JPH0545019A - Absorption freezer - Google Patents

Absorption freezer

Info

Publication number
JPH0545019A
JPH0545019A JP3230796A JP23079691A JPH0545019A JP H0545019 A JPH0545019 A JP H0545019A JP 3230796 A JP3230796 A JP 3230796A JP 23079691 A JP23079691 A JP 23079691A JP H0545019 A JPH0545019 A JP H0545019A
Authority
JP
Japan
Prior art keywords
absorption
solution
steam turbine
condenser
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3230796A
Other languages
Japanese (ja)
Inventor
Seiji Sanada
誠司 眞田
Nobuo Nakada
信夫 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP3230796A priority Critical patent/JPH0545019A/en
Publication of JPH0545019A publication Critical patent/JPH0545019A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Abstract

PURPOSE:To provide an absorption freezer in which a condenser of a condensing type steam turbine is applied as heat source, a size and a weight of a regenerator of the absorption freezer can be reduced and its large-size can be attained. CONSTITUTION:In an absorption freezer using a waste heat 4 of a condensing type steam turbine 2, dilute solution liquid 22 of an absorption freezer is fed into a heat exchanger 5 installed in a condenser 4 of a condensing type steam turbine. The heated dilute solution liquid fed out of the heat exchanger 5 is guided to the regenerator 25 of the absorption freezer device. As the dilute solution liquid, LiBr aqueous solution of low concentration may be used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、吸収冷凍機に係り、特
に復水式蒸気タービンコージェネレーションシステムに
おける電力と冷熱の効率化とコトスダウンを実現できる
吸収冷凍機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigerating machine, and more particularly to an absorption refrigerating machine capable of improving efficiency of electric power and cold heat and reducing cost in a condensing steam turbine cogeneration system.

【0002】[0002]

【従来の技術】従来、ボイラ、蒸気タービン、吸収冷凍
機からなるコージェネレーションシステムでは8kg/
cm2 Gの蒸気を蒸気タービンより抽気し、蒸気を再生
器の熱源として用いる二重効用吸収冷凍機により、冷水
を得ていた。上記の方式では冷水容量を多くするために
は、蒸気タービンの抽気量を増加させなければならず、
発電電力が減少する。一方、蒸気を抽気せずに、復水器
の圧力は0.6kg/cm2 abs程度にして復水器よ
り80℃の温水を取り出すことは可能である。80℃の
温水を再生器の熱源とする吸収冷凍機は、太陽熱利用や
ディーゼルエンジンやガスエンジンのシリンダジャケッ
ト冷却水の排熱利用として実用化しているが、いずれも
小規模なものにとどまっている。その理由は、吸収冷凍
機の再生器における温水加熱部の伝熱面積が、蒸気加熱
方式の吸収冷凍機に比べて大きなスペースを要し、ひい
ては重量の増加を招き、大型化が困難であったためであ
る。
2. Description of the Related Art Conventionally, a cogeneration system consisting of a boiler, a steam turbine and an absorption refrigerator has a capacity of 8 kg /
Cold water was obtained by a double-effect absorption refrigerating machine using the steam of cm 2 G extracted from a steam turbine and using the steam as a heat source of a regenerator. In the above method, in order to increase the chilled water capacity, it is necessary to increase the extraction amount of the steam turbine,
Generated power is reduced. On the other hand, without extracting steam, it is possible to take hot water at 80 ° C. from the condenser with the pressure of the condenser set to about 0.6 kg / cm 2 abs. Absorption refrigerators that use hot water of 80 ° C as the heat source for the regenerator have been put to practical use as solar heat utilization and exhaust heat utilization of cylinder jacket cooling water for diesel engines and gas engines, but they are all small scale. .. The reason is that the heat transfer area of the hot water heating unit in the regenerator of the absorption chiller requires a larger space than that of the steam chiller type absorption chiller, which in turn increases the weight and makes it difficult to increase the size. Is.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記のよう
な従来技術の問題点を解消し、復水式蒸気タービンの復
水器を熱源として、吸収冷凍機再生器の寸法、重量が減
少し、大型化が可能な吸収冷凍機を提供することを課題
とする。
SUMMARY OF THE INVENTION The present invention solves the problems of the prior art as described above, and reduces the size and weight of the absorption chiller regenerator by using the condenser of the condensing steam turbine as a heat source. However, it is an object to provide an absorption refrigerator that can be upsized.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、復水式蒸気タービンの排熱を用いる吸
収冷凍機において、吸収冷凍機の希溶液を復水式蒸気タ
ービンの復水器に設けた熱交換器に導入し、熱交換器か
ら出る加熱された希溶液を吸収冷凍機の再生器に導くよ
うに構成したことを特徴とする吸収冷凍機としたもので
ある。上記吸収冷凍機において、使用する希溶液は低濃
度LiBr水溶液を用いるのがよい。
In order to solve the above problems, in the present invention, in an absorption refrigerator using the exhaust heat of a condensing steam turbine, the dilute solution of the absorption refrigerator is condensed in the condensing steam turbine. This is an absorption refrigerating machine characterized by being introduced into a heat exchanger provided in a water vessel and guiding a heated dilute solution discharged from the heat exchanger to a regenerator of the absorption refrigerating machine. In the absorption refrigerator, the dilute solution used is preferably a low-concentration LiBr aqueous solution.

【0005】[0005]

【作用】本発明は、再生器におけるLiBr水溶液等の
希溶液の温水加熱のかわりに、LiBr溶液を蒸気ター
ビン復水器へ直接導き加熱するものであり、温水を介在
させることなく、LiBr水溶液を加熱することができ
るので、吸収冷凍機再生器の寸法、重量が減少し、吸収
冷凍機の大型化が可能となる。
According to the present invention, instead of heating a dilute solution such as a LiBr aqueous solution in a regenerator with hot water, the LiBr solution is directly introduced into a steam turbine condenser and heated, and the LiBr aqueous solution is heated without interposing hot water. Since it can be heated, the size and weight of the absorption chiller regenerator are reduced and the absorption chiller can be upsized.

【0006】[0006]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこの実施例に限定されるものではない。 実施例1 図1に本発明の吸収冷凍機のフロー工程図を示す。復水
蒸気タービンは、ボイラ1から発生する高圧蒸気を蒸気
タービン2へ導き、蒸気エネルギーを動力エネルギへ変
換し、発電機3により電気エネルギーが得られる。復水
タービンでは、蒸気タービンの出口蒸気を復水器4へ導
き、冷却水により凝縮させ、蒸気を復水の状態に変え
る。復水された水は、復水ポンプ6により、復水タンク
7へ送られ、ボイラ給水ポンプ8により昇圧され、再び
ボイラ1へ戻る。このサイクルはランキンサイクルと呼
ばれているものである。通常、復水器4への冷却水には
水が使用されるが、本発明は水のかわりに吸収冷凍機の
低濃度LiBr溶液22を使用する。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. Example 1 FIG. 1 shows a flow process diagram of an absorption refrigerator according to the present invention. The condensing steam turbine guides high-pressure steam generated from the boiler 1 to the steam turbine 2, converts steam energy into motive energy, and the generator 3 obtains electric energy. In the condensing turbine, the outlet steam of the steam turbine is guided to the condenser 4 and condensed by the cooling water to change the steam into the condensing state. Condensed water is sent to the condensate tank 7 by the condensate pump 6, is pressurized by the boiler feed water pump 8, and returns to the boiler 1 again. This cycle is called Rankin cycle. Normally, water is used as the cooling water to the condenser 4, but the present invention uses the low-concentration LiBr solution 22 of the absorption refrigerator in place of water.

【0007】吸収式冷凍機の吸収器21には、低濃度L
iBr溶液22があり、溶液ポンプ24により加圧し、
復水器4の中に設置した熱交換器5へ送られる。復水器
4の圧力は0.6kg/cm2 abs程度に保つと、出
口蒸気の凝縮温度は85℃程度となる。一方、吸収式冷
凍機の冷水34の温度は7℃程度であるので、低濃度L
iBr溶液22の温度は10℃程度になる。熱交換器5
の伝熱面積及び溶液ポンプ24の吐出量を適正に定める
と、熱交換器5出口の低濃度LiBr溶液22の温度は
約80℃となる。復水器4により、加温された低濃度L
iBr溶液22は再生器25の中に設置されたLiBr
溶液散水ノズル26により、充填剤27の上に、均一に
散布される。充填剤27の中を滴下することにより低濃
度LiBr溶液22の中の水分は蒸発し、凝縮器35に
おいて冷却水23と熱交換することにより、再び水にか
わる。
The absorber 21 of the absorption refrigerator has a low concentration L.
There is an iBr solution 22, which is pressurized by a solution pump 24,
It is sent to the heat exchanger 5 installed in the condenser 4. If the pressure of the condenser 4 is maintained at about 0.6 kg / cm 2 abs, the condensation temperature of the outlet steam becomes about 85 ° C. On the other hand, since the temperature of the cold water 34 of the absorption refrigerator is about 7 ° C., the low concentration L
The temperature of the iBr solution 22 becomes about 10 ° C. Heat exchanger 5
When the heat transfer area and the discharge amount of the solution pump 24 are properly determined, the temperature of the low-concentration LiBr solution 22 at the outlet of the heat exchanger 5 becomes about 80 ° C. Low concentration L heated by the condenser 4
The iBr solution 22 is LiBr installed in the regenerator 25.
The solution spray nozzle 26 sprays the filler 27 evenly. Moisture in the low-concentration LiBr solution 22 is evaporated by dropping the filler 27, and heat is exchanged with the cooling water 23 in the condenser 35, so that the water is replaced with water again.

【0008】凝縮器29の水(冷媒)は、蒸発器31へ
導かれ、冷水34と熱交換することにより、再び蒸気と
なる。再生器25より送られた高濃度LiBr溶液28
は冷却水23と熱交換することにより蒸発器31より発
生した蒸気を吸収し、再び低濃度LiBr溶液となる。
吸収冷凍機の成績係数向上のために、溶液熱交換器30
により熱回収を行う。上述の構成は、吸収冷凍機サイク
ルを記述したものであり、LiBr溶液の加熱に復水タ
ービンの復水器4及び熱交換器5を用い、再生器におけ
るLiBr溶液の濃縮に滴下方式を用いることを特徴と
している。
The water (refrigerant) in the condenser 29 is introduced into the evaporator 31 and exchanges heat with the cold water 34 to become steam again. High concentration LiBr solution 28 sent from regenerator 25
Heat-exchanges with the cooling water 23 to absorb the vapor generated from the evaporator 31 and become a low-concentration LiBr solution again.
In order to improve the coefficient of performance of the absorption refrigerator, the solution heat exchanger 30
To recover heat. The above-mentioned configuration describes the absorption refrigeration cycle, and the condenser 4 and the heat exchanger 5 of the condensing turbine are used for heating the LiBr solution, and the dropping method is used for concentrating the LiBr solution in the regenerator. Is characterized by.

【0009】上記図1の本発明の復水上記タービン方式
と従来方式である背圧蒸気タービンとの電力、冷熱の出
力と効率について試算例を表1に示す。同一のボイラ入
熱量に対して発生する電力は復水タービン方式が背圧タ
ービン方式を上回り、逆に冷熱は蒸気二重効用吸収冷凍
機を用いる背圧タービン方式が、単効用吸収冷凍機を用
いる本発明の構成方式を上回る。試算例のエネルギー効
率は、背圧タービン方式において94.3%、復水ター
ビン方式においても55.2%であり、復水タービン方
式は著しく劣るように見える。しかし、エクセルギー効
率で比較すると、背圧タービン方式が13.7%である
のに対して、復水タービン方式は20.9%となり、エ
クセルギーの面からみると、復水タービン方式による電
力、冷熱の優位性は明らかである。
Table 1 shows an example of trial calculation of electric power, cold heat output and efficiency of the above-mentioned turbine system of the present invention shown in FIG. 1 and a conventional back pressure steam turbine. Condensate turbine method exceeds the back pressure turbine method for electric power generated for the same boiler heat input, and conversely, for cold heat, the steam double effect absorption refrigerator uses a double effect absorption refrigerator.The back pressure turbine method uses a single effect absorption refrigerator. It exceeds the configuration method of the present invention. The energy efficiency of the trial calculation example is 94.3% in the back pressure turbine system and 55.2% in the condensing turbine system, and the condensing turbine system seems to be remarkably inferior. However, in comparison with exergy efficiency, the back pressure turbine method is 13.7%, whereas the condensing turbine method is 20.9%. , The superiority of cold heat is clear.

【0010】[0010]

【表1】 エネルギー効率=(電力+冷熱)/ボイラ入熱量 エクセルギー効率=電力/ボイラ入熱量+(冷熱/ボイ
ラ入熱量) ×〔1−(273+T2 )/(273+T1 )〕 ここで、 T1 : 気 温 夏32℃とする T2 : 冷熱温度 7℃とする
[Table 1] Energy efficiency = (electric power + cold heat) / boiler heat input Exergy efficiency = power / boiler heat input + (cold heat / boiler heat input) x [1- (273 + T 2 ) / (273 + T 1 )] where T 1 : and cold temperature 7 ° C.: T 2 to the temperature summer 32 ° C.

【0011】[0011]

【発明の効果】本発明によれば、吸収冷凍機の再生器の
熱交換部分の小型化が可能となり、エクセルギー効率が
優れていても、経済性に難点がある復水蒸気タービン発
電と単効用吸収冷凍機の組合わせからなるコージェネレ
ーションシステムの普及に寄与することができる。
According to the present invention, the heat exchange portion of the regenerator of the absorption refrigerator can be downsized, and even if the exergy efficiency is excellent, there is a disadvantage in economic efficiency in the recuperative steam turbine power generation and single-effect. It is possible to contribute to the spread of a cogeneration system including a combination of absorption refrigerators.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の吸収冷凍機のフロー工程図である。FIG. 1 is a flow process diagram of an absorption refrigerator according to the present invention.

【符号の説明】[Explanation of symbols]

1:ボイラ、2:蒸気タービン、3:発電機、4:復水
器、5:熱交換器、6:復水ポンプ、7:復水タンク、
8:ボイラ給水ポンプ、21:吸収器、22:低濃度L
iBr溶液、23:冷却水、24:溶液ポンプ、25:
再生器、26:LiBr溶液散水ノズル、27:充填
剤、28:高濃度LiBr溶液、29:凝縮器、30:
溶液熱交換機、31:蒸発器、32:冷媒液体(水)、
33:冷媒ポンプ、34:冷水、35:凝縮器
1: Boiler, 2: Steam turbine, 3: Generator, 4: Condenser, 5: Heat exchanger, 6: Condensate pump, 7: Condensate tank,
8: Boiler feed pump, 21: Absorber, 22: Low concentration L
iBr solution, 23: cooling water, 24: solution pump, 25:
Regenerator, 26: LiBr solution water spray nozzle, 27: Filler, 28: High concentration LiBr solution, 29: Condenser, 30:
Solution heat exchanger, 31: evaporator, 32: refrigerant liquid (water),
33: Refrigerant pump, 34: Cold water, 35: Condenser

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 復水式蒸気タービンの排熱を用いる吸収
冷凍機において、吸収冷凍機の希溶液を復水式蒸気ター
ビンの復水器に設けた熱交換器に導入し、熱交換器から
出る加熱された希溶液を吸収冷凍機の再生器に導くよう
に構成したことを特徴とする吸収冷凍機。
1. In an absorption refrigerator using exhaust heat of a condensing steam turbine, a dilute solution of the absorption refrigerator is introduced into a heat exchanger provided in a condenser of the condensing steam turbine, and the diluted solution is introduced from the heat exchanger. An absorption refrigerator, which is configured so that the heated diluted solution that emerges is guided to a regenerator of the absorption refrigerator.
【請求項2】 前記希溶液として、低濃度LiBr水溶
液を用いる請求項1記載の吸収冷凍機。
2. The absorption refrigerator according to claim 1, wherein a low-concentration LiBr aqueous solution is used as the dilute solution.
JP3230796A 1991-08-19 1991-08-19 Absorption freezer Pending JPH0545019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3230796A JPH0545019A (en) 1991-08-19 1991-08-19 Absorption freezer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3230796A JPH0545019A (en) 1991-08-19 1991-08-19 Absorption freezer

Publications (1)

Publication Number Publication Date
JPH0545019A true JPH0545019A (en) 1993-02-23

Family

ID=16913411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3230796A Pending JPH0545019A (en) 1991-08-19 1991-08-19 Absorption freezer

Country Status (1)

Country Link
JP (1) JPH0545019A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995034789A1 (en) * 1994-06-10 1995-12-21 Tokyo Gas Co., Ltd. Absorption water chiller/heater and method of controlling same
US5607795A (en) * 1995-01-26 1997-03-04 Nec Corporation Battery terminals of miniature electronic apparatus and structure for retaining the same
US5863674A (en) * 1996-05-14 1999-01-26 Nec Corporation Battery terminals for a miniature electronic apparatus and structure for holding the same
JP2010276304A (en) * 2009-05-29 2010-12-09 Ebara Corp Steam generation system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995034789A1 (en) * 1994-06-10 1995-12-21 Tokyo Gas Co., Ltd. Absorption water chiller/heater and method of controlling same
US5607795A (en) * 1995-01-26 1997-03-04 Nec Corporation Battery terminals of miniature electronic apparatus and structure for retaining the same
US5863674A (en) * 1996-05-14 1999-01-26 Nec Corporation Battery terminals for a miniature electronic apparatus and structure for holding the same
JP2010276304A (en) * 2009-05-29 2010-12-09 Ebara Corp Steam generation system

Similar Documents

Publication Publication Date Title
CN108444146A (en) A kind of marine air-conditioning system and refrigerating method based on lithium bromide-water
CN102797522A (en) Medium-and-low-temperature waste-heat recovery system for realizing combined cold-power/ heat-power generation
CN110589921A (en) Flue gas waste heat utilization cold-fresh combined supply system and working method thereof
CN203159268U (en) solar air conditioning seawater desalination system
CN208458303U (en) Domestic Gas Air-conditioner
JPH0545019A (en) Absorption freezer
JP2002266656A (en) Gas turbine cogeneration system
SU1290041A1 (en) Method of producing cold
CN112284145B (en) Waste heat utilization device and method for metallurgical cooling tower
JP3865346B2 (en) Absorption chiller / heater
JP3290464B2 (en) Combined refrigeration equipment
CN210425621U (en) Absorption type combined refrigerating system
CN109469521A (en) Step recycles flue gas remaining hot water cogeneration system and working method
CN213901540U (en) Deep waste heat recovery device
CN217423663U (en) Smoke type lithium bromide absorption type second-class heat pump unit
CN2479446Y (en) Parallel solusion circulation lithium bromide direct-combustion machine with low-temp. solusion heat exchyanger
CN211854333U (en) Indirect cooling evaporation plant
CN2479447Y (en) Series solusion circulation lithium bromide direct-combustion machine with soluison high-temp. generator
JPH05263610A (en) Power generating facility
CN110173924B (en) Steam type lithium bromide absorption heat pump unit for single-effect heating double-effect refrigeration
CN201772770U (en) Mixed connection type high-efficiency composite condenser
CN211233437U (en) Single-effect heating and double-effect refrigerating steam type lithium bromide absorption heat pump unit
CN2479448Y (en) Series solusion circulation lithium bromide direct-combustion machine with solusion low-temp. generator
JPS6025714B2 (en) Combined heat pump
JPS6122225B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040816

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040831

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041012

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425

LAPS Cancellation because of no payment of annual fees