変えずに炉温を下げることにより対処してい
る。Therefore, in obtaining the same annealing quality, the coil 5 having a thickness larger than the usual maximum thickness is operated at a lower line speed. This is addressed by lowering the furnace temperature without changing the operation line speed due to the capacity of equipment.
【0008】その結果、薄肉コイル5の場合には、設備
能力からラインスピードが上げられないために、炉の加
熱能力が十分にありながら炉温を下げざるを得ず、生産
能力,ひいては生産効率が悪くなり、これがコイルの板
厚が薄いほどその影響が顕著に出てくる。As a result, in the case of the thin-walled coil 5, since the line speed cannot be increased due to the equipment capacity, the furnace temperature must be lowered while the heating capacity of the furnace is sufficient. Becomes worse, and the smaller the plate thickness of the coil, the more noticeable the effect.
【0009】本発明は上記実情に鑑みてなされたもの
で、コイルの肉厚に応じて温度勾配を可変することによ
り、炉の加熱能力を有効に活用しつつラインスピードを
可変可能とし、これにより所望とする一定の品質を確保
しつつ生産性を向上させうる炉のコイル温度制御装置を
提供することを目的とする。The present invention has been made in view of the above circumstances. By varying the temperature gradient according to the wall thickness of the coil, the line speed can be varied while effectively utilizing the heating capacity of the furnace. An object of the present invention is to provide a furnace coil temperature control device capable of improving productivity while ensuring desired constant quality.
【0010】[0010]
【課題を解決するための手段】上記課題を解決するため
に、請求項1,2に対応する発明は、連続的に通板する
コイルに対し、当該コイルに関係するデータおよび温度
パターンを用いて炉温目標値を決定し前記コイルを加熱
する炉のコイル温度制御装置において、前記コイルの板
厚および板幅のうち、少くともコイル板厚に基づいて温
度パターンの温度勾配を可変する温度パターン可変手段
を設けた炉のコイル温度制御装置である。In order to solve the above-mentioned problems, the invention according to claims 1 and 2 uses a data and a temperature pattern related to a coil which is continuously threaded. In a coil temperature control device for a furnace for determining a furnace temperature target value and heating the coil, a temperature pattern variable for varying a temperature gradient of a temperature pattern based on at least a coil plate thickness of a plate thickness and a plate width of the coil. It is a coil temperature control device of a furnace provided with means.
【0011】そして、この温度パターンの温度勾配の可
変に際しては、最大板厚時に所定の基準温度パターンを
用いる一方、コイルの板厚が薄くなるほど炉内入り側の
昇温率が高くなるように、前記基準温度パターンの温度
勾配を可変するものである。When varying the temperature gradient of this temperature pattern, a predetermined reference temperature pattern is used at the maximum plate thickness, while the thinner the coil plate thickness, the higher the temperature rise rate on the inlet side of the furnace. The temperature gradient of the reference temperature pattern is changed.
【0012】[0012]
【作用】従って、請求項1,2に対応する発明は以上の
ような手段を講じたことにより、コイルの板厚が薄くな
るほど、炉内部の入り側ゾーンの昇温率が高くなるよう
に温度パターンの温度勾配を可変すれば、製品の品質に
大きな影響を与える温度範囲に速かに到達し、この状態
でラインスピードを上げるようにすれば、肉厚の変化に
拘らず所望の品質の製品を生産できるとともに、生産性
の向上に大きく貢献するものである。Therefore, according to the inventions corresponding to claims 1 and 2, by taking the above-mentioned means, it is possible to increase the temperature rise rate of the inlet side zone inside the furnace as the plate thickness of the coil becomes thinner. By changing the temperature gradient of the pattern, the temperature range that greatly affects the quality of the product can be reached quickly, and by increasing the line speed in this state, the product of the desired quality can be obtained regardless of the change in the wall thickness. Can contribute to the improvement of productivity.
【0013】[0013]
【実施例】以下、本発明の実施例について図面を参照し
て説明する。図1は本発明に係わる制御装置の一実施例
を示すブロック図である。なお、同図において符号1〜
5,8は従来技術で説明した図5とほぼ同じ構成となる
ので、かかる符号に係わる機能等の説明は省略し、以
下、特に異なる部分について説明する。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of a control device according to the present invention. In addition, in FIG.
Since 5 and 8 have substantially the same configuration as that of FIG. 5 described in the prior art, the description of the functions and the like related to such reference numerals will be omitted, and the different points will be described below.
【0014】本制御装置は、コイルデータ部11の他、
新たに温度パターン可変手段としての焼鈍パターン発生
部12および最適加熱温度演算部13が設けられてい
る。ここで、コイルデータ部11は、前述のごとく板厚
d,板幅w,比重ρ,比熱Cp,熱伝導率α等のコイル
データxを各ゾーン対応の目標温度演算部8に導入する
とともに、当該コイルデータxのうち特に板厚データd
を出力し、前記最適加熱温度演算部13に送出する。In addition to the coil data section 11, this control device
An annealing pattern generator 12 and an optimum heating temperature calculator 13 are newly provided as temperature pattern changing means. Here, the coil data unit 11 introduces the coil data x such as the plate thickness d, the plate width w, the specific gravity ρ, the specific heat Cp, and the thermal conductivity α to the target temperature calculation unit 8 corresponding to each zone, as described above. Of the coil data x, especially plate thickness data d
Is output to the optimum heating temperature calculation unit 13.
【0015】この最適加熱温度演算部13は、コイルデ
ータ部11からの板厚データdと外部から入力されるコ
イル加熱目標温度基準値Ti とを用いて最適加熱目標温
度Ti ′を求めた後、焼鈍パターン発生部12に供給す
る。The optimum heating temperature calculation unit 13 obtains the optimum heating target temperature Ti 'after using the plate thickness data d from the coil data unit 11 and the coil heating target temperature reference value Ti input from the outside, It is supplied to the annealing pattern generator 12.
【0016】この焼鈍パターン発生部12は、コイル5
の板厚が薄くなるに従って炉前段側ゾーンの温度勾配が
大きくなるように変化する焼鈍温度パターンを作成出力
し、各ゾーン対応の目標温度演算部8に導入する機能を
もっている。The annealing pattern generating section 12 includes the coil 5
It has a function of creating and outputting an annealing temperature pattern that changes so that the temperature gradient of the front-stage zone of the furnace becomes larger as the plate thickness becomes thinner, and introduces it into the target temperature calculation unit 8 corresponding to each zone.
【0017】従って、以上のような実施例の制御装置に
よれば、コイル5の温度制御時、コイルデータ部11か
らコイル5の板厚データdを出力して最適加熱温度演算
部13に入力すると、この演算部13では、例えば第1
のゾーンZ1について述べると、図2に示すように最大
板厚時の目標温度である基準温度T1 をベースとし、板
厚dが小さくなるに従って最適加熱目標温度T1 ′が高
くなるような折れ線関数に設定されているので、薄肉コ
イルの場合には大きな最適加熱目標温度T1 ′が出力さ
れ、焼鈍パターン発生部12に送出される。Therefore, according to the control device of the above embodiment, when the temperature of the coil 5 is controlled, the plate thickness data d of the coil 5 is output from the coil data unit 11 and input to the optimum heating temperature calculation unit 13. In the operation unit 13, for example, the first
The zone Z1 of FIG. 2 will be described. As shown in FIG. 2, the polygonal line is based on the reference temperature T 1 which is the target temperature at the maximum plate thickness, and the optimum heating target temperature T 1 ′ becomes higher as the plate thickness d becomes smaller. Since it is set as a function, a large optimum heating target temperature T 1 ′ is output in the case of a thin coil and sent to the annealing pattern generating unit 12.
【0018】その結果、焼鈍パターン発生部12から
は、横軸をゾーンNOとし、縦軸を加熱目標温度Ti と
すると、図3に示すように最大板厚時には実線のような
焼鈍温度パターンが発生し、一方、最小板厚時には破線
のような焼鈍温度パターンが発生することになる。つま
り、薄肉コイル5の場合には前段ゾーンの昇温率が大き
くなるような加熱目標温度に可変する。このことは、焼
鈍温度パターンの温度勾配は、板厚dに応じて実線と破
線との間で変化することになる。As a result, if the horizontal axis represents the zone NO and the vertical axis represents the heating target temperature Ti, the annealing pattern generating section 12 produces an annealing temperature pattern as shown by the solid line at the maximum sheet thickness as shown in FIG. However, on the other hand, at the minimum plate thickness, the annealing temperature pattern as shown by the broken line is generated. That is, in the case of the thin-walled coil 5, the heating target temperature is changed so that the rate of temperature rise in the preceding zone becomes large. This means that the temperature gradient of the annealing temperature pattern changes between the solid line and the broken line depending on the plate thickness d.
【0019】従来技術では、焼鈍温度パターンが実線の
ごとき固定温度パターンであるので、例えば設備能力ぎ
りぎりのラインスピードのときに薄肉コイルが焼鈍炉に
入ってくると、ラインスピードを上げられないので、最
大板厚を想定した固定温度パターンであることから炉温
を下げるように制御していたが、本制御方式において
は、適度なラインスピードの下に板厚に応じた最適加熱
温度に基づいて焼鈍温度パターンの加熱目標温度を最適
な状態に設定できる。In the prior art, since the annealing temperature pattern is a fixed temperature pattern such as a solid line, the line speed cannot be increased when the thin-walled coil enters the annealing furnace at the line speed at the limit of the facility capacity. The furnace temperature was controlled to be lowered because it was a fixed temperature pattern assuming the maximum plate thickness.However, in this control method, annealing was performed based on the optimum heating temperature according to the plate thickness under an appropriate line speed. The heating target temperature of the temperature pattern can be set to an optimum state.
【0020】因みに、最小板厚時における従来装置の焼
鈍温度パターンと本発明による実施例の焼鈍温度パター
ンとを比較すると、製品の品質に影響を与える均熱温度
範囲△Tには、従来の実線の焼鈍温度パターンではほぼ
1ゾーン分のゾーン長さL1だけ入っているが、本発明
による破線の焼鈍温度パターンでは2ゾーン分以上のゾ
ーンの長さL2 を入れることができる。Incidentally, comparing the annealing temperature pattern of the conventional apparatus and the annealing temperature pattern of the embodiment according to the present invention at the minimum plate thickness, the soaking temperature range ΔT which affects the quality of the product is shown by the conventional solid line. In the annealing temperature pattern of No. 1, the zone length L 1 for almost one zone is included, but in the annealing temperature pattern of the broken line according to the present invention, the zone length L 2 for two or more zones can be included.
【0021】このことは、本発明装置の場合には、同じ
均熱温度を得るに当たり、従来技術の2倍以上のライン
スピードにより操作可能となり、操作率ひいては生産性
を大幅に向上させることができる。This means that in the case of the device of the present invention, in order to obtain the same soaking temperature, it becomes possible to operate at a line speed more than twice that of the prior art, and it is possible to greatly improve the operation rate and hence the productivity. .
【0022】次に、本発明装置の他の実施例について図
4を参照して説明する。この実施例は、コイルデータ部
11から板厚dおよび板幅wを出力し、最適加熱温度演
算部13に導入する。この演算部13では、横軸xの可
変要因として板厚d×板幅wを用い、外部から入力され
るコイル加熱目標温度基準値Ti に基づいて最適加熱目
標温度Ti ′を求めるものである。Next, another embodiment of the device of the present invention will be described with reference to FIG. In this embodiment, the coil data unit 11 outputs the plate thickness d and the plate width w and introduces them into the optimum heating temperature calculation unit 13. The calculation unit 13 uses the plate thickness d × the plate width w as a variable factor of the horizontal axis x, and obtains the optimum heating target temperature Ti ′ based on the coil heating target temperature reference value Ti input from the outside.
【0023】従って、この制御方式の実施例によれば、
より適切な温度勾配の焼鈍温度パターンに基づいてコイ
ルの加熱目標温度を出力でき、炉の加熱能力を有効に活
用し、かつ、通常の操業時にラインスピードを落として
いるので、ラインスピードを上げることができ、安定な
品質を確保しながら生産性を向上できる。Therefore, according to this embodiment of the control method,
The target heating temperature of the coil can be output based on the annealing temperature pattern with a more appropriate temperature gradient, the heating capacity of the furnace is effectively used, and the line speed is reduced during normal operation. Therefore, productivity can be improved while ensuring stable quality.
【0024】さらに、上記実施例においては、最適加熱
温度演算部13が図2に示すような折れ線関数を用いた
が、例えば下記のような演算式により最適加熱目標温度
Ti′を求めるようにしてもよい。Further, in the above embodiment, the optimum heating temperature calculation unit 13 uses the polygonal line function as shown in FIG. 2, but the optimum heating target temperature Ti 'is obtained by the following calculation formula, for example. Good.
【0025】 Ti ′=Ti ・{k・(dx /d0 )n +(1+k)} 但し、上式においてTi :最大板厚時の目標温度、k:
係数(0<k≦1)、dx :その時の板厚、d0 :最大
板厚、n :べき乗数(0<n)である。[0025] Ti '= Ti · {k · (d x / d 0) n + (1 + k)} However, Ti in the above equation: target temperature at the maximum thickness, k:
Coefficient (0 <k ≦ 1), d x : plate thickness at that time, d 0 : maximum plate thickness, n : power multiplier (0 <n).
【0026】なお、この演算式に板幅wを用いる場合に
は、dx はdx ×wx とし、d0 はdw0 に置き替えて
考えればよい。ここで、wx はその時の板幅、dw0 は
板厚×板幅の最大値である。When the plate width w is used in this arithmetic expression, d x may be d x × w x and d 0 may be replaced with dw 0 . Here, w x is the plate width at that time, and dw 0 is the maximum value of plate thickness × plate width.
【0027】なお、上記実施例では、連続焼鈍炉につい
て適用したが、他の炉を通板するコイルの温度制御にも
同様に適用できるものである。その他、本発明はその要
旨を逸脱しない範囲で種々変形して実施できる。Although the above embodiment is applied to the continuous annealing furnace, the present invention can be similarly applied to the temperature control of the coil passing through another furnace. In addition, the present invention can be modified in various ways without departing from the scope of the invention.
【0028】[0028]
【発明の効果】以上説明したように本発明によれば、コ
イルの肉厚に応じて温度勾配を可変することにより、炉
の加熱能力を有効に活用でき、かつ、ラインスピードを
上げることで生産能力を高めることができ、所望とする
一定の品質を確保しつつ生産性を上げることができる。As described above, according to the present invention, the heating capacity of the furnace can be effectively utilized by varying the temperature gradient in accordance with the wall thickness of the coil, and the production can be performed by increasing the line speed. The ability can be increased, and the productivity can be increased while ensuring the desired constant quality.
【図1】 本発明に係わる焼鈍炉のコイル温度制御装置
の一実施例を示すブロック図。FIG. 1 is a block diagram showing an embodiment of a coil temperature control device for an annealing furnace according to the present invention.
【図2】 図1の最適加熱温度演算部の説明図。FIG. 2 is an explanatory diagram of an optimum heating temperature calculation unit in FIG.
【図3】 図1の焼鈍温度パターン発生部の焼鈍温度パ
ターンの一例を示す図。FIG. 3 is a diagram showing an example of an annealing temperature pattern of an annealing temperature pattern generating portion in FIG.
【図4】 本発明に係わる連続焼鈍炉のコイル温度制御
装置の他の実施例を示すブロック図。FIG. 4 is a block diagram showing another embodiment of the coil temperature control device for the continuous annealing furnace according to the present invention.
【図5】 従来の制御装置を示すブロック図。FIG. 5 is a block diagram showing a conventional control device.
1…焼鈍炉、2…ヒータ、3…調節演算部、4…温度検
出器、5…コイル、8…目標温度演算部、11…コイル
データ部、12…焼鈍パターン発生部、13…最適加熱
温度演算部。DESCRIPTION OF SYMBOLS 1 ... Annealing furnace, 2 ... Heater, 3 ... Adjustment calculation part, 4 ... Temperature detector, 5 ... Coil, 8 ... Target temperature calculation part, 11 ... Coil data part, 12 ... Annealing pattern generation part, 13 ... Optimal heating temperature Arithmetic section.
Claims (2)
イルに関係するデータおよび温度パターンを用いて炉温
目標値を決定し前記コイルを加熱する炉のコイル温度制
御装置において、 前記コイルの板厚および板幅のうち、少くともコイル板
厚に基づいて温度パターンの温度勾配を可変する温度パ
ターン可変手段を設けたことを特徴とする炉のコイル温
度制御装置。1. A coil temperature control device for a furnace, which determines a furnace temperature target value by using data and temperature patterns related to the coil for continuously passing the coil, and comprising: A coil temperature control device for a furnace, comprising temperature pattern changing means for changing a temperature gradient of a temperature pattern based on at least a coil plate thickness among a plate thickness and a plate width.
準温度パターンを用いるとともに、コイルの板厚が薄く
なるほど炉内入り側の昇温率が高くなるように、前記基
準温度パターンの温度勾配を可変することを特徴とする
請求項1記載の炉のコイル温度制御装置。2. The temperature pattern uses a predetermined reference temperature pattern at the maximum plate thickness, and the temperature gradient of the reference temperature pattern is such that the temperature increase rate on the inlet side in the furnace increases as the coil plate thickness decreases. 2. The coil temperature control device for a furnace according to claim 1, wherein
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5223194A JPH07258751A (en) | 1994-03-23 | 1994-03-23 | Device for controlling temperature of coil in furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5223194A JPH07258751A (en) | 1994-03-23 | 1994-03-23 | Device for controlling temperature of coil in furnace |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07258751A true JPH07258751A (en) | 1995-10-09 |
Family
ID=12908966
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5223194A Pending JPH07258751A (en) | 1994-03-23 | 1994-03-23 | Device for controlling temperature of coil in furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07258751A (en) |
-
1994
- 1994-03-23 JP JP5223194A patent/JPH07258751A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110295338B (en) | Control method for stabilizing temperature of strip steel entering zinc pot | |
JPH07258751A (en) | Device for controlling temperature of coil in furnace | |
JPH10277620A (en) | Method for controlling temperature in continuous hot rolling of steel tube | |
KR101169125B1 (en) | Material temperature control system in continuous strip material treatment line | |
JPS63307223A (en) | Method for changing speed in sheet temperature control in continuous annealing furnace | |
JP2004197144A (en) | Method for controlling temperature of continuous normalized sheet | |
JPH0799311B2 (en) | Heating furnace temperature control method | |
RU2068006C1 (en) | Method to control metal heating in flame heating furnace | |
JP4126463B2 (en) | Furnace temperature setting method in continuous annealing furnace heating furnace | |
JPS6141725A (en) | Method for controlling hearth roll temperature of continuous annealing furnace | |
JP5742311B2 (en) | Method and apparatus for preventing warpage of rolled material in hot rolling line | |
KR100250760B1 (en) | Controlling method for steel heat treatment in continuous furnace | |
JPS5846403A (en) | Feed-forward controller | |
JPH0525555A (en) | Method for controlling sheet temperature in heating zone and device therefor of continuous heat-treating line | |
JPS6070127A (en) | Method for controlling temperature of strip with continuous annealing furnace | |
JPS63307217A (en) | Method for controlling temperature of stepped shaft in heating furnace | |
JPS6056026A (en) | Method for setting temperatue of heating furnace for continuous annealing installation | |
JP2947678B2 (en) | Burner combustion control system | |
JPS63282212A (en) | Method for controlling water cooling of wire bar stock | |
JPH0331765B2 (en) | ||
JP2021109990A (en) | Plate temperature control method, heating control device and method for producing metal plate | |
JPH0527123B2 (en) | ||
JPS61199038A (en) | Method for controlling temperature of strip in continuous annealing furnace | |
JP2000034524A (en) | Heat treatment method for metallic strip | |
JPS5836648B2 (en) | How to control a heating furnace |