JPS62222669A - Organic thin-film element - Google Patents

Organic thin-film element

Info

Publication number
JPS62222669A
JPS62222669A JP61066277A JP6627786A JPS62222669A JP S62222669 A JPS62222669 A JP S62222669A JP 61066277 A JP61066277 A JP 61066277A JP 6627786 A JP6627786 A JP 6627786A JP S62222669 A JPS62222669 A JP S62222669A
Authority
JP
Japan
Prior art keywords
organic thin
thin film
film
molecules
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61066277A
Other languages
Japanese (ja)
Inventor
Koichi Mizushima
公一 水島
Toshio Nakayama
中山 俊夫
Akira Miura
明 三浦
Nobuhiro Motoma
信弘 源間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61066277A priority Critical patent/JPS62222669A/en
Publication of JPS62222669A publication Critical patent/JPS62222669A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the efficiency of charge transfer by using an organic conductor as an electrode applying voltage to an organic thin-film in an organic thin-film element in which the organic thin-film is employed and charge transfer among donor molecules and acceptor molecules by applying voltage is used. CONSTITUTION:A first organic thin-film (a donor molecular film) 3 containing donor molecules and a second organic thin-film (an acceptor molecular film) 4 containing acceptor molecules are laminated on an Al electrode 1 in succession through an insulating organic thin-film 2, and an organic conductor electrode 6 is shaped onto the organic thin-film 4 through an insulating organic thin-film 5. Accordingly, charges transfer among donor molecules and acceptor molecules by applying voltage to the organic thin-films, thus controlling the absorptivity, conductivity characteristics, etc. of the organic thin-films.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、有機薄膜を用いた素子に係り、特にその電極
部の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an element using an organic thin film, and particularly relates to improvement of an electrode portion thereof.

(従来の技術) 近年、ラングミュア・プロジェクト法(以下、L、B法
という)に代表される有機分子の超薄膜形成技術の進展
により、有機薄膜素子素子への応用技術開発が活発化し
ている。ダーラム(Duhram )大学のロパーツ(
G、G、Roberts)の1、lf機薄膜金用い7?
−MIS素子の研究を代表として、この種の研究が各所
で行われている。しかし現状では、有機薄膜の性5ij
を有効に利用した新しい機能の素子は未だ実現されてい
ない。
(Prior Art) In recent years, with the progress of ultra-thin film formation technology of organic molecules represented by the Langmuir Project method (hereinafter referred to as L, B method), the development of applied technology to organic thin film elements has become active. Loparts of Durham University (
G, G, Roberts) 1, lf machine using thin film gold 7?
-This type of research is being conducted in various places, with research on MIS devices being a representative example. However, at present, the properties of organic thin films5ij
A device with a new function that makes effective use of this has not yet been realized.

素子応用の面から見て有機材料の特性の中で特に注目さ
れるのは5分子間の電荷移動の現象で6る。有機材料に
は、イオン化ポテンシャルが小さく他の分子に電子を供
給して自らは正のイオン状態になり易いドナー性分子と
、電子親和力が大きく他の分子から電子を受取り自らは
負のイオン状態になり易いアクセプタ性分子とがある。
From the perspective of device applications, the phenomenon of charge transfer between five molecules is particularly noteworthy among the properties of organic materials6. Organic materials have donor molecules that have a small ionization potential and easily become a positive ion state by supplying electrons to other molecules, and donor molecules that have a high electron affinity and receive electrons from other molecules and turn themselves into a negative ion state. There are some acceptor molecules that are easy to become.

これら二種の分子間には電荷移動錯体と総称される化合
物が形成されることはよく知られている。例えば、イレ
リンとテトラシアノキノジメタン(TCNQ )との間
の化合物は電荷の移動しない中性分子からなる化合物で
あるが、テトラメチルフェニレンジアミン(4Mpn)
トTCNQではそれぞれ分子が正、負となりたイオン性
の化合物となる。ti、テトラチアフルバレン(TTF
)(!:クロラニルの場合のように、温度や圧力によっ
て中性からイオン性への転移が観測ちれることも知られ
ている。
It is well known that a compound collectively called a charge transfer complex is formed between these two types of molecules. For example, the compound between irelin and tetracyanoquinodimethane (TCNQ) is a compound consisting of neutral molecules that do not transfer charge, but tetramethylphenylenediamine (4Mpn)
TCNQ becomes an ionic compound with positive and negative molecules, respectively. ti, tetrathiafulvalene (TTF
) (!: It is also known that, as in the case of chloranil, the transition from neutrality to ionicity can be observed depending on temperature and pressure.

この様な有機材料の電荷移動の現象を素子の動作g、埋
として応用する場合、電荷移動の効率。
When applying this phenomenon of charge transfer in organic materials to device operation, the efficiency of charge transfer.

応答速度、制御性等の電荷移動の特性そのものが優れて
いること、及び電荷移動を起こすような材料、素子が容
易に形成できること1等が要求される。電荷移動錯体結
晶については、結晶作成が極めて難しいこと、および電
荷移′mJヲ外部で制御することが難しいこと、等の問
題がある。また、金属と有機分子膜の間の電荷移動を元
や電界により制御してスイッチング素子あるい・はメモ
リ素子に利用する試みもなされているが、これらの電荷
移動の効率、応答速度、寿命等に大きな問題を抱えてい
る。この様に電荷移動の現象は、素子応用の可能性が期
待されつつも、現状では未だ実用に供されていない。
It is required that the characteristics of charge transfer itself, such as response speed and controllability, be excellent, and that materials and elements that cause charge transfer can be easily formed. Charge transfer complex crystals have problems such as extremely difficult crystal preparation and difficulty in externally controlling charge transfer. In addition, attempts have been made to control charge transfer between metals and organic molecular films using sources or electric fields and use them in switching elements or memory devices, but the efficiency of charge transfer, response speed, lifespan, etc. has a big problem. Although the phenomenon of charge transfer is expected to have potential for device applications, it has not yet been put to practical use.

また有機薄膜素子に特有の問題として、1JL極形成の
問題がある。有機薄膜は無機薄膜に比較してその密度が
小さいため、通常の蒸着法で金属電極を形成すると、金
属蒸気が容易に有機薄膜中に入り込み、しばしば有機薄
膜中に金属微粒子、金属フィラメントが形成される。こ
の結果、有機薄膜に電圧を印加した時の膜内の電界が不
均一になり、有機薄膜内での電荷移動の効率低下をもた
らす。ま7’j IJ−り電流が増大して素子の特性劣
化の原因となる。
Further, as a problem specific to organic thin film elements, there is the problem of 1JL pole formation. Organic thin films have a lower density than inorganic thin films, so when metal electrodes are formed using normal vapor deposition methods, metal vapor easily enters the organic thin film, often forming metal particles and metal filaments in the organic thin film. Ru. As a result, when a voltage is applied to the organic thin film, the electric field within the film becomes non-uniform, resulting in a decrease in the efficiency of charge transfer within the organic thin film. The IJ current increases, causing deterioration of the characteristics of the element.

(発明が解決しようとする問題点) 以上のように有機薄膜は、新しい機能の素子−への応用
が期待されながら、未だその様な素子は実現されていな
い。また電極形成法に問題を抱えている。
(Problems to be Solved by the Invention) As described above, although organic thin films are expected to be applied to devices with new functions, such devices have not yet been realized. There are also problems with the electrode formation method.

本発明は上記の点に鑑みなされたもので、有機薄膜の電
荷移動現象を動作原理として電荷移動の効率を向上させ
、かつ有機薄膜のリーク電流を抑制して特性向上および
信頼性向上を図った有機薄膜素子を提供することを目的
とする。
The present invention was made in view of the above points, and uses the charge transfer phenomenon of organic thin films as an operating principle to improve the efficiency of charge transfer, and suppresses leakage current of organic thin films to improve characteristics and reliability. The purpose is to provide an organic thin film device.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明にかかる有機薄膜素子は、ドナー性分子とアクセ
プタ性分子を含む有機薄膜の有機分子間の電荷移動現象
を利用する素子である。具体的には、有機薄膜に電圧を
印加した時の吸光率、伝導度特性、誘電率、膜内電位分
布等の変化を利用する。この様な素子において本発明は
、有機薄膜に電圧を印加する電極として、少なくともそ
の一部を有機導電体によシ構成したことを特徴とする。
(Means for Solving the Problems) The organic thin film element according to the present invention is an element that utilizes a charge transfer phenomenon between organic molecules of an organic thin film containing donor molecules and acceptor molecules. Specifically, changes in absorbance, conductivity characteristics, dielectric constant, potential distribution within the film, etc. when a voltage is applied to an organic thin film are utilized. In such an element, the present invention is characterized in that at least a part of the electrode for applying a voltage to the organic thin film is made of an organic conductor.

ここで有機薄膜は、ドナー性分子を含む第1の有機薄膜
とアクセプタ性分子を含む第2の有機薄膜の積層構造と
してもよいし、ドナー性分子とアクセプタ性分子を共に
含む混合薄膜としてもよい。また、本発明において好ま
しくは、有機薄膜としてLB法により形成された単分子
膜あるいはこれを複数層累積し九超薄膜を用いる。有機
物質中を動く電子あるいはホールの速度は一般に無機半
導体中のそれより遅いが、数人〜数10Xという超薄膜
を用いることによシ、十分高速度の電荷移動が可能であ
り、ま7′c実際にLB法によシその様な膜形成が可能
である。
Here, the organic thin film may have a laminated structure of a first organic thin film containing donor molecules and a second organic thin film containing acceptor molecules, or may be a mixed thin film containing both donor molecules and acceptor molecules. . Further, in the present invention, preferably, a monomolecular film formed by the LB method or an ultra-thin film obtained by stacking a plurality of layers thereof is used as the organic thin film. The speed of electrons or holes moving in organic materials is generally slower than that in inorganic semiconductors, but by using ultra-thin films of several to several tens of times, it is possible to transfer charges at a sufficiently high speed. c It is actually possible to form such a film using the LB method.

また電極としての有機導電体膜には、例えば電荷移動錯
体の蒸着膜あるいはLB法による膜等を用いる。
Further, as the organic conductive film serving as the electrode, for example, a vapor-deposited film of a charge transfer complex or a film formed by the LB method is used.

(作用) 本発明の構成によれば、有機薄膜に電圧を印加すること
によシドナー性分子とアクセプタ性分子間で電荷移動が
生じ、これにより有機薄膜の吸光率、伝導度特性等が制
御される。このとき、電極の少なくとも一部に有機導電
体を用いているため、有機薄膜内に金属微粒子や金属フ
ィラメントが形成されることなく、従って有機薄膜には
均一な電界が印加されてドナー性分子とアクセプタ性分
子間での電荷移動確率(効率)が高いものとなる。同様
の理由で有機薄膜のリーク電流は少なく、従って信頼性
の高い素子特性が得られる。
(Function) According to the configuration of the present invention, by applying a voltage to the organic thin film, charge transfer occurs between the sider molecules and the acceptor molecules, thereby controlling the absorbance, conductivity characteristics, etc. of the organic thin film. Ru. At this time, since an organic conductor is used for at least a portion of the electrode, metal fine particles or metal filaments are not formed within the organic thin film, and a uniform electric field is applied to the organic thin film, allowing donor molecules to interact with each other. The probability (efficiency) of charge transfer between acceptor molecules becomes high. For the same reason, the leakage current of organic thin films is small, and therefore highly reliable device characteristics can be obtained.

(実施例) 以下本発明の実施例全図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to all the drawings.

第1図は一笑施例の有機、薄膜素子である。図において
、1はAti[であり、この上に絶縁性有機薄膜2を介
してドナー性分子を含む第1の有機薄膜(ドナー性分子
膜)3.アクセプタ性分子を含む第2の有機薄膜(アク
セプタ性分子膜)4が順次積層され、更にこの上に絶縁
性有機薄膜5を介して有機導電体電極6が形成されてい
る。有機導電体電極6はこの実施例では電荷移動錯体の
蒸着膜である。
FIG. 1 shows an organic, thin film device according to one embodiment. In the figure, 1 is Ati[, and a first organic thin film (donor molecular film) containing donor molecules is formed thereon via an insulating organic thin film 2. A second organic thin film (acceptor molecule film) 4 containing acceptor molecules is sequentially laminated, and an organic conductor electrode 6 is further formed on this with an insulating organic thin film 5 interposed therebetween. The organic conductor electrode 6 is a deposited film of a charge transfer complex in this embodiment.

この素子の具体的な裂造工程例は次の通シである。ポリ
ーL−7エニルアラニンel:5(7)体積比のジクロ
ル酢酸−クロロホルム浴液に約11n9/−の濃度とな
るように浴解してLB膜展開m液を形成した。この製膜
分子は13 dyne /cm以上の表面圧で凝縮膜と
なることが表面圧−分子占有面積曲線から知られた。L
B膜形成装置は市販の垂直引上げ方式のものを用い、展
開。
A specific example of the fabrication process for this element is as follows. Poly L-7 enylalanine el: LB membrane development m solution was prepared by dissolving in a dichloroacetic acid-chloroform bath solution having a volume ratio of 5 (7) to a concentration of about 11n9/-. It was known from the surface pressure-molecule occupied area curve that this film-forming molecule forms a condensed film at a surface pressure of 13 dyne/cm or more. L
A commercially available vertical pulling type device was used for film formation B.

累積に先だって水相?pH−6,0に設定し、共存塩と
して2価カドミウム塩を約0.05mM添加し、水@を
20℃に保った。At”ill極1となるAt膜を形成
したガラス基板をこの水相に設置し、上記製膜分子t−
600μJ)ラニット法により展開して、表面圧を20
 dyne /cmに設定して単分子膜を安定させた。
Aqueous phase prior to accumulation? The pH was set to -6.0, about 0.05 mM of divalent cadmium salt was added as a coexisting salt, and the water was maintained at 20°C. A glass substrate on which an At film, which will become At'ill pole 1, is formed is placed in this aqueous phase, and the above-mentioned film-forming molecule t-
600 μJ) was developed using the Ranit method, and the surface pressure was increased to 20 μJ.
The monolayer was stabilized by setting dyne/cm.

そして引上げ速度70μm/minでこの基板を引上け
、単分子からなるLB膜を累積した。累積数は10層と
した。これが絶縁性有機薄膜2である。
Then, this substrate was pulled up at a pulling speed of 70 μm/min to accumulate a monomolecular LB film. The cumulative number of layers was 10. This is the insulating organic thin film 2.

ドナー性分子膜3としては、パラフェニレンジアミンと
ポリーL−フェニルアラニンを1:1に混合したものを
上記と同様の方法で単層形成した。アクセプタ性分子膜
4としては、テトラシアノキノジメタンをポリーL−フ
ェニルアラニンと1:1に混合したものをやはり同様の
方法で単層形成し友。以上のドナー性分子膜とアクセプ
タ性分子膜の累積を10回繰返し、この上に、先の絶縁
性有機薄膜2と同様の絶縁性有機薄膜5を形成した。
As the donor molecular film 3, a single layer of a 1:1 mixture of para-phenylene diamine and poly-L-phenylalanine was formed in the same manner as above. As the acceptor molecular film 4, a single layer of a mixture of tetracyanoquinodimethane and poly-L-phenylalanine in a ratio of 1:1 may be formed in the same manner. The above accumulation of the donor molecular film and the acceptor molecular film was repeated 10 times, and an insulating organic thin film 5 similar to the above insulating organic thin film 2 was formed thereon.

このように形成され九LB膜超格子の上部の有機導電体
電極6として、ドナー性分子であるテトラチアアフルパ
レン(TTF)とアクセプタ性分子であるテトラシアノ
キノジメタン(TCNQ )の電荷移動錯体TTF −
TCNQを真空蒸着法によシ2000Xの厚さに形成し
た後、その表面にAu膜を1000X蒸着した。
As the organic conductor electrode 6 on the top of the nine LB film superlattice formed in this way, a charge transfer complex of tetrathiafurparene (TTF), which is a donor molecule, and tetracyanoquinodimethane (TCNQ), which is an acceptor molecule, is used. TTF-
After forming TCNQ to a thickness of 2000× by vacuum evaporation, an Au film of 1000× was deposited on its surface.

第2図はこのように構成された素子に、有機導電体電極
6側が正、 kA電極1側が負となる電圧を印加した時
の、LB膜の電流−電圧特性を測定した結果である。図
には、比較例として。
FIG. 2 shows the results of measuring the current-voltage characteristics of the LB film when a voltage such that the organic conductor electrode 6 side is positive and the kA electrode 1 side is negative is applied to the device configured as described above. The figure is shown as a comparative example.

第1図の有機導電体電極6の部分に有機導電体を用いず
直接Au電極を形成した素子の特性を併せて示した。
The characteristics of an element in which an Au electrode is directly formed in the organic conductor electrode 6 portion of FIG. 1 without using an organic conductor are also shown.

図から明らかなようにこの実施例の素子では所定の地圧
値で大きい電流変化が認められる。
As is clear from the figure, in the element of this example, a large current change is observed at a predetermined ground pressure value.

これは比較例に比べて有機薄膜のリークが少なく、ドナ
ー性分子とアクセプタ性分子間の電荷移動が効率よく制
御され九結果である。
This is a result of less leakage of the organic thin film than in the comparative example and efficient control of charge transfer between donor molecules and acceptor molecules.

第3図は他の実施例の有機薄膜素子である。FIG. 3 shows an organic thin film device of another example.

第1図の実施例と異なる点は、尼電極1に代わって、G
aAs基板2を電極として用いていることでちる。Ga
As基板1は、 StをI X 1016/cm”添加
し九n型基板を用いた。
The difference from the embodiment shown in FIG.
This is achieved by using the aAs substrate 2 as an electrode. Ga
The As substrate 1 was a 9n type substrate doped with St at I x 1016/cm''.

このMxsW素子は、逆バイアス約2vでキャパシタン
スの急激な変化が観測され、 GaAs基板7の表面が
反転したことが確認された。
In this MxsW element, a rapid change in capacitance was observed at a reverse bias of about 2 V, and it was confirmed that the surface of the GaAs substrate 7 was inverted.

第4図は、第1図の構成におけるドナー性分子膜3とア
クセプタ性分子膜4の積層部分に、ドナー性分子とアク
セプタ性分子を共に含む混合薄膜34を用いたものであ
る。この様な構成の素子においても、上部電標として有
機導電体電極6を用いることによシ、第1図の素子と同
様の特性が得られる。
In FIG. 4, a mixed thin film 34 containing both donor molecules and acceptor molecules is used in the laminated portion of the donor molecule membrane 3 and acceptor molecule membrane 4 in the configuration shown in FIG. Even in an element having such a configuration, characteristics similar to those of the element shown in FIG. 1 can be obtained by using the organic conductor electrode 6 as the upper electrode.

以上の実施例では、有機導電体電極として電荷移動錯体
の蒸着膜を用い友が、LB膜を電極として用いることに
よっても同様の効果が得られる。また以上の実施例では
、有機薄膜を挾む電極のうち一方に有機導電体を用いた
が、両方の電極に有機導電体を用いてもよい。
In the above embodiments, a similar effect can be obtained by using a vapor-deposited film of a charge transfer complex as an organic conductor electrode and using an LB film as an electrode. Further, in the above embodiments, an organic conductor was used for one of the electrodes sandwiching the organic thin film, but an organic conductor may be used for both electrodes.

本発明において、ドナー性分子膜や有機導電体電極に用
いられるドナー性分子としては、以下のようなものが挙
げられる。
In the present invention, the donor molecules used in the donor molecular film and the organic conductor electrode include the following.

(1)以下のような構造をもつフルバレン型ドナー (2)以下のような構造式をもつ含S複素環狐ドナー ≧ −S ここでφはフェニル基を表わす。(1) Fullvalene type donor with the following structure (2) S-containing heterocyclic fox donor with the following structural formula ≧ −S Here, φ represents a phenyl group.

(3)  以下のような構造式をもつアミン型ドナーH
3CH3 H2 (4)以下のような構造式をもつ金属化合物型ドナー O・・什・0 0・・仔・0 (5) 以下のような構造式をもつシアニン色素ドナー (6)  以下のような構造式をもつ含N複素環型ドナ
ー (7)  以下のような構造式をもっポリマーをドナー
・・・ノアN〆ゝ9′\・・・ ポリアセチレン(1)
から(7)に示したドナー性分子はその構造式のままで
も、おるいはそれを骨格として。
(3) Amine type donor H with the following structural formula
3CH3 H2 (4) A metal compound type donor having the structural formula as shown below. N-containing heterocyclic donor with the structural formula (7) Donor polymer with the following structural formula... Noah N〆ゝ9'\... Polyacetylene (1)
The donor molecule shown in (7) can be used as its structural formula or as a skeleton.

CH3(−CH2+n、 CH,+cH2YCH2−C
H2YCH23H(n及びp + q + 1は8以上
)からなる疎水基金有した誘導体でも、あるいは−〇〇
OH,−OH。
CH3(-CH2+n, CH,+cH2YCH2-C
Derivatives with a hydrophobic group consisting of H2YCH23H (n and p + q + 1 are 8 or more), or -〇〇OH, -OH.

−8o3H,−COOR’ 、 −NH3,−&(R’
)、Y−(Yはへ口rン)からなる親水基を有する誘導
体でも、あるいはこれら疎水基と親水基を共に有する誘
導体でもよい。
-8o3H, -COOR', -NH3,-&(R'
), Y- (where Y is an abbreviation), or a derivative having both a hydrophobic group and a hydrophilic group.

アクセプタ性分子としては、以下に示すような分子を用
いることができる。
As the acceptor molecule, the following molecules can be used.

(8)以下のような構造式をもつシアン化合物をアクセ
プタ NL:   い (9)以下のような構造式をもつキノン盟アクセゾタ へQ 以下のような構造式をもつニトロ化合換型アクセ
グタ (8)から(11に示したアクセプタ性分子はその構造
式のままでも、あるいはそれを骨格として。
(8) Acceptor NL for a cyanide compound having the following structural formula: (9) To a quinone group accessor having the following structural formula Q Nitro compound substituted acceptor (8) having the following structural formula (The acceptor molecule shown in 11 can be used as its structural formula or as a skeleton.

CH,(0M2洩、 Ckl、+CH25CH2−CM
2QCH2−)z  (n及びp + q + Lは8
以上)からなる疎水基を有した誘導体でも、あるいは−
〇〇〇H,−OH,−8o、H。
CH, (0M2 leakage, Ckl, +CH25CH2-CM
2QCH2-)z (n and p + q + L are 8
Derivatives with hydrophobic groups consisting of the above) or -
〇〇〇H, -OH, -8o, H.

−coon′、 −NH2,−$(R′)、y−(yは
/% C! )f 7 )からなる親水基を有する誘導
体でも、あるいはこれら疎水基と親水基を共に有する誘
導体でもよい。
It may be a derivative having a hydrophilic group consisting of -coon', -NH2, -$(R'), y- (y is /%C!)f7), or a derivative having both of these hydrophobic and hydrophilic groups.

本発明でのドナー性分子膜やアクセプタ性分子膜におい
て、ドナー性分子やアクセプタ性分子と混合して用いら
れる絶縁性分子、ちるいは絶縁性分子膜に用いられる絶
縁性分子としては、以下のような分子が用いられる。
In the donor molecular film or acceptor molecular film in the present invention, the insulating molecules used in the mixture with the donor molecules and acceptor molecules, the insulating molecules used in the film or the insulating molecular film, are as follows. Such molecules are used.

α埠 下記一般式で表わされる置換可能な飽和及び不飽
和炭化水素誘導体 −X ここで、Rは置換可能なCH3(CH2)n−あるいは
CHs(−CH2千〇)12=CH2早CH2)2  
(但し、n及びp + q + 1は8以上)からなる
疎水基である。
αBu Substitutable saturated and unsaturated hydrocarbon derivatives represented by the following general formula -X Here, R is substitutable CH3(CH2)n- or CHs(-CH2,000)12=CH2early CH2)2
(However, n and p + q + 1 are 8 or more).

などが挙げられる。Examples include.

(6)禎々の重合性分子 例えば、置換可能なアクリレート、メタクリv−)、t
’ニルエーテル、スチレン、ビニルアルコール、アクリ
ルアミド、アクリルなどのビニル重合体。あるいは、ア
ラニン、グルタメート、アスノぐルテート、などのα−
アミノ酸、ε−アミノカプロン酸等のα−アミノ酸以外
のアミノ酸。ヘキサメチレンジアミン等のシアミンと、
ヘキサメチレンジカルボン酸等のソカルデン酸1:1混
合物よりなるポリアミド重合体。
(6) Various polymerizable molecules, such as substitutable acrylates, methacrylates, t
'Vinyl polymers such as vinyl ether, styrene, vinyl alcohol, acrylamide, and acrylic. Alternatively, α- such as alanine, glutamate, asnoglutate, etc.
amino acids, amino acids other than α-amino acids such as ε-aminocaproic acid. Cyamine such as hexamethylene diamine,
A polyamide polymer consisting of a 1:1 mixture of socaldic acid such as hexamethylene dicarboxylic acid.

これらの分子はそれ自身累積が可能な場合は単独で用い
ることができる。単独で製膜できなC11) いよつな分子は〜で示したような単独で製膜できる絶縁
性分子と混合して用いる。
These molecules can be used alone if they themselves can be accumulated. C11) Molecules that cannot be used alone to form a film are mixed with insulating molecules that can be formed into a film independently, such as those shown in ~.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、ドナー性分子とアク
セプタ性分子を含む有機薄膜を用い、電圧印加によシド
ナー性分子とアクセプタ性分子間の電荷移動金利用する
有機薄膜素子において、有機薄膜に電圧を印加する電極
として有機導電体を用いることにより、電圧印加による
電荷移動の効率全向上させることができ、ま迄す−り電
流を少なくして信頼性向上を図ることができる。
As described above, according to the present invention, an organic thin film element that uses an organic thin film containing donor molecules and acceptor molecules and utilizes charge transfer between the donor molecules and the acceptor molecules upon application of a voltage. By using an organic conductor as an electrode to which a voltage is applied, the efficiency of charge transfer due to voltage application can be completely improved, and reliability can be improved by reducing current.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の有機薄膜素子を示す図、第
2図はその特性を比較例と共に示す図、第3図及び第4
図は他の実施例の有機薄膜素子を示す図でおる。 1・・・A/、−極、2・・・絶縁性有機薄膜、3・・
・ドナー性分子膜、4・・・アクセプタ性分子膜、5・
・・絶縁性有機薄膜、6・・・有機導電体電極、7・・
・GaAa基板、34・・・混合薄膜。
FIG. 1 is a diagram showing an organic thin film device according to an embodiment of the present invention, FIG. 2 is a diagram showing its characteristics together with a comparative example, and FIGS.
The figure shows an organic thin film element of another example. 1... A/, - pole, 2... Insulating organic thin film, 3...
・Donor molecular film, 4... Acceptor molecular film, 5.
...Insulating organic thin film, 6...Organic conductor electrode, 7...
- GaAa substrate, 34...mixed thin film.

Claims (6)

【特許請求の範囲】[Claims] (1)ドナー性分子とアクセプタ性分子を含む有機薄膜
を有する有機薄膜素子において、前記有機薄膜に電圧を
印加する電極の少なくとも一部を有機導電体により構成
したことを特徴とする有機薄膜素子。
(1) An organic thin film element having an organic thin film containing donor molecules and acceptor molecules, characterized in that at least a part of an electrode for applying a voltage to the organic thin film is made of an organic conductor.
(2)前記有機薄膜は、ドナー性分子を含む第1の有機
薄膜とアクセプタ性分子を含む第2の有機薄膜の積層構
造からなる特許請求の範囲第1項記載の有機薄膜素子。
(2) The organic thin film element according to claim 1, wherein the organic thin film has a laminated structure of a first organic thin film containing donor molecules and a second organic thin film containing acceptor molecules.
(3)前記有機薄膜は、ドナー性分子とアクセプタ性分
子を共に含む混合薄膜からなる特許請求の範囲第1項記
載の有機薄膜素子。
(3) The organic thin film element according to claim 1, wherein the organic thin film is a mixed thin film containing both donor molecules and acceptor molecules.
(4)前記有機薄膜は、ラングミュア・プロジェット法
により形成された膜である特許請求の範囲第1項記載の
有機薄膜素子。
(4) The organic thin film element according to claim 1, wherein the organic thin film is a film formed by the Langmuir-Prodgett method.
(5)前記有機導電体による電極は、電荷移動錯体の蒸
着膜である特許請求の範囲第1項記載の有機薄膜素子。
(5) The organic thin film device according to claim 1, wherein the electrode made of the organic conductor is a vapor deposited film of a charge transfer complex.
(6)前記有機導電体による電極は、ラングミュア・プ
ロジェット法により形成された薄膜である特許請求の範
囲第1項記載の有機薄膜素子。
(6) The organic thin film device according to claim 1, wherein the electrode made of the organic conductor is a thin film formed by the Langmuir-Prodgett method.
JP61066277A 1986-03-25 1986-03-25 Organic thin-film element Pending JPS62222669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61066277A JPS62222669A (en) 1986-03-25 1986-03-25 Organic thin-film element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61066277A JPS62222669A (en) 1986-03-25 1986-03-25 Organic thin-film element

Publications (1)

Publication Number Publication Date
JPS62222669A true JPS62222669A (en) 1987-09-30

Family

ID=13311179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61066277A Pending JPS62222669A (en) 1986-03-25 1986-03-25 Organic thin-film element

Country Status (1)

Country Link
JP (1) JPS62222669A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992006503A1 (en) * 1990-10-01 1992-04-16 Marks Alvin M Light-polarizing electrically conducting film
US5153680A (en) * 1988-03-02 1992-10-06 Kabushiki Kaisha Toshiba Organic dye thin film and organic thin film element
US5272359A (en) * 1988-04-07 1993-12-21 California Institute Of Technology Reversible non-volatile switch based on a TCNQ charge transfer complex
US5343050A (en) * 1992-01-07 1994-08-30 Kabushiki Kaisha Toshiba Organic electroluminescent device with low barrier height
JP2004152815A (en) * 2002-10-29 2004-05-27 Mitsui Chemicals Inc Organic solar cell
JP2006080530A (en) * 1992-08-17 2006-03-23 Univ California Heterojunction of conjugate polymer and acceptor; diode, photodiode, and photovoltaic cell
JP2010065069A (en) * 2008-09-08 2010-03-25 Osaka Prefecture Univ Donor-acceptor type dye
JP2011181363A (en) * 2010-03-02 2011-09-15 Ricoh Co Ltd Organic laminated film
JP2014198716A (en) * 2013-03-14 2014-10-23 学校法人法政大学 New organic charge-transfer complex and method for producing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5153680A (en) * 1988-03-02 1992-10-06 Kabushiki Kaisha Toshiba Organic dye thin film and organic thin film element
US5272359A (en) * 1988-04-07 1993-12-21 California Institute Of Technology Reversible non-volatile switch based on a TCNQ charge transfer complex
WO1992006503A1 (en) * 1990-10-01 1992-04-16 Marks Alvin M Light-polarizing electrically conducting film
US5229624A (en) * 1990-10-01 1993-07-20 Marks Alvin M Light-polarizing electrically-conducting film
US5343050A (en) * 1992-01-07 1994-08-30 Kabushiki Kaisha Toshiba Organic electroluminescent device with low barrier height
JP2006080530A (en) * 1992-08-17 2006-03-23 Univ California Heterojunction of conjugate polymer and acceptor; diode, photodiode, and photovoltaic cell
JP4594832B2 (en) * 1992-08-17 2010-12-08 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Photocell and manufacturing method thereof
JP2004152815A (en) * 2002-10-29 2004-05-27 Mitsui Chemicals Inc Organic solar cell
JP2010065069A (en) * 2008-09-08 2010-03-25 Osaka Prefecture Univ Donor-acceptor type dye
JP2011181363A (en) * 2010-03-02 2011-09-15 Ricoh Co Ltd Organic laminated film
JP2014198716A (en) * 2013-03-14 2014-10-23 学校法人法政大学 New organic charge-transfer complex and method for producing the same

Similar Documents

Publication Publication Date Title
US5206525A (en) Electric element capable of controlling the electric conductivity of π-conjugated macromolecular materials
US6060338A (en) Method of making a field effect transistor
EP0272937B1 (en) Switching device
EP1594176B1 (en) Switching device
Sato et al. Polarized memory effect in the device including the organic charge‐transfer complex, copper‐tetracyanoquinodimethane
JPS62222669A (en) Organic thin-film element
CN114631146A (en) Electronic switching device
JPS62222668A (en) Organic thin-film element
WO2007094164A1 (en) Organic thin film transistor and fabrication method thereof
US20080259680A1 (en) Memory Element and Method for Manufacturing Same
Pearson et al. Electronic memory device based on a single-layer fluorene-containing organic thin film
JPS62222670A (en) Organic thin-film element
JPH01209767A (en) Electric/electronic device element
JP3169617B2 (en) Electric conductivity control method
JPS6396956A (en) Switching element
RU2106041C1 (en) Tunnel device manufacturing process
JPS63146464A (en) Semiconductor element
KR101420720B1 (en) Non-Volatile memory comprising conductive polymer and fabrication method thereof
JP2008525994A (en) Transistor having a dust electrode for tunneling
JP3169618B2 (en) Electrical element
JP2531702B2 (en) Field effect transistor
JPS6265477A (en) Organic thin film rectifying device
JPH0435066A (en) Organic compound semiconductor electric element and manufacture thereof
JPS63161433A (en) Display device
JP2902029B2 (en) Organic thin film element