JPH0435066A - Organic compound semiconductor electric element and manufacture thereof - Google Patents

Organic compound semiconductor electric element and manufacture thereof

Info

Publication number
JPH0435066A
JPH0435066A JP2142025A JP14202590A JPH0435066A JP H0435066 A JPH0435066 A JP H0435066A JP 2142025 A JP2142025 A JP 2142025A JP 14202590 A JP14202590 A JP 14202590A JP H0435066 A JPH0435066 A JP H0435066A
Authority
JP
Japan
Prior art keywords
organic compound
resistance state
compound semiconductor
upper electrode
electric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2142025A
Other languages
Japanese (ja)
Inventor
Taiji Osada
長田 泰二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP2142025A priority Critical patent/JPH0435066A/en
Publication of JPH0435066A publication Critical patent/JPH0435066A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate manufacture with reversible switching action by a method wherein an organic compound semiconductor layer is a thin film made of a diacetylene derivative compound in an electric element having the organic compound layer between the upper electrode and the lower electrode. CONSTITUTION:After a thin film made of a diacetylene derivative compound resulting from solid phase polymerization by vacuum vapor-deposition is deposited on the upper electrode, the upper electrode is formed on this thin film. That is, aluminum is vacuum-deposited on one surface of a substrate to form an electrode substrate with the lower electrode. This is followed by vapor deposition of nonacosa 10, 12 diine acid of powdery state, and then by irradiation with ultraviolet rays from a high-tension mercury-vapor lamp. Further, the top face of this poly(nonacosa 10, 12 diine acid) thin film is turned into the upper electrode by Al vacuum deposition. This way provides an electric element having an organic compound semiconductor layer within a pair of upper and lower electrodes.

Description

【発明の詳細な説明】 イツチング素子や記憶素子に用いられるものである。[Detailed description of the invention] It is used for switching elements and memory elements.

[従来の技術] 周知の如く、(SN)xの超電導性の発見やドピングさ
れたポリアセチレンの高導電性などに端を発して、有機
半導体の研究には目を見張るものかある。
[Prior Art] As is well known, research into organic semiconductors has been remarkable, starting with the discovery of the superconductivity of (SN)x and the high conductivity of doped polyacetylene.

一方、最近電圧を印加したり、パルス光の入射により、
導電率が不連続に変化する有機膜を用いたスイッチング
素子の研究か盛んである米国特許4371883号(P
 oLember et al、)は、上記有機半導体
を用いた電子素子、つまり電荷移動錯体薄膜による電流
制御型のスイッチング素子(第4図図示)を開示してい
る。図中の1は、スイッチング素子である。この素子は
、基板2」二に、下部電極3、電荷移動錯体層(有機化
合物半導体層)4及び上部電極5を順次積層した構造と
なっている。ここで、前記電荷移動錯体層4は、多結晶
のCu−TCNQ(銅−テトラシアノキノジメタン)か
らなる。なお、図中の6,7は、夫々、下部電極3.」
二部電極5に接合部8を介して接続したリード線である
。つまり、上記構造のスイッチング素子は、電荷移動錯
体層4に一対の電極3゜5を設けた2端子構造の素子で
ある。
On the other hand, recently, due to the application of voltage or the incidence of pulsed light,
U.S. Pat. No. 4,371,883 (P.
OLember et al.) disclose an electronic device using the above-mentioned organic semiconductor, that is, a current-controlled switching device using a charge transfer complex thin film (shown in FIG. 4). 1 in the figure is a switching element. This device has a structure in which a lower electrode 3, a charge transfer complex layer (organic compound semiconductor layer) 4, and an upper electrode 5 are sequentially laminated on a substrate 2''. Here, the charge transfer complex layer 4 is made of polycrystalline Cu-TCNQ (copper-tetracyanoquinodimethane). Note that 6 and 7 in the figure are the lower electrodes 3 and 3, respectively. ”
This is a lead wire connected to the two-part electrode 5 via a joint 8. That is, the switching element having the above structure is a two-terminal element in which a pair of electrodes 3.degree. 5 is provided on the charge transfer complex layer 4.

この電気素子は、例えば次のように作製する。This electric element is manufactured, for example, as follows.

まず、Cu又はAgなとのドナーとなる材料からなる基
板をTCNQ (テトラシアノキノジメタン)などの中
性のアクセプタ分子をアセトニトリルなどの溶媒に溶解
した溶液を浸す。このときに酸化還元反応が起こりアク
セプタ分子のイオンラジカルとの金属塩を形成する。こ
の反応により結晶が適当な厚さ(数μm)にまで成長し
たら溶媒中から基板を取り出し、真空乾燥により溶媒を
除去した後、八Ω又はCrの上部電極を真空蒸着法等に
より形成する。
First, a substrate made of a donor material such as Cu or Ag is immersed in a solution in which a neutral acceptor molecule such as TCNQ (tetracyanoquinodimethane) is dissolved in a solvent such as acetonitrile. At this time, a redox reaction occurs to form a metal salt with the ion radical of the acceptor molecule. When the crystals have grown to an appropriate thickness (several μm) through this reaction, the substrate is taken out from the solvent, the solvent is removed by vacuum drying, and then an 8Ω or Cr upper electrode is formed by vacuum evaporation or the like.

第5図は、上記スイッチング素子を組入れた回路である
。この索子1には、電源11、電流計12、電圧計13
及びロード抵抗14が接続されている。こうした構成の
回路を用いて、前記スイッチング素子1の電流−電圧(
v−r)特性は、第6図に示す通りである。同図は、印
加電圧がしきい値電圧Vlhに到達すると、ロードライ
ンに沿ってA点からB点に移行して不連続に変化してい
ることを示している。その後電圧を下げても電気伝導率
の高い状態を保つ。従って、電気素子はメモリースイッ
チング素子としての特性を有する。
FIG. 5 shows a circuit incorporating the above switching element. This cord 1 includes a power source 11, an ammeter 12, a voltmeter 13,
and a load resistor 14 are connected. Using a circuit with such a configuration, the current-voltage of the switching element 1 (
v-r) characteristics are as shown in FIG. The figure shows that when the applied voltage reaches the threshold voltage Vlh, it shifts from point A to point B along the load line and changes discontinuously. Even if the voltage is subsequently lowered, the electrical conductivity remains high. Therefore, the electric element has characteristics as a memory switching element.

上記スイッチングの機構については、電荷移動錯体層4
のスタック軸方向に電場が作用することにより、印加電
圧に応じた量の中性のTCNQか作られる。従って、下
記(1)式に示す平衡状態が成立して混合原子鎖状態が
生じ、その結果電気伝導の高い状態になると考えられて
いる。一方、このメモリー特性については、イオンある
いは分子の変位を考慮する必要があると考えられている
が、また不明な点も多いのが実状である。
Regarding the above switching mechanism, the charge transfer complex layer 4
By applying an electric field in the direction of the stack axis, neutral TCNQ is produced in an amount corresponding to the applied voltage. Therefore, it is thought that the equilibrium state shown in the following formula (1) is established, a mixed atomic chain state is generated, and as a result, a state of high electrical conductivity is created. On the other hand, regarding this memory property, it is thought that it is necessary to take into account the displacement of ions or molecules, but the reality is that there are many unknown points.

[Cu  +   (TCNQ”’   )   コ 
 。 → Cu 0[Cu+ (TCNQ”’ ):1
n−8+ (TCQN’ )。
[Cu + (TCNQ”') Co
. → Cu 0[Cu+ (TCNQ''): 1
n-8+ (TCQN').

・・・(1) この様なスイッチング特性及びメモリー特性は、いくつ
かの有機化合物半導体に見られる現象である。一般に、
有機化合物半導体にはSi半導体を代表とした無機半導
体には見られない特異的な電子挙動を示すものが見出さ
れ、現在では幅広い研究が進められており、さらに今後
の発展に大きな期待がもたれている。
(1) Such switching characteristics and memory characteristics are phenomena observed in some organic compound semiconductors. in general,
Organic compound semiconductors have been found to exhibit unique electronic behavior that is not seen in inorganic semiconductors, such as Si semiconductors, and a wide range of research is currently underway, with great expectations for future developments. ing.

[発明が解決しようとする課題] ところで、上述した電荷移動錯体電気素子は、印加電圧
がしきい値に到達すると、高抵抗状態から低抵抗状態に
変化する電流制御型の負性抵抗を示す電気素子であるた
め、第6図に示す如く低抵抗状態に変化した際に電流が
急激に増大することになり、電気素子が熱損傷を受けて
しまい、印加電圧を除去したり、あるいは印加電圧と逆
極性の電流パルスを加えるなどの消去可能な操作を行な
っても、低抵抗状態から高抵抗状態に復帰しなくなると
いう現象か発生し、可逆的なスイッチング動作の実現が
困難であるという問題点があった。
[Problems to be Solved by the Invention] By the way, the above-mentioned charge transfer complex electric device is an electric current control type electric device that exhibits a negative resistance that changes from a high resistance state to a low resistance state when the applied voltage reaches a threshold value. Because it is an electric element, the current increases rapidly when it changes to a low resistance state as shown in Figure 6, which can cause thermal damage to the electric element, and the applied voltage must be removed or Even if an erasable operation such as applying a current pulse of the opposite polarity is performed, a phenomenon occurs in which the low resistance state does not return to the high resistance state, making it difficult to realize reversible switching operation. there were.

また、上記電気素子の作成法は湿式法であり、溶媒につ
いては細心の注意が必要なばかりでなく、作製条件の確
立が困難であるという問題点がある。
Furthermore, the above-mentioned method for producing the electric element is a wet method, which not only requires careful attention to the solvent, but also poses problems in that it is difficult to establish production conditions.

本発明は上記事情に鑑みてなされたもので、可逆的なス
イッチング動作をなしえるとともに、作製が容易な信頼
性の高い有機化合物半導体電気素子及びその製造方法を
提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a highly reliable organic compound semiconductor electric device that can perform a reversible switching operation, is easy to manufacture, and a method for manufacturing the same.

[課題を解決するための手段] 本願第1発明は、上部電極と下部電極間に有機化合物半
導体層を有する電気素子において、前記有機化合物半導
体層が、ジアセチレン誘導体化合物からなる薄膜である
ことを特徴とする有機化合物半導体電気素子である。
[Means for Solving the Problems] The first invention of the present application is an electric element having an organic compound semiconductor layer between an upper electrode and a lower electrode, in which the organic compound semiconductor layer is a thin film made of a diacetylene derivative compound. This is a characteristic organic compound semiconductor electric device.

本願第2発明は、上部゛電極と下部電極間に有機化合物
半導体層を有する電気素子を製造する方法において、下
部電極上に真空蒸着法により固相重合したジアセチレン
誘電体化合物からなる薄膜を形成した後、この薄膜の上
に上部電極を形成することを特徴とする有機化合物半導
体電気素子の製造方法である。
The second invention of the present application is a method for manufacturing an electric device having an organic compound semiconductor layer between an upper electrode and a lower electrode, in which a thin film made of a diacetylene dielectric compound solid-phase polymerized by vacuum evaporation is formed on the lower electrode. After that, an upper electrode is formed on this thin film.

本発明に係る基板としては、例えば熱膨張係数か下部電
極の材料と同程度の結晶化ガラス板、あるいはポリイミ
ド板、ポリエチレン板などの合成樹脂基板か挙げられる
Examples of the substrate according to the present invention include a crystallized glass plate having a coefficient of thermal expansion comparable to that of the material of the lower electrode, or a synthetic resin substrate such as a polyimide plate or a polyethylene plate.

本発明に係る下部電極の材料としては、金、銅、クロム
、ITO(インジウムスズの酸化物)なとか挙げられる
。前記下部電極は、真空蒸着法、無電解メツキ法、ある
いはスパッタリング法により形成できる。
Examples of the material for the lower electrode according to the present invention include gold, copper, chromium, and ITO (indium tin oxide). The lower electrode can be formed by vacuum evaporation, electroless plating, or sputtering.

本発明に係る上部電極の材料としては、アルミニウムな
どが挙げられる。
Examples of the material for the upper electrode according to the present invention include aluminum.

本発明に係る有機化合物半導体層としては、ジアセチレ
ン誘導体化合物またはポリジアセチレン誘導体化合物の
単独膜または混合膜が挙げられる。
Examples of the organic compound semiconductor layer according to the present invention include a single film or a mixed film of a diacetylene derivative compound or a polydiacetylene derivative compound.

本発明方法において、固相重合したジアセチレン誘電体
化合物からなる薄膜は、紫外線 X線電子線、γ線の照
射あるいは加熱等の処理を少なくとも一種行うことによ
り得られる。
In the method of the present invention, a thin film made of a solid-phase polymerized diacetylene dielectric compound is obtained by performing at least one treatment such as ultraviolet rays, X-ray electron beams, γ-ray irradiation, or heating.

上記ポリジアセチレンは、各種側鎖を有するジアセチレ
ン化合物(R−CC−CC−R’R,R’ は側鎖置換
基)が、ある分子配列状態で同相重合を起こす共役系高
分子の総称である。特筆すべき特徴は、(1)結晶性高
分子、(2)同相重合性高分子(トポケミカル重合) 
、(3)−次元π電子系高分子の三点である。
The above polydiacetylene is a general term for conjugated polymers in which diacetylene compounds having various side chains (R-CC-CC-R'R, R' are side chain substituents) undergo homopolymerization in a certain molecular arrangement state. be. The noteworthy features are (1) crystalline polymer, (2) homopolymerizable polymer (topochemical polymerization)
, (3)-dimensional π-electron system polymer.

このポリジアセチレンは、モノマー結晶での幾何学的な
条件と重合反応性との関係、重合反応性の動力学、反応
中間物の性質等精力的に研究か行われている。また、完
全に近い結晶状態で得られる為、−次元共役系高分子の
モデル物質として、光物性物理の分野の研究対象となっ
ている。ポリジアセチレンの物性は、長い準−次主鎖構
造上の非局在的π電子に起因している。しかしながら、
単結晶ポリジアセチレンの導電率は、1o−10〜1O
−15S/cmと低く、半導体または絶縁体である。
This polydiacetylene has been intensively studied, including the relationship between the geometric conditions of the monomer crystal and polymerization reactivity, the dynamics of polymerization reactivity, and the properties of reaction intermediates. In addition, since it can be obtained in a nearly perfect crystalline state, it has become a research target in the field of optical physics as a model material for -dimensional conjugated polymers. The physical properties of polydiacetylene are due to the delocalized π electrons on the long quasi-order main chain structure. however,
The conductivity of single crystal polydiacetylene is 1o-10 to 1O
It has a low value of -15S/cm and is a semiconductor or an insulator.

また、熱分析の結果では、単結晶状態でのポリジアセチ
レンの熱分解温度は約210 ’C以上であることがわ
かっている。
Furthermore, thermal analysis results show that the thermal decomposition temperature of polydiacetylene in a single crystal state is about 210'C or higher.

ポリジアセチレンか機能材料として注目を浴びている理
由は、先に述べた長い準−次主鎖構造上の非局在的挙動
を示すπ電子の存在であり、もう一つは真空蒸着法、L
B法、キャスト法等の成膜法の多様性にある。
The reason why polydiacetylene is attracting attention as a functional material is the presence of π electrons that exhibit delocalized behavior on the long quasi-order main chain structure mentioned above, and another reason is the vacuum evaporation method, L
The reason lies in the diversity of film forming methods such as the B method and the casting method.

[作用コ 本発明において、電気素子は次の特性を有する事が好ま
しい。即ち、」二部電極と下部電極間に印加される電圧
がが第1のしきい値を越えると有機化合物半導体層の電
気抵抗値が高抵抗状態がら低抵抗状態に変化する特性を
有し、更に高抵抗状態から低抵抗状態に変化させるのに
印加した電圧の極性と逆の極性を有する電圧を印加し、
上部電極と下部電極に間に印加される第2のしきい値を
越えるとその抵抗値か低抵抗状態がら高抵抗状態に変化
する特性である。また、より好ましくは、上部電極と下
部電極間に印加される電圧が第1のしきい値を越えると
有機化合物半導体層の電気抵抗値が高抵抗状態から低抵
抗状態に変化する特性と、更に高抵抗状態から低抵抗状
態に変化させるのに印加した電圧の極性と逆の極性を有
する電圧を印加し、上部電極と下部電極に間に印加され
る第2のしきい値を越えるとその抵抗値が低抵抗状態か
ら高抵抗状態に変化する特性とを、繰返し可能なことで
ある。具体的には、本発明に係る電気素子は、第1図に
示すような挙動をとる。即ち、初期状態は高抵抗状態に
あるが、負のしきい値■。
[Function] In the present invention, the electric element preferably has the following characteristics. That is, the organic compound semiconductor layer has a characteristic that the electrical resistance value of the organic compound semiconductor layer changes from a high resistance state to a low resistance state when the voltage applied between the two-part electrode and the lower electrode exceeds a first threshold; Furthermore, applying a voltage having a polarity opposite to that of the voltage applied to change from a high resistance state to a low resistance state,
When a second threshold value applied between the upper electrode and the lower electrode is exceeded, the resistance value changes from a low resistance state to a high resistance state. More preferably, the electric resistance value of the organic compound semiconductor layer changes from a high resistance state to a low resistance state when the voltage applied between the upper electrode and the lower electrode exceeds a first threshold; A voltage with a polarity opposite to that of the voltage applied to change from a high resistance state to a low resistance state is applied, and when the second threshold value applied between the upper electrode and the lower electrode is exceeded, the resistance increases. The characteristic that the value changes from a low resistance state to a high resistance state can be repeated. Specifically, the electric element according to the present invention behaves as shown in FIG. That is, the initial state is a high resistance state, but the negative threshold value ■.

を越えると、低抵抗状態に変化する。しかし、本質的に
抵抗状態の変化が高抵抗状態から低抵抗状態の場合、熱
損傷の問題はなくならないが、スイッチング後一定電圧
で一定電流しか流れないので、適当な値の外付は抵抗を
用いた場合には、過大な電流が流れることなく、良好な
繰り返し特性か得られる。
When it exceeds , it changes to a low resistance state. However, if the resistance state essentially changes from a high resistance state to a low resistance state, the problem of thermal damage will not disappear, but since only a constant current flows at a constant voltage after switching, it is necessary to use an external resistor of an appropriate value. When used, good repeatability can be obtained without excessive current flowing.

また、この電気素子においては、初期状態の高抵抗状態
から移行して低抵抗状態には保持特性がある。つまり、
電気素子に印加している電圧を取]0 り去っても低抵抗状態を保持している。この低抵抗状態
を消去するには、高抵抗状態から低抵抗状態に変化させ
た印加電圧とは逆の極性の電圧を加えることにより、低
抵抗状態から初期状態である高抵抗状態に復帰する。
Further, this electric element has a retention characteristic in a low resistance state after transitioning from an initial high resistance state. In other words,
Even if the voltage applied to the electric element is removed, it maintains a low resistance state. To erase this low resistance state, a voltage of the opposite polarity to the applied voltage that changed from the high resistance state to the low resistance state is applied, thereby returning the low resistance state to the initial high resistance state.

そして、上記の書き込み操作(高抵抗状態から低抵抗状
態への変化)と、消去(低抵抗状態から高抵抗状態への
変化)とを組み合わせることにより、電気素子は可逆的
なスイッチング特性を有することになる。
By combining the write operation (change from high resistance state to low resistance state) and erase (change from low resistance state to high resistance state) described above, the electric element has reversible switching characteristics. become.

以下、本発明の実施例を図を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.

[実施例1] まず、ポリカーボネート基板の一方の面にアルミニウム
(AΩ)を[iloonの厚さに真空蒸着し、下部電極
の形成された電極基板を形成した。但し、電極基板とA
、Qスパッタ電源との距離は4cmとした。つづいて、
粉末状態のノナコサ10.12ジイン酸(同口化学研究
所)を、1時間で1cm2当り1μg付着するように真
空蒸着を行った。次に、80W/amの高圧水銀ランプ
(ウシオ)により20秒間紫外線の照射を行った。更に
、このポリ(ノナコサ10.12ジイン酸)薄膜の上面
に、AΩを600nmの厚さに真空蒸着して上部電極と
した。このようにして、一対の上部、下部電極間に有機
化合物半導体層を有する電気素子を得た。
[Example 1] First, aluminum (AΩ) was vacuum-deposited on one surface of a polycarbonate substrate to a thickness of [iloon] to form an electrode substrate on which a lower electrode was formed. However, the electrode substrate and A
, and the distance from the Q sputtering power source was 4 cm. Continuing,
Powdered Nonacosa 10.12 diyic acid (Doguchi Kagaku Kenkyusho) was vacuum-deposited so that 1 μg/cm 2 was deposited in 1 hour. Next, ultraviolet rays were irradiated for 20 seconds using an 80 W/am high-pressure mercury lamp (Ushio). Furthermore, AΩ was vacuum-deposited to a thickness of 600 nm on the upper surface of this poly(nonacosa 10.12 diyic acid) thin film to form an upper electrode. In this way, an electric element having an organic compound semiconductor layer between a pair of upper and lower electrodes was obtained.

このようにして製作される有機化合物半導体電気素子は
、上部電極と下部電極間に、粉末状態のノナコサ10.
12ジイン酸を真空蒸着し、紫外線の照射により得られ
る有機化合物半導体層を設けた構成になっているため、
可逆的なスイッチング特性か得られる。
The organic compound semiconductor electric device manufactured in this way has powdered Nonacosa 10.
12 Diynic acid is vacuum-deposited and an organic compound semiconductor layer obtained by irradiation with ultraviolet rays is provided.
Reversible switching characteristics can be obtained.

事実、上記電気素子を第3図に示される直列抵抗と配置
した回路で測定したV−■特性は第1図に示す通りであ
る。即ち、電気素子の上部電極側を正にして電圧を印加
しても、電気素子はスイッチングしなかった。ところか
、この後、上部電極を負にして電圧を印加すると、負の
しきい値V L h lで初期状態の高抵抗状態から低
抵抗状態に変化した。ここで、高抵抗状態の抵抗値は、
V+b+で約450にΩであり、スイッチング後の低抵
抗状態の抵抗値は19にΩであった。また、再び、この
電気素子に電圧を印加した場合にも低抵抗状態にあるこ
とから、この低抵抗状態は、電気素子に印加されている
電圧を取り除いても保持されていて、この電気素子がメ
モリー特性を有する事が判明した。
In fact, the V--characteristic measured in a circuit in which the above electric element is arranged with a series resistor shown in FIG. 3 is as shown in FIG. 1. That is, even when a voltage was applied with the upper electrode side of the electric element being positive, the electric element did not switch. However, after this, when the upper electrode was made negative and a voltage was applied, the initial high resistance state changed to a low resistance state at the negative threshold value V L h l. Here, the resistance value in the high resistance state is
At V+b+, it was about 450Ω, and the resistance value in the low resistance state after switching was 19Ω. Furthermore, even if a voltage is applied to this electric element again, it remains in a low resistance state, so this low resistance state is maintained even if the voltage applied to the electric element is removed, and this electric element remains in a low resistance state. It was discovered that it has memory properties.

その後、電気素子に対して、低抵抗状態にスイッチング
させるために印加した電圧の極性とは逆の極性を加える
こと、即ち上部電極を正にして電圧を印加し、正のしき
い値V+h2に達した時、電気素子は初期状態の高抵抗
状態に達した。以降、同様な操作、即ち上部電極を負に
してV + h r間で電圧を印加した後に極性を逆に
してV + h 2間で電圧を印加する操作をおこなっ
た場合、V−I特性が繰り返し得られた。
After that, a polarity opposite to the polarity of the voltage applied to switch the electric element to a low resistance state is applied, that is, a voltage is applied with the upper electrode positive, and a positive threshold value V+h2 is reached. At that time, the electrical element reached its initial high resistance state. From now on, if a similar operation is performed, that is, applying a voltage between V + h r with the upper electrode negative, then reversing the polarity and applying a voltage between V + h 2, the V-I characteristic will change. Obtained repeatedly.

以上のように、高抵抗状態と低抵抗状態を、電圧の印加
の極性と大きさにより、可逆的に作り出す事に成功した
。この結果から、書き込み操作と消去操作とを印加し電
圧の制御によって行えるので、電気素子はメモリー状態
と消去状態(初期状態)の2値の間を自在に変化させえ
る事か明らかになった。なお、この電気素子における記
憶情報読みたし方法は、メモリー状態(低抵抗状態)の
電気素子の上部電極が負になるように電圧を加えて電流
検出を行えばよい。
As described above, we succeeded in reversibly creating a high-resistance state and a low-resistance state by changing the polarity and magnitude of voltage application. From this result, it has become clear that the electric element can freely change between the two values of the memory state and the erased state (initial state) because the writing and erasing operations can be performed by applying voltages and controlling them. Note that in order to read the stored information in this electric element, current detection may be performed by applying a voltage so that the upper electrode of the electric element in the memory state (low resistance state) becomes negative.

[実施例2] まず、ガラス基板の一方の面にクロムを600nm %
つづいて金を200nmの厚さに真空蒸着して、下部電
極の形成された電極基板を作製した。つづいて、粉末状
態の5.7−ドゾカジインl、12ジオールビス(エチ
ルカルバメート)(同口化学研究所)を、2時間で1c
m2当り06μg付若するように真空蒸着を行った。次
に、80W/cmの高圧水銀ランプ(ウシオ)により9
0秒間紫外線の照射を行った。
[Example 2] First, 600 nm% of chromium was applied to one surface of a glass substrate.
Subsequently, gold was vacuum-deposited to a thickness of 200 nm to produce an electrode substrate on which a lower electrode was formed. Next, 1 c of powdered 5,7-dozocadiine 1, 12 diol bis(ethyl carbamate) (Doguchi Kagaku Kenkyusho) was added in 2 hours.
Vacuum deposition was carried out to deposit 0.6 μg/m2. Next, a high-pressure mercury lamp (Ushio) of 80 W/cm was used to
Ultraviolet rays were irradiated for 0 seconds.

更に、このポリ (5,7−ドデカジイン1,12ジオ
ールビス(エチルカルバメート))薄膜の上面に、AΩ
を600nmの厚さに真空蒸着して上部電極とした。こ
のようにして、一対の上部、下部電極間に有機化合物半
導体層を有する電気素子を得た。
Furthermore, AΩ
was vacuum-deposited to a thickness of 600 nm to form an upper electrode. In this way, an electric element having an organic compound semiconductor layer between a pair of upper and lower electrodes was obtained.

事実、」1記電気素子を実施例]と同様にして測定され
たV−I特性は第2図に示す通りである。
In fact, the VI characteristics measured in the same manner as in "Example 1 of the electric device" are as shown in FIG.

また、その挙動は実施例1と同様である。即ぢ、電気素
子の上部電極側を正にして電圧を印加しても、電気素子
はスイッチングしなかった。しかし、この後、上部電極
を負にして電圧を印加すると、負のしきい値V + h
 +で初期状態の高抵抗状態から低抵抗状態に変化した
。ここで、高抵抗状態の抵抗値は、V l h lで約
80 KΩであり、スイッチング後の低抵抗状態の抵抗
値は0.IKΩであった。また、再び、この電気素子に
電圧を印加した場合にも低抵抗状態にあることから、こ
の低抵抗状態は、電気素子に印加されている電圧を取り
除いても保持されていて、この電気素子がメモリー特性
を有する事か判明した。
Further, its behavior is similar to that in the first embodiment. That is, even when voltage was applied with the upper electrode side of the electric element being positive, the electric element did not switch. However, after this, if the upper electrode is made negative and a voltage is applied, the negative threshold value V + h
At +, the initial state of high resistance changed to a low resistance state. Here, the resistance value in the high resistance state is approximately 80 KΩ at V l h l, and the resistance value in the low resistance state after switching is 0. It was IKΩ. Furthermore, even if a voltage is applied to this electric element again, it remains in a low resistance state, so this low resistance state is maintained even if the voltage applied to the electric element is removed, and this electric element remains in a low resistance state. It turns out that it has memory properties.

その後、電気素子に対して、低抵抗状態にスイッチング
させるために印加した電圧の極性とは逆の極性を加える
こと、即ち上部電極を正にして電圧を印加し、正のしき
い値V L h 2に達した時、電気素子は初期状態の
高抵抗状態に達した。以降、同様な操作、即ち上部電極
を負にしてV + h +まて電圧を印加した後に極性
を逆にしてV + h 2まて電圧を印加する操作をお
こなった場合、V−I特性が繰り返し得られた。
After that, a polarity opposite to the polarity of the voltage applied to switch the electric element to a low resistance state is applied, that is, a voltage is applied with the upper electrode positive, and a positive threshold value V L h is applied. 2, the electrical element has reached its initial high resistance state. From now on, if a similar operation is performed, that is, applying a voltage of V + h + with the upper electrode negative, then reversing the polarity and applying a voltage of V + h2, the V-I characteristic will change. Obtained repeatedly.

[発明の効果] 以上詳述した如く本発明によれば、印加電圧が負のしき
い値を越えると高抵抗状態から低抵抗状態に変化してこ
の状態を保持し、高抵抗状態から低抵抗状態に至らせし
めた印加電圧の極性とは逆の極性の電圧を印加し正のし
きい値を越えると低抵抗状態から初期状態の高抵抗状態
に復帰するものであるから、電気的に制御することによ
りメモリ状態と消去状態の2値の間を可逆的に変化させ
ることができ、かつ作製が容易な信頼性の高い有機化合
物半導体電気素子及びその製造方法を提供できる。
[Effects of the Invention] As detailed above, according to the present invention, when the applied voltage exceeds a negative threshold, the high resistance state changes to the low resistance state and this state is maintained, and the high resistance state changes to the low resistance state. When a voltage with the polarity opposite to that of the applied voltage that caused the state is applied and the positive threshold is exceeded, the low resistance state returns to the initial high resistance state, so electrical control is required. As a result, it is possible to provide a highly reliable organic compound semiconductor electric device that can reversibly change between two values, a memory state and an erased state, and that is easy to manufacture and a method for manufacturing the same.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1に係る電子素子の■I特性図
、第2図は本発明の実施例2に係る電子素子のV−1特
性図、第3図は従来の電子素子を組込んだ回路図、第4
図は従来の電子素子の断面図、第5図は従来のスイッチ
ング素子を組込んだ回路図、第6図はこのスイッチング
素子の■I特性図である。 1・・・電極基板、2・・・上部電極、3・・・有機化
合物半導体層、4・・・電子素子。 出願人代理人 弁理士 坪井 淳 第 図 第 図
FIG. 1 is a ■I characteristic diagram of an electronic device according to Example 1 of the present invention, FIG. 2 is a V-1 characteristic diagram of an electronic device according to Example 2 of the present invention, and FIG. 3 is a characteristic diagram of a conventional electronic device. Incorporated circuit diagram, 4th
The figure is a sectional view of a conventional electronic element, FIG. 5 is a circuit diagram incorporating a conventional switching element, and FIG. 6 is a 1I characteristic diagram of this switching element. DESCRIPTION OF SYMBOLS 1... Electrode substrate, 2... Upper electrode, 3... Organic compound semiconductor layer, 4... Electronic element. Applicant's agent Patent attorney Atsushi Tsuboi

Claims (3)

【特許請求の範囲】[Claims] (1)上部電極と下部電極間に有機化合物半導体層を有
する電気素子において、前記有機化合物半導体層が、ジ
アセチレン誘導体化合物からなる薄膜であることを特徴
とする有機化合物半導体電気素子。
(1) An electric element having an organic compound semiconductor layer between an upper electrode and a lower electrode, wherein the organic compound semiconductor layer is a thin film made of a diacetylene derivative compound.
(2)上部電極と下部電極間に印加される電圧がが第1
のしきい値を越えると有機化合物半導体層の電気抵抗値
が高抵抗状態から低抵抗状態に変化する特性を有し、更
に高抵抗状態から低抵抗状態に変化させるのに印加した
電圧の極性と逆の極性を有する電圧を印加し、上部電極
と下部電極に間に印加される第2のしきい値を越えると
その抵抗値が低抵抗状態から高抵抗状態に変化する特性
を有している請求項1記載の有機化合物半導体電気素子
(2) The voltage applied between the upper electrode and the lower electrode is the first
The electrical resistance value of the organic compound semiconductor layer changes from a high resistance state to a low resistance state when the threshold value is exceeded. The resistance value changes from a low resistance state to a high resistance state when a voltage with opposite polarity is applied and a second threshold value applied between the upper electrode and the lower electrode is exceeded. The organic compound semiconductor electric device according to claim 1.
(3)上部電極と下部電極間に有機化合物半導体層を有
する電気素子を製造する方法において、下部電極上に真
空蒸着法により固相重合したジアセチレン誘電体化合物
からなる薄膜を形成した後、この薄膜の上に上部電極を
形成することを特徴とする有機化合物半導体電気素子の
製造方法。
(3) In a method for manufacturing an electric device having an organic compound semiconductor layer between an upper electrode and a lower electrode, a thin film made of a diacetylene dielectric compound solid-phase polymerized by vacuum evaporation is formed on the lower electrode, and then this A method for manufacturing an organic compound semiconductor electric device, comprising forming an upper electrode on a thin film.
JP2142025A 1990-05-31 1990-05-31 Organic compound semiconductor electric element and manufacture thereof Pending JPH0435066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2142025A JPH0435066A (en) 1990-05-31 1990-05-31 Organic compound semiconductor electric element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2142025A JPH0435066A (en) 1990-05-31 1990-05-31 Organic compound semiconductor electric element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0435066A true JPH0435066A (en) 1992-02-05

Family

ID=15305618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2142025A Pending JPH0435066A (en) 1990-05-31 1990-05-31 Organic compound semiconductor electric element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0435066A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001096447A1 (en) * 2000-06-13 2001-12-20 Japan Science And Technology Corporation Method of forming polymer molecule chain
JP2008124360A (en) * 2006-11-15 2008-05-29 Sony Corp Functional molecular element, manufacturing method thereof and functional molecular device
JP2009224620A (en) * 2008-03-17 2009-10-01 Ricoh Co Ltd Method of manufacturing organic thin-film transistor with semiconductor layer of polydiacetylene

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001096447A1 (en) * 2000-06-13 2001-12-20 Japan Science And Technology Corporation Method of forming polymer molecule chain
US6656662B1 (en) 2000-06-13 2003-12-02 Japan Science And Technology Corporation Method of forming a polymer molecule chain
JP2008124360A (en) * 2006-11-15 2008-05-29 Sony Corp Functional molecular element, manufacturing method thereof and functional molecular device
JP2009224620A (en) * 2008-03-17 2009-10-01 Ricoh Co Ltd Method of manufacturing organic thin-film transistor with semiconductor layer of polydiacetylene

Similar Documents

Publication Publication Date Title
US7026702B2 (en) Memory device
US7482621B2 (en) Rewritable nano-surface organic electrical bistable devices
KR101114770B1 (en) Method for preparing nonvolatile organic memory devices and nonvolatile organic memory devices prepared by the same
Tu et al. Memory effect in the current-voltage characteristic of 8-hydroquinoline aluminum salt films
Li et al. Two different memory characteristics controlled by the film thickness of polymethacrylate containing pendant azobenzothiazole
US4507672A (en) Method of fabricating a current controlled bistable electrical organic thin film switching device
KR20060084667A (en) Method for driving memory devices to exhibit multi-state
KR20070112565A (en) Organic memory devices and preparation method thereof
JP2006191083A (en) Memory device using dendrimer
CN114631146A (en) Electronic switching device
US8394666B2 (en) Organic memory devices and methods of fabricating such devices
JPH01214078A (en) Switching device
US7876596B2 (en) Memory element and method for manufacturing same
Park et al. Bifunctional Silver-Doped ZnO for Reliable and Stable Organic–Inorganic Hybrid Perovskite Memory
JPH02239664A (en) Electric memory
JPH0435066A (en) Organic compound semiconductor electric element and manufacture thereof
KR101224768B1 (en) Organic memory device and preparation method thereof
KR20080089949A (en) Dendrimer having triphenylamine core, organic memory device using the same and preparation method thereof
US20030227793A1 (en) Information storage device, and information storage method and information regeneration method employing the information storage device
JP2004200569A (en) Switching element and its manufacturing method
JPS62222669A (en) Organic thin-film element
Ruan et al. Discrete resistive switching characteristics in metal-free phthalocyanine and Dy-phthalocyanine based devices
KR20090097685A (en) Polymer for patterning and organic memory device comprising the same
JP2007142357A (en) Bistable device, bistable memory element, and their manufacturing methods
RU2256957C2 (en) Memory cell