JPS62223579A - Heat pump system - Google Patents

Heat pump system

Info

Publication number
JPS62223579A
JPS62223579A JP6475086A JP6475086A JPS62223579A JP S62223579 A JPS62223579 A JP S62223579A JP 6475086 A JP6475086 A JP 6475086A JP 6475086 A JP6475086 A JP 6475086A JP S62223579 A JPS62223579 A JP S62223579A
Authority
JP
Japan
Prior art keywords
condenser
steam
heat pump
gas
pump system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6475086A
Other languages
Japanese (ja)
Inventor
肇 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP6475086A priority Critical patent/JPS62223579A/en
Priority to DE8686201755T priority patent/DE3676191D1/en
Priority to ES86201755T priority patent/ES2018470B3/en
Priority to EP89106280A priority patent/EP0329199A1/en
Priority to EP86201755A priority patent/EP0239680B1/en
Priority to AT86201755T priority patent/ATE59098T1/en
Priority to CA000520727A priority patent/CA1298985C/en
Publication of JPS62223579A publication Critical patent/JPS62223579A/en
Priority to US07/129,876 priority patent/US4896515A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Central Heating Systems (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はヒートポンプシステム、特に昇温中の大きいヒ
ートポンプシステムの性能、特に成績係数の上昇を図る
技術に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat pump system, and in particular to a technique for improving the performance, particularly the coefficient of performance, of a large heat pump system during temperature rise.

〔従来技術〕[Prior art]

本発明者は以前に凝縮器から導出される凝縮液の保有す
るエネルギーを有効に利用するため、凝縮液を減圧膨脹
(フラッシュ)させ、発生する蒸気でタービンを駆動し
、ヒートポンプの圧縮機の駆動動力の一部として回収す
る技術を提案した。
Previously, in order to effectively utilize the energy contained in the condensate drawn out from the condenser, the present inventor expanded the condensate under reduced pressure (flash) and used the generated steam to drive a turbine, thereby driving the compressor of a heat pump. We proposed a technology to recover it as part of the power.

本発明は、この技術を更に発展させたものである。ヒー
トポンプによる昇温中が大きくなると、圧縮蒸気の過熱
度が上昇し、伝熱量光たりの伝熱面積のより大きな凝縮
器を必要とすることは周知の事実である。
The present invention further develops this technology. It is a well-known fact that as the temperature increases by a heat pump, the degree of superheating of compressed steam increases, and a condenser with a larger heat transfer area per heat transfer amount is required.

また、凝縮液の最適膨脹圧力は凝縮圧力によりほぼ一定
であるため凝縮液量が増加できればタービンの回収動力
が増加し、システムの効率が上昇する。
Furthermore, since the optimum expansion pressure of the condensate is approximately constant depending on the condensation pressure, if the amount of condensate can be increased, the recovery power of the turbine will increase, and the efficiency of the system will increase.

〔発明の目的〕[Purpose of the invention]

本発明は凝縮液量を増加することにより、絞り機構にお
いて発生する蒸気量を増加させ、蒸気タービンの回収動
力を増大によりヒートボンプの性能、特に成績係数の上
昇を図ることを目的とする。また、圧縮機により圧縮さ
れた蒸気の過熱度を低減することにより凝縮器の伝熱面
積を縮小する効果もある。
An object of the present invention is to increase the amount of steam generated in the throttling mechanism by increasing the amount of condensate, thereby increasing the recovery power of the steam turbine, thereby increasing the performance of the heat pump, particularly the coefficient of performance. Furthermore, by reducing the degree of superheating of the vapor compressed by the compressor, there is also the effect of reducing the heat transfer area of the condenser.

〔発明の構成〕[Structure of the invention]

上記の目的を達成できる本発明のヒートポンプシステム
は、蒸発器、圧縮機、凝縮器、絞り機構、気液分離機構
及び膨脹タービン、復水器からなるヒートポンプシステ
ムにおいて、圧縮器により圧縮された蒸気を後置冷却器
に導き、気液分離機構より導出される液体を前記後置冷
却器に噴霧し、前記蒸気と熱交換し、蒸発した蒸気を冷
却し、蒸気を飽和温度近くまで冷却させることにより、
凝縮器から気液分離器に至る媒体蒸気量を増加させ、そ
の結果気液分離器から生ずる蒸気量の増加により膨脹タ
ービンの出力を増大させることを特徴とするものである
The heat pump system of the present invention, which can achieve the above object, is a heat pump system consisting of an evaporator, a compressor, a condenser, a throttling mechanism, a gas-liquid separation mechanism, an expansion turbine, and a condenser. By spraying the liquid drawn out from the gas-liquid separation mechanism into the post-cooler, exchanging heat with the vapor, cooling the evaporated vapor, and cooling the vapor to near the saturation temperature. ,
It is characterized by increasing the amount of medium vapor flowing from the condenser to the gas-liquid separator, thereby increasing the output of the expansion turbine by increasing the amount of steam generated from the gas-liquid separator.

〔実施例〕〔Example〕

以下、図面により本発明の実施例について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明にかかるヒートポンプシステムの系統図
であり、配管12から蒸発器11に供給された熱媒体は
蒸発器11の熱交換器13から熱を吸収して蒸気S1と
なり、配管14を経由して第1段圧縮機15に導入され
る。ここで、圧縮されて高温高圧蒸気S2となり、更に
配管16を経由して第2段圧縮機17に導入される。こ
こで、圧縮されて高温高圧蒸気、つまり過熱蒸気S3と
なり、さらに配管18の途中に配設されたアフタークー
ラー37に供給される。このアフタークーラー37はノ
ズル38を有しており、このノズル38から噴霧される
液状の熱媒体によっt過熱蒸気S、が飽和状態になるま
で冷却される。飽和蒸気S4は配管18を経由して凝縮
器19に供給される。ノズル38から噴霧された熱媒体
も蒸気となるために凝縮器19に導入される蒸気量が増
加することになる。そして、後述するタービン2日の出
力増加に寄与することになる。このタービン28の出力
が増加すると第1段圧縮機15の圧縮率が向上するから
第2第圧縮機17を駆動するモーター40の動力を低減
することが可能となる。
FIG. 1 is a system diagram of the heat pump system according to the present invention, in which the heat medium supplied from the pipe 12 to the evaporator 11 absorbs heat from the heat exchanger 13 of the evaporator 11 and becomes steam S1, and the heat medium is supplied to the evaporator 11 from the pipe 14. The air is introduced into the first stage compressor 15 via the air. Here, it is compressed into high-temperature, high-pressure steam S2, which is further introduced into the second stage compressor 17 via the pipe 16. Here, it is compressed into high-temperature, high-pressure steam, that is, superheated steam S3, and is further supplied to an aftercooler 37 disposed in the middle of the pipe 18. This aftercooler 37 has a nozzle 38, and a liquid heat medium sprayed from the nozzle 38 cools the superheated steam S until it reaches a saturated state. Saturated steam S4 is supplied to condenser 19 via piping 18. Since the heat medium sprayed from the nozzle 38 also turns into steam, the amount of steam introduced into the condenser 19 increases. This will contribute to an increase in the output of the turbine on the second day, which will be described later. As the output of the turbine 28 increases, the compression ratio of the first stage compressor 15 improves, so it becomes possible to reduce the power of the motor 40 that drives the second compressor 17.

上記凝縮器19中の熱交換器20を介して飽和蒸気S4
の熱エネルギーを高温熱源に供給すると共に、飽和蒸気
S4は凝縮する。凝縮器19において凝縮され、液化さ
れた熱媒体りは配管21を経由して絞り機構としての膨
脹弁22にて膨脹し気液分離器としてのフランシュタン
ク23において液体L1と蒸気S、とに分離される。
Saturated steam S4 through the heat exchanger 20 in the condenser 19
of thermal energy is supplied to the high temperature heat source, and the saturated steam S4 is condensed. The heat medium condensed and liquefied in the condenser 19 is expanded in an expansion valve 22 as a throttling mechanism via a pipe 21, and separated into liquid L1 and steam S in a Franch tank 23 as a gas-liquid separator. be done.

液体L1は配管34を経由してポンプ35により昇圧さ
れ、配管36を経由して前記アフタークーラー内のノズ
ル37に供給される。
The liquid L1 is pressurized by a pump 35 via a pipe 34, and is supplied to a nozzle 37 in the aftercooler via a pipe 36.

他方、蒸気S、は配管24を経由して第1段圧縮a15
を駆動するための蒸気タービン28に導入される。凝縮
器19において熱媒の凝縮量が増加するのに伴ってフラ
ッジ蒸気量が増加し、タービン28の出力増加に寄与す
ることになる。そして、タービン28の出力増加に伴っ
第1段圧縮機15の圧縮率が向上するために第2段圧縮
機17を駆動するモーター40の動力を軽減すくことが
可能になる。蒸気タービン2日から導出された蒸気S、
は配管29を経由して復水器30に送られ、ここで凝縮
して低温液体L2となる。そして、配管31を経由して
ポンプ32により昇圧され、配管33及び12を経由し
て蒸発器11に循環供給される。
On the other hand, the steam S passes through the pipe 24 to the first stage compression a15.
is introduced into a steam turbine 28 for driving the . As the amount of heat medium condensed in the condenser 19 increases, the amount of frudge steam increases, contributing to an increase in the output of the turbine 28. Since the compression ratio of the first stage compressor 15 improves as the output of the turbine 28 increases, it becomes possible to reduce the power of the motor 40 that drives the second stage compressor 17. Steam S derived from steam turbine 2nd,
is sent to the condenser 30 via the pipe 29, where it is condensed to become a low-temperature liquid L2. Then, the pressure is increased by a pump 32 via a pipe 31, and the water is circulated and supplied to the evaporator 11 via pipes 33 and 12.

上記配管34から分岐した配管39は配管12に接続さ
れ、液体L1の一部は液体L2と混合して蒸発器11に
循環供給される。
A pipe 39 branched from the pipe 34 is connected to the pipe 12, and part of the liquid L1 is mixed with the liquid L2 and circulated to the evaporator 11.

第2図は本発明にがかるヒートポンプシステムのモリエ
ール線図であり、第2図中の符号の示す箇所は第1図に
おいて同一符号の示す位置における条件を示している。
FIG. 2 is a Moliere diagram of the heat pump system according to the present invention, and the locations indicated by the symbols in FIG. 2 indicate the conditions at the locations indicated by the same symbols in FIG.

〔発明の効果〕〔Effect of the invention〕

上記のように、本発明は、蒸発器、圧縮機、凝縮器、絞
り機構、気液分離機構及び膨脹タービン、復水器からな
るヒートポンプシステムにおいて、圧縮器により圧縮さ
れた蒸気を後置冷却器に厚き、気液分離機構より導出さ
れる液体を前記後置冷却器に噴霧し、前記蒸気と熱交換
し、蒸発した蒸気を冷却し、蒸気を飽和温度近くまで冷
却させることにより、凝縮器から気液分離器に至る媒体
蒸気量を増加させ、その結果気液分離器から生ずる蒸気
量の増加により膨脹タービンの出力を増大させたので、
絞り機構において発生する蒸気量を増加させ、蒸気ター
ビンの回収動力を増大によりヒートポンプの性能、特に
成績係数の上昇を図ることができる。また、圧縮機によ
り圧縮された蒸気の過熱度を低減することにより凝縮器
の伝熱面積を縮小する効果もある。
As described above, the present invention provides a heat pump system comprising an evaporator, a compressor, a condenser, a throttling mechanism, a gas-liquid separation mechanism, an expansion turbine, and a condenser, in which steam compressed by a compressor is transferred to a post-cooler. The liquid drawn out from the gas-liquid separation mechanism is sprayed into the aftercooler, heat exchanged with the vapor, and the evaporated vapor is cooled to a temperature close to the saturation temperature, thereby forming a condenser. The output of the expansion turbine was increased by increasing the amount of medium steam from the gas-liquid separator to the gas-liquid separator, and as a result, the output of the expansion turbine was increased by increasing the amount of steam generated from the gas-liquid separator.
By increasing the amount of steam generated in the throttling mechanism and increasing the recovery power of the steam turbine, it is possible to improve the performance of the heat pump, especially the coefficient of performance. Furthermore, by reducing the degree of superheating of the vapor compressed by the compressor, there is also the effect of reducing the heat transfer area of the condenser.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかるヒートポンプシステムの系統図
、第2図は本発明にかかるヒートポンプシステムのモリ
エール線図である。 11・・・蒸発器、15.17・・・圧縮機、19・・
・凝縮器、22・・・絞り機構、23・・・気液分離器
、2日・・・タービン、37・・・アフタークーラー。 第2図
FIG. 1 is a system diagram of a heat pump system according to the present invention, and FIG. 2 is a Molière diagram of the heat pump system according to the present invention. 11...Evaporator, 15.17...Compressor, 19...
- Condenser, 22... Throttle mechanism, 23... Gas-liquid separator, 2nd... Turbine, 37... Aftercooler. Figure 2

Claims (1)

【特許請求の範囲】[Claims] 蒸発器、圧縮機、凝縮器、絞り機構、気液分離機構及び
膨脹タービン、復水器からなるヒートポンプシステムに
おいて、圧縮器により圧縮された蒸気を後置冷却器に導
き、気液分離機構より導出される液体を前記後置冷却器
に噴霧し、前記蒸気と熱交換し、蒸発した蒸気を冷却し
、蒸気を飽和温度近くまで冷却させることにより、凝縮
器から気液分離器に至る媒体蒸気量を増加させ、その結
果気液分離器から生ずる蒸気量の増加により膨脹タービ
ンの出力を増大させることを特徴とするヒートポンプシ
ステム。
In a heat pump system consisting of an evaporator, a compressor, a condenser, a throttle mechanism, a gas-liquid separation mechanism, an expansion turbine, and a condenser, steam compressed by the compressor is guided to a post-cooler and then extracted from the gas-liquid separation mechanism. The amount of medium vapor from the condenser to the gas-liquid separator is reduced by spraying the liquid to the post-cooler, exchanging heat with the vapor, cooling the evaporated vapor, and cooling the vapor to near the saturation temperature. 1. A heat pump system characterized in that the output of an expansion turbine is increased by increasing the amount of steam generated from a gas-liquid separator.
JP6475086A 1986-03-25 1986-03-25 Heat pump system Pending JPS62223579A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP6475086A JPS62223579A (en) 1986-03-25 1986-03-25 Heat pump system
DE8686201755T DE3676191D1 (en) 1986-03-25 1986-10-10 HEAT PUMP.
ES86201755T ES2018470B3 (en) 1986-03-25 1986-10-10 HEAT PUMP, ENERGY RECOVERY METHOD AND METHOD TO REDUCE THE COMPRESSOR DRIVE POWER IN THE CARLOR PUMP.
EP89106280A EP0329199A1 (en) 1986-03-25 1986-10-10 A method of curtailing power for driving a compressor in a heat pump and a compressor operating according to such a method
EP86201755A EP0239680B1 (en) 1986-03-25 1986-10-10 Heat pump
AT86201755T ATE59098T1 (en) 1986-03-25 1986-10-10 HEAT PUMP.
CA000520727A CA1298985C (en) 1986-03-25 1986-10-17 Heat pump, energy recovery method and method of curtailing power for driving compressor in the heat pump
US07/129,876 US4896515A (en) 1986-03-25 1987-12-04 Heat pump, energy recovery method and method of curtailing power for driving compressor in the heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6475086A JPS62223579A (en) 1986-03-25 1986-03-25 Heat pump system

Publications (1)

Publication Number Publication Date
JPS62223579A true JPS62223579A (en) 1987-10-01

Family

ID=13267151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6475086A Pending JPS62223579A (en) 1986-03-25 1986-03-25 Heat pump system

Country Status (1)

Country Link
JP (1) JPS62223579A (en)

Similar Documents

Publication Publication Date Title
US6332321B1 (en) Apparatus for augmenting power produced from gas turbines
US20020053196A1 (en) Gas pipeline compressor stations with kalina cycles
CN109736963B (en) Waste heat utilization system and method of ship engine
CN109519243B (en) Supercritical CO2 and ammonia water combined cycle system and power generation system
US6119445A (en) Method of and apparatus for augmenting power produced from gas turbines
US20110056219A1 (en) Utilization of Exhaust of Low Pressure Condensing Steam Turbine as Heat Input to Silica Gel-Water Working Pair Adsorption Chiller
US6457315B1 (en) Hybrid refrigeration cycle for combustion turbine inlet air cooling
US6584801B2 (en) Absorption cycle with integrated heating system
JP2002266656A (en) Gas turbine cogeneration system
JPS62223579A (en) Heat pump system
WO1999022189A1 (en) Temperature difference heat engine
CN210861797U (en) Heater combined absorption type refrigeration auxiliary supercooling automobile air conditioning system
JPH0291404A (en) Exhaust absorbing steam motor
US5351501A (en) Method of transferring heat energy from a low to a higher temperature
JP4202057B2 (en) Combined system using waste heat of nuclear reactor plant
JPS6151228B2 (en)
JPH0545019A (en) Absorption freezer
JPS6022253B2 (en) absorption refrigerator
JPS6025714B2 (en) Combined heat pump
JPS6257840B2 (en)
CN115854591A (en) Heat pump steam system
JPS601697U (en) Evaporative oil recovery device in oil tanker
CN117168204A (en) Cold and heat storage device and system for improving vacuumizing effect of condenser
JPH09280684A (en) Liquid phase separation/absorption type freezing apparatus
JPH0612202B2 (en) Power recovery type heat pump