JPS62222690A - Semiconductor laser and manufacture thereof - Google Patents

Semiconductor laser and manufacture thereof

Info

Publication number
JPS62222690A
JPS62222690A JP6640186A JP6640186A JPS62222690A JP S62222690 A JPS62222690 A JP S62222690A JP 6640186 A JP6640186 A JP 6640186A JP 6640186 A JP6640186 A JP 6640186A JP S62222690 A JPS62222690 A JP S62222690A
Authority
JP
Japan
Prior art keywords
layer
type gaas
type
semiconductor laser
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6640186A
Other languages
Japanese (ja)
Other versions
JPH07105551B2 (en
Inventor
Katsuto Shimada
勝人 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP61066401A priority Critical patent/JPH07105551B2/en
Publication of JPS62222690A publication Critical patent/JPS62222690A/en
Publication of JPH07105551B2 publication Critical patent/JPH07105551B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a photoelectron integrated circuit consisting of a film having easy film-thickness controllability and excellent crystallizability by forming a current constriction layer for a semiconductor laser on the same layer with an active layer. CONSTITUTION:An N-type GaAs buffer layer 2 and an N-type AlGaAs clad layer 3 are shaped onto an N-type GaAs substrate 1 through an organo metallic chemical vapor deposition method in succession. An I-type GaAs current construction region 5 and an N-type GaAs active region 4 are shaped simultaneously through the organo metallic chemical vapor deposition method, vertically irradiating the growth substrate by an excimer laser selectively as the growth substrate is left as it is positioned in a reaction pipe, and a P-type AlGaAS clad layer 6 and a P-type GaAs cap layer 7 are formed through the organo metallic chemical vapor deposition method. An Au-Ge electrode 8 and an Au-Cr electrode 9 are each shaped to the N-type GaAs substrate 1 and the P-type GaAs cap layer 7 through an evaporation method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体レーザの構造およびその製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a structure of a semiconductor laser and a method of manufacturing the same.

〔従来の技術〕[Conventional technology]

従来特開昭57−49289号公報に記載されたように
、活性層と電流狭窄層は異なる層により形成されていた
Conventionally, as described in Japanese Unexamined Patent Publication No. 57-49289, the active layer and the current confinement layer were formed of different layers.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、従来の半導体レーザの電流狭窄層は、活性層と
は別にエピタキシャル成長をさせ、且つエツチング工程
又は熱拡散工程を行なって電流狭窄層を形成していた。
However, the current confinement layer of a conventional semiconductor laser is epitaxially grown separately from the active layer, and is formed by performing an etching process or a thermal diffusion process.

エツチング工程による形成技術では、エツチングのため
半導体レーザ製造中の基板を反応室から取り出すことに
より、成長膜の汚れによりクラッド層もしくはギャップ
層との界面での結晶欠陥の発生という問題を有していた
Formation technology using an etching process has the problem that when the substrate during semiconductor laser manufacturing is removed from the reaction chamber for etching, the grown film becomes contaminated and crystal defects occur at the interface with the cladding layer or gap layer. .

また、前述の熱拡散工程による形成技術では上記問題点
に加えて更に、拡散時間が大幅にかかると共に高温処理
により発光部の結晶性劣化が起こるという問題を有して
いた。
In addition to the above-mentioned problems, the formation technology using the thermal diffusion process described above also has the problem that the diffusion time is long and the crystallinity of the light-emitting part deteriorates due to high-temperature treatment.

そこで本発明はこのような問題点を解決するもので、そ
の目的とするところはエツチング工程および熱拡散工程
を行なわず、電流狭窄層を活性層と同一層とし、一工程
で製造することにある。
The present invention aims to solve these problems, and its purpose is to make the current confinement layer and the active layer the same layer and manufacture it in one step without performing an etching process or a thermal diffusion process. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体レーザは・電流の横方向の広がりを抑え
るための電流狭窄層を作りつけた半導体レーザの構造に
おいて、前記電流狭窄層を活性層と同一層としたことを
特徴とし、本発明の半導体レーザの製造方法は、電流狭
窄領域及び活性領域が、エキシマレーザを半導体ウェハ
に選択的に照射させた有機金属気相成長法によリ一工程
で作られることを特徴とする。
The semiconductor laser of the present invention is characterized in that the structure of the semiconductor laser includes a current confinement layer for suppressing the lateral spread of current, wherein the current confinement layer is the same layer as the active layer. A method for manufacturing a semiconductor laser is characterized in that a current confinement region and an active region are formed in one step by a metal organic vapor phase epitaxy method in which a semiconductor wafer is selectively irradiated with an excimer laser.

〔実施例〕〔Example〕

以下に本発明の実施例を図面にもとづいて説明する0第
1図はこの種のプレーナストライプレーザの基本的な構
造を示す斜視図である0同図において、n型GaAs基
板1にn型GaAsバッファJfj 2、n型AAGα
Asクラ・ラド層3を順次有機金属気相成長法により形
成する0次に、その成長基板を反応管の中に置いたまま
エキシマレーザを前記成長基板に垂直に選択的に照射し
ながら、有機金属気相成長法により、i型G(HAs電
流狭窄領域5及びn型GaAl1活性領域4を同時に形
成し、その上にp型AQGaAsクラッド層6、p型G
 a A 8キャップ層7を有機金属気相成長法により
形成する。n型GaAs基板1及びp型GaAsキャッ
プ層7にはそれぞれ蒸着法によりAu−Go電IJj8
及びAu−0r?!!極9を形成する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing the basic structure of this type of planar stripe laser. Buffer Jfj 2, n-type AAGα
Next, the Ascla/D layer 3 is sequentially formed by metal-organic vapor phase epitaxy. Next, while the growth substrate is placed in the reaction tube, an excimer laser is selectively irradiated perpendicularly to the growth substrate, and the organic By metal vapor phase epitaxy, an i-type G (HAs current confinement region 5 and an n-type GaAl1 active region 4 are formed simultaneously, and a p-type AQGaAs cladding layer 6 and a p-type G
a A 8 Cap layer 7 is formed by metal organic vapor phase epitaxy. The n-type GaAs substrate 1 and the p-type GaAs cap layer 7 are each coated with Au-Go electrodes IJj8 by vapor deposition.
and Au-0r? ! ! Form pole 9.

このようにプレーナストライプを形成することにより、
Au−Ge電極8をマイナス、Au−0r電極9をプラ
スとして電圧を印加した時に流れる電流は、i型GαA
s1li流狭窄領域5でしゃ断されるため、n型GαA
8活性領域4を貫通する極めて狭い幅に集中される。従
りて、レーザ発振を起こす領域の幅が極めて狭くなる結
果、しきい゛値電流の低下と単−横モード発振とが容易
に得られる。
By forming planar stripes in this way,
The current that flows when a voltage is applied with the Au-Ge electrode 8 as negative and the Au-0r electrode 9 as positive is i-type GαA.
Since the s1li flow is blocked by the constriction region 5, n-type GαA
8 are concentrated in an extremely narrow width passing through the active region 4. Therefore, the width of the region where laser oscillation occurs becomes extremely narrow, and as a result, a decrease in threshold current and single-transverse mode oscillation can be easily obtained.

しかしながらこの場合、レーザ発振を起こす領域の幅は
n型GαA8活性領域40幅によって一義的に決まる。
However, in this case, the width of the region where laser oscillation occurs is uniquely determined by the width of the n-type GαA8 active region 40.

従来は、n型Ga As活性領域4の幅はエツチング法
や熱拡散法を用いて形成していた。
Conventionally, the width of the n-type GaAs active region 4 has been formed using an etching method or a thermal diffusion method.

そのため、外型G(IA11活性領域4の幅及びn型G
aAs活性領域4とi型GαAB電流狭窄領域5の界面
の急峻さに関して、レーザチップごとにばらつきがあり
、即ち良好な特性の素子を歩留り良く得るには困難であ
った0 本発明では、エキシマレーザを使用して電流狭窄領域及
び活性領域の幅を精度よく制御でき、その界面を急峻に
形成することにより、レーザチップごとの均一性が良好
になり歩留りを上げることができる。
Therefore, the outer mold G (the width of the IA11 active region 4 and the n-type G
The steepness of the interface between the aAs active region 4 and the i-type GαAB current confinement region 5 varies from laser chip to laser chip, which makes it difficult to obtain devices with good characteristics at a high yield. The widths of the current confinement region and the active region can be precisely controlled using the method, and by forming the interface steeply, the uniformity of each laser chip can be improved and the yield can be increased.

第2図は有機金属気相成長法で、エキシマレーザの照射
の有無によるキャリヤ密度の変化を示すO同図において
横軸は、V族元素と■族元素のモル比、縦軸はキャリヤ
密度、実線はエキシマレーザの照射無し、破線はエキシ
マレーザの照射有りの場合である。本発明では第2図の
11M比がAで示す所を使用することにより、外型Gα
As活性領域4及びi型G(!A11電流狭窄領域5を
一工程で成長させた。
Figure 2 shows the change in carrier density depending on the presence or absence of excimer laser irradiation using metal-organic vapor phase epitaxy. The solid line shows the case without excimer laser irradiation, and the broken line shows the case with excimer laser irradiation. In the present invention, by using the 11M ratio shown by A in FIG. 2, the outer mold Gα
The As active region 4 and the i-type G (!A11 current confinement region 5) were grown in one step.

第3図はn型GaAs活性領域4及びi型G(lA8電
流狭窄領域5の形成工程を示す断面図である0エキシマ
レーザ11を成長基板に垂直に照射し、マスク10を用
いて照射部に選択性をもたせて、エピタキシャル成長を
行なう。
FIG. 3 is a cross-sectional view showing the process of forming an n-type GaAs active region 4 and an i-type G(lA8) current confinement region 5. The growth substrate is irradiated with an excimer laser 11 perpendicularly to the irradiated area using a mask 10. Epitaxial growth is performed with selectivity.

以上、本発明の概要をG(lA8−AAGaAs系半導
体レーザを用いて説明した。しかし、この製造方法で作
製できるのは、他のZ−V化合物でも同様であり、Z 
n S e % Z n Sなどの11−W化合物でも
可能である0まだ・第1図の活性領域4をP型、電流狭
窄領域5をi型としてエピタキシャル成長をさせること
も同様の製造方法で可能である。
The outline of the present invention has been explained above using a G(lA8-AAGaAs semiconductor laser).However, other Z-V compounds can be manufactured using this manufacturing method as well;
It is also possible to use 11-W compounds such as n S e % Z n S. It is also possible to perform epitaxial growth with active region 4 in FIG. 1 as P type and current confinement region 5 as i type using the same manufacturing method. It is.

また・実m例では・エキシマレーザを成長基板に垂直に
照射したが、垂直に限らず任意の角度をもたせて照射さ
せても成長を行うことが可能である0 〔発明の効果〕 以上述べたように本発明によれば、半導体レーザの構造
が平坦であることから、膜厚制御性が易く、結晶性の良
好な膜を成長でき、ゆえに積層構造に向いており、光電
子集積回路を作成し易い。
In addition, in the actual example, the excimer laser was irradiated perpendicularly to the growth substrate, but growth can also be performed by irradiating not only vertically but also at any angle.0 [Effects of the Invention] As described above According to the present invention, since the structure of the semiconductor laser is flat, the film thickness can be easily controlled and a film with good crystallinity can be grown. easy.

しかも−回のエピタキシャル成長で活性領域と電流狭窄
領域を作れるため工程が減り、さらにエツチング工程不
要のため一度も反応管から出さずに成長層を製造できる
ため、成長層の汚れが防止でき、更に熱拡散工程不要の
ため高温処理で生じ易い発光部の結晶性劣化が全くなく
、工程所要時間がはるかに短縮でき、更にエキシマレー
ザで活性領域の寸法のばらつき及び急峻性を制御できる
ため、良好な特性の素子を歩留りよく大量に作ることが
でき、更に作業人員を減らすことができ、素子を低価格
で作ることかできる。
Moreover, the active region and current confinement region can be created in just one epitaxial growth, reducing the number of steps.Furthermore, since there is no need for an etching process, the grown layer can be manufactured without ever taking it out of the reaction tube, which prevents contamination of the grown layer and further heats it up. Since there is no need for a diffusion process, there is no crystallinity deterioration in the light emitting part that tends to occur with high-temperature processing, and the time required for the process can be significantly shortened.Furthermore, the excimer laser can control the variation and steepness of the dimensions of the active region, resulting in good characteristics. devices can be manufactured in large quantities with good yield, the number of workers can be reduced, and the devices can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による半導体レーザの斜視図であり、第
2図はエキシマレーザ照射の有無によるキャリヤ密度の
変化図であり、第3図は活性層形成の主要断面図である
。 1・・・・・・1型GaA3基板 4・・・・・・n型GaA3活性領域 5・・・・・・i型G(IAsN、流狭窄領域11・・
・・・・エキシマレーザ 以  上 第1図 第2図
FIG. 1 is a perspective view of a semiconductor laser according to the present invention, FIG. 2 is a diagram of changes in carrier density depending on the presence or absence of excimer laser irradiation, and FIG. 3 is a main sectional view of active layer formation. 1...1 type GaA3 substrate 4...n type GaA3 active region 5...i type G (IAsN, flow constriction region 11...
・・・Excimer laser and above Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)電流の横方向の広がりを抑えるための電流狭窄層
を作りつけた半導体レーザの構造において、前記電流狭
窄層を活性層と同一層としたことを特徴とする半導体レ
ーザ。
(1) A semiconductor laser having a structure including a current confinement layer for suppressing the lateral spread of current, characterized in that the current confinement layer is the same layer as the active layer.
(2)有機金属気相成長法によるエピタキシャル成長工
程と、前記エピタキシャル成長工程中にエキシマレーザ
を基板に照射する工程とから成ることを特徴とする半導
体レーザの製造方法。
(2) A method for manufacturing a semiconductor laser, comprising an epitaxial growth step using metal organic vapor phase epitaxy, and a step of irradiating a substrate with an excimer laser during the epitaxial growth step.
JP61066401A 1986-03-25 1986-03-25 Semiconductor laser manufacturing method Expired - Lifetime JPH07105551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61066401A JPH07105551B2 (en) 1986-03-25 1986-03-25 Semiconductor laser manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61066401A JPH07105551B2 (en) 1986-03-25 1986-03-25 Semiconductor laser manufacturing method

Publications (2)

Publication Number Publication Date
JPS62222690A true JPS62222690A (en) 1987-09-30
JPH07105551B2 JPH07105551B2 (en) 1995-11-13

Family

ID=13314748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61066401A Expired - Lifetime JPH07105551B2 (en) 1986-03-25 1986-03-25 Semiconductor laser manufacturing method

Country Status (1)

Country Link
JP (1) JPH07105551B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086889A (en) * 1983-10-19 1985-05-16 Matsushita Electric Ind Co Ltd Manufacture of semiconductor laser

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086889A (en) * 1983-10-19 1985-05-16 Matsushita Electric Ind Co Ltd Manufacture of semiconductor laser

Also Published As

Publication number Publication date
JPH07105551B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
JP2525788B2 (en) Method for manufacturing semiconductor laser device
JPS62222690A (en) Semiconductor laser and manufacture thereof
JPH09214045A (en) Semiconductor laser and its fabrication method
JPH04111487A (en) Manufacture of semiconductor layer
JPH01270287A (en) Manufacture of semiconductor laser
JPS637691A (en) Semiconductor laser device
JPS62142386A (en) Semiconductor laser and manufacture thereof
JP2642403B2 (en) Manufacturing method of semiconductor laser
JPS6021586A (en) Compound semiconductor device
JPS6164183A (en) Manufacture of semiconductor light-emitting element
KR100290861B1 (en) Manufacturing method of semiconductor laser diode
JP2000307192A (en) Ridge waveguide semiconductor laser and its manufacture
JPS62159488A (en) Manufacture of semiconductor laser
JPH01316985A (en) Generation of semiconductor laser
JPS60127777A (en) Manufacture of semiconductor laser
JPS62179787A (en) Semiconductor laser and manufacture thereof
JPH01149500A (en) Manufacture of semiconductor laser device
JPS60258991A (en) Semiconductor laser device
JPS60196991A (en) Semiconductor laser device
JPS5931083A (en) Semiconductor laser element
JPH0582894A (en) Multi-wavelength semiconductor laser and manufacture thereof
JPS63190328A (en) Manufacture of compound semiconductor element
JPH02288387A (en) Semiconductor laser element
JPS60201684A (en) Semiconductor laser device and manufacture thereof
JPS60258990A (en) Manufacture of semiconductor laser device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term