JPH02239664A - Electric memory - Google Patents

Electric memory

Info

Publication number
JPH02239664A
JPH02239664A JP1060400A JP6040089A JPH02239664A JP H02239664 A JPH02239664 A JP H02239664A JP 1060400 A JP1060400 A JP 1060400A JP 6040089 A JP6040089 A JP 6040089A JP H02239664 A JPH02239664 A JP H02239664A
Authority
JP
Japan
Prior art keywords
resistance state
storage device
electrical storage
state
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1060400A
Other languages
Japanese (ja)
Inventor
Toyoo Nishiyama
西山 東洋雄
Chiaki Sato
千秋 佐藤
Seiichi Wakamatsu
若松 誠一
Kaoru Tadokoro
田所 かおる
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP1060400A priority Critical patent/JPH02239664A/en
Publication of JPH02239664A publication Critical patent/JPH02239664A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To use switching, memory of tertiary value corresponding to different resistance states of three stages by discontinuously varying a resistance value to three stages of different resistance states of a high resistance state, an intermediate resistance state and a low resistance state. CONSTITUTION:An upper electrode 23 is provided on a substrate 21 through a complex-containing thin film 22 containing Cu-TCNQ to compose an electric element 24. When the potential of the electrode 23 is raised with respect to the substrate 21, the resistance of the film 22 maintains a relatively high resistance state up to a first threshold voltage Vth1, and is switched to an intermediate or low resistance state at the Vth1. Here, any of the intermediate and low resistance states can be arbitrarily selected by a current flowing to the element 24. That is, if the current is small, it becomes intermediate, while if the current is large, it is switched to the low resistance state. Thus, the resistance value is discontinuously varied to the different resistance states of three stages to be used as switching, memory of tertiary values.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、対向する電極間に電荷移動錯体化合物を含有
してなる有機膜を配置した電気的記憶装置の改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in an electrical memory device in which an organic film containing a charge transfer complex compound is disposed between opposing electrodes.

[従来の技術] 従来、電気的記憶装置としては、例えば特開昭82−9
5883号公報やU S P 4.371.881号公
報が知られている。ここで、前者の装置に組込まれる電
気素子は、第3図に示す如く、対向する正電極1,負電
極2間に錯体含有薄膜3を介在させた構成となっている
[Prior Art] Conventionally, as an electrical storage device, for example, Japanese Patent Laid-Open No. 82-9
No. 5883 and US Pat. No. 4.371.881 are known. Here, the electric element incorporated in the former device has a structure in which a complex-containing thin film 3 is interposed between a positive electrode 1 and a negative electrode 2 facing each other, as shown in FIG.

第4図は、上記電気素子の正電極1と負電極2に、図示
しない直列抵抗を介して錯体含有薄膜3に電圧を印加し
たときの電圧一電流(V!)特性図である。即ち、錯体
含有薄I8!3のVl特性はしきい値電圧±V1 (V
)において不連続に変化し、初期状態の高抵抗状態から
低抵抗状態に変化する。
FIG. 4 is a voltage-current (V!) characteristic diagram when a voltage is applied to the complex-containing thin film 3 between the positive electrode 1 and the negative electrode 2 of the electric element through a series resistor (not shown). That is, the Vl characteristic of the complex-containing thin I8!3 is the threshold voltage ±V1 (V
) changes discontinuously, changing from an initial high resistance state to a low resistance state.

ま゛た、高抵抗状態にある錯体含有薄膜3に印加する電
圧がしきい値電圧+V1 (V)を越えると、錯体含有
薄膜3の抵抗がロードラインに沿ってA点からB点に移
行し、高抵抗状態から低抵抗状態に変化する。以上のよ
うに、錯体含有薄膜3がしきい値を境として抵抗値が高
抵抗状態から低抵抗状態の2つの安定な状態、いわゆる
双安定状態を有することは、スイッチング特性ととも.
にメモリ特性を有することを示している。
Furthermore, when the voltage applied to the complex-containing thin film 3 in a high resistance state exceeds the threshold voltage +V1 (V), the resistance of the complex-containing thin film 3 shifts from point A to point B along the load line. , changes from a high resistance state to a low resistance state. As described above, the fact that the complex-containing thin film 3 has two stable states with a resistance value ranging from a high resistance state to a low resistance state, that is, a so-called bistable state with the threshold value as the boundary, is a function of switching characteristics.
It is shown that it has memory characteristics.

上記スイッチングの機構において、錯体含有薄膜3のス
タック軸方向に所定の電場が作用することにより、中性
のTCNQが作られる。従って、下゜記(1)式に示す
平衡状態が成立し、その結果電気伝導の高い状態になる
と考えられている。
In the above switching mechanism, neutral TCNQ is created by applying a predetermined electric field in the direction of the stack axis of the complex-containing thin film 3. Therefore, it is believed that the equilibrium state shown in equation (1) below is established, resulting in a state of high electrical conductivity.

方、このメモリ特性については、イオンあるいは分子の
変位を考慮する必要があると考えられているが、まだ不
明な点も多いのが実状である。
On the other hand, regarding this memory characteristic, it is thought that it is necessary to take into account the displacement of ions or molecules, but the reality is that there are still many unknown points.

[Cu  (T C N Q” ) ] n ;!cu
:+[Cu:,(TCNQテ> 16−X +  (T
cqN,:  >・・・(1) 上記式《1》の反応により錯体含a薄膜に電圧を加える
と、有機電荷移動錯体中に電気的に中性なCu0及びT
CNQ”が当量ずつ生じる。その結果、錯体含有薄膜の
導電率が上り、抵抗値が高抵抗状態から低抵抗状態に変
化する。また、有機電荷移動金属錯体を構成しているア
セブタ分子の酸化還元電位により、上記錯体含有薄膜が
スイッチング素子として利用されたり又はメモリ素子と
して利用されている。
[Cu (T C N Q”) ] n ;!cu
:+[Cu:, (TCNQTE> 16-X + (T
cqN,: >...(1) When voltage is applied to the complex-containing thin film by the reaction of the above formula <<1>>, electrically neutral Cu0 and T are present in the organic charge transfer complex.
CNQ" is generated in equivalent amounts. As a result, the conductivity of the complex-containing thin film increases and the resistance value changes from a high resistance state to a low resistance state. In addition, the oxidation-reduction of the acebuta molecules constituting the organic charge transfer metal complex Depending on the potential, the complex-containing thin film is used as a switching element or as a memory element.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、電荷移動錯体化合物を含有してなる有機
膜を用いた電気的記憶装置においては、いずれも抵抗値
が高抵抗な状態と相対的に低抵抗な状態との2段階の異
なる抵抗状態に不連続に変化するものであり、2値にお
けるスイッチングやメモリとしての利用しかできない。
However, in electrical storage devices using organic films containing charge transfer complex compounds, there are two different resistance states: a high resistance state and a relatively low resistance state. It changes continuously and can only be used for binary switching or as a memory.

本発明は、3値{コ噌ナるスイッチングやメモリとして
の利用が可能な電荷移動錯体化合物を含有してなる有機
膜を用いた電気的記憶装置を提供することを目的とする
An object of the present invention is to provide an electrical storage device using an organic film containing a charge transfer complex compound that can be used for ternary switching or as a memory.

【課題を解決するための手段と作用] 本願発明は、対向する電極間に電荷移動錯体化合物を含
有してなる薄膜(錯体含有薄膜)を配置した電気的記憶
装置において、抵抗値が高抵抗な状態,抵抗値が中抵抗
な状態及び抵抗値が低抵抗な状態の3段階の異なる抵抗
状態に不連続的に変化することを特徴とする電気的記憶
装置である。
[Means and effects for solving the problems] The present invention provides an electrical storage device in which a thin film containing a charge transfer complex compound (complex-containing thin film) is disposed between opposing electrodes. The electrical storage device is characterized in that the resistance value changes discontinuously into three different resistance states: a medium resistance state and a low resistance state.

これにより、この電気的記憶装置は、3段階の異なる抵
抗状態に対応した3値におけるスイッチングやメモリと
しての利用を可能にするものである。
This allows this electrical storage device to perform switching in three values corresponding to three different resistance states and to be used as a memory.

本発明の電気的記憶装置に用いられる特有の電気的特性
を有する錯体含有薄膜は、例えば次のようにして形成さ
れたものである。即ち、電荷移動錯体化合物を構成する
電子倶与体(ドナ)からなる基板を、同じく錯体化合物
を構成する電子受容体(アクセブタ)を溶媒に溶解した
溶液に浸漬・接触せしめ、酸化還元反応により基板上に
電荷移動錯体化合物あ多結晶膜を形成した後、この基板
を溶媒中に浸漬して基板上の多結品膜中の粗大結晶など
を溶解して再結晶せしめることにより、ち密で均一な多
結晶膜としての錯体含有薄膜を基板上に形成したもので
ある。この錯体含有薄膜上に第2の電極を蒸着等により
形成することで、本発明の電気的記憶装置が形成される
The complex-containing thin film having unique electrical properties used in the electrical storage device of the present invention is formed, for example, as follows. That is, a substrate consisting of an electron donor (donor) constituting a charge transfer complex compound is immersed and brought into contact with a solution in which an electron acceptor (acceptor) also constituting the complex compound is dissolved in a solvent, and the substrate is bonded by an oxidation-reduction reaction. After forming a polycrystalline film of a charge transfer complex compound on the substrate, this substrate is immersed in a solvent to dissolve coarse crystals in the polycrystalline film on the substrate and recrystallize it. A complex-containing thin film as a polycrystalline film is formed on a substrate. The electrical storage device of the present invention is formed by forming a second electrode on this complex-containing thin film by vapor deposition or the like.

本発明に係る電荷移動錯体化合物としては、例えば電子
共与体としての銀及び/又は銅を含む無機陽イオンから
゛なる群より選択された1種以上と、電子受容体として
の下記一般式 (CN)2 C (−Z−)C (CN)2で表わされ
る化合物からなる群より選択した1種以上とを酸化還元
反応させることにより得られる錯体化合物が挙げられる
The charge transfer complex compound according to the present invention includes, for example, one or more types selected from the group consisting of inorganic cations containing silver and/or copper as an electron donor, and the following general formula ( Examples include complex compounds obtained by subjecting one or more selected from the group consisting of compounds represented by CN)2C(-Z-)C(CN)2 to redox reaction.

但し、上記式中、(−Z−)は であり、これらの構造式中のA,B,C,D,E.F,
(;,H及び夏は夫々独立して水素.ハンロゲン原子,
炭素数1〜3の脂肪族炭化水素基、炭素数1〜3のエー
テル基又はシアノ基である。前記錯体化合物の好適な具
体例としては、C u−T C NQ(銅−テトラシア
ノジメタン錯体)、Cu−TNAP(銅−11.11,
12.12−テトラシアノ−2,6−ナフトキノジメタ
ン錯体) 、CLI−TCNQF4  (銅−2.3.
5.8−テトラフルオ口−7.7.ll.8−テトラシ
アノキノジメタン錯体) 、Ag TCNQ,Ag T
NAP,Ag TCNQF4などを含んでなる錯体化合
物が好適なものとして挙げられる。
However, in the above formula, (-Z-) is, and A, B, C, D, E. F,
(;, H and summer are each independently hydrogen. Hanlogen atom,
They are an aliphatic hydrocarbon group having 1 to 3 carbon atoms, an ether group having 1 to 3 carbon atoms, or a cyano group. Preferred specific examples of the complex compound include Cu-TCNQ (copper-tetracyanodimethane complex), Cu-TNAP (copper-11.11,
12.12-tetracyano-2,6-naphthoquinodimethane complex), CLI-TCNQF4 (copper-2.3.
5.8-Tetrafluoro-7.7. ll. 8-tetracyanoquinodimethane complex), Ag TCNQ, Ag T
Suitable examples include complex compounds containing NAP, Ag TCNQF4, and the like.

[実施例] 以下、本発明の実施例を第1図を参照して説明する。[Example] Embodiments of the present invention will be described below with reference to FIG.

図中の21は、銅からなる基板(下部電極)である。こ
の基板2l上には、例えばC u−T C N Qを含
有してなる錯体含有薄膜22を介して上部電極23が設
けられて、電気素子24が構成されている。ここで、錯
体含有# H 2 2は、第5図に示すようなV1特性
を示す。前記電気素子24には、ロード抵抗25が接続
されている。前記ロード抵抗25の両端には、記録すべ
き論理信号に従って電圧を印加し、前記電気素子24の
抵抗変化を生ぜせしめるための論理信号記録部2Bが接
続されている。また、この記録部2Bには電流計27が
直列に接続されている。
21 in the figure is a substrate (lower electrode) made of copper. On this substrate 2l, an upper electrode 23 is provided via a complex-containing thin film 22 containing, for example, Cu-TCNQ, thereby forming an electric element 24. Here, the complex-containing #H22 exhibits V1 characteristics as shown in FIG. A load resistor 25 is connected to the electric element 24 . A logic signal recording section 2B is connected to both ends of the load resistor 25 for applying a voltage according to a logic signal to be recorded to cause a resistance change in the electric element 24. Further, an ammeter 27 is connected in series to this recording section 2B.

次に、上記電気的記憶装置の電気素子の作用について説
明する。
Next, the operation of the electrical elements of the electrical storage device will be explained.

即ち、基板2lに対して上部電極23の電位を上昇させ
てゆくと、錯体含有薄膜22の抵抗は第5図に示す如く
第1のしきい値電圧V thlまでは比較的高抵抗状態
を維持し、v th.で中抵抗状態又は低抵抗状態にス
イッチングする。ここで、中抵抗状態又は低抵抗状態の
いずれかになるかは、電気素子24に流れる電流により
任意に選択できる。つまり、電流が小さい場合には中抵
抗状態になり、電流が大きい場合には低抵抗状態にスイ
ツイングすることができる。ここに、前記電気素子24
に直列に抵抗(負荷抵抗)を接続することにより、その
電気素子に流れる電流大きさを制御させることが可能で
ある。なお、前記中抵抗状態1九再び高抵抗状態に戻す
ことが可能であるが、低抵抗状態は再び高抵抗状態又は
中抵抗状態に戻すことができない。
That is, as the potential of the upper electrode 23 with respect to the substrate 2l is increased, the resistance of the complex-containing thin film 22 maintains a relatively high resistance state until the first threshold voltage V thl as shown in FIG. , v th. Switches to medium resistance state or low resistance state. Here, whether to enter the medium resistance state or the low resistance state can be arbitrarily selected depending on the current flowing through the electric element 24. That is, when the current is small, it becomes a medium resistance state, and when the current is large, it can be switched to a low resistance state. Here, the electric element 24
By connecting a resistor (load resistance) in series with the electric element, it is possible to control the magnitude of the current flowing through the electric element. Note that although it is possible to return the medium resistance state 19 to the high resistance state again, the low resistance state cannot be returned to the high resistance state or the medium resistance state.

前記中抵抗状態はメモリ性があり、室温付近で放置した
ときでも状態の変化は小さい。この中抵抗状態を高抵抗
状態又は低抵抗状態にするには、第2のしきい値v t
h2を越える電圧を印加してスイッチングする。この際
も、素子に流れる電流を制御するとともに、電圧印加時
間をil1御することにより高抵抗状態と低抵抗状態と
のどちらかに任意にスイッチングさせることができる。
The medium resistance state has memory properties, and changes in state are small even when left at room temperature. In order to change this medium resistance state to a high resistance state or a low resistance state, a second threshold value v t
Switching is performed by applying a voltage exceeding h2. At this time as well, by controlling the current flowing through the element and controlling the voltage application time il1, it is possible to arbitrarily switch between the high resistance state and the low resistance state.

また、中抵抗状態で紫外から赤外の範囲の光を照射する
ことにより、高抵抗状態に戻すことも可能である。
Furthermore, it is also possible to return to a high resistance state by irradiating light in the ultraviolet to infrared range in a medium resistance state.

更に、中抵抗状態で電圧パルスを印加することにより、
高抵抗状態にスイッチングさせることも可能である。
Furthermore, by applying a voltage pulse in a medium resistance state,
It is also possible to switch to a high resistance state.

次に、上記電気的記録装置の電気素子の作り方について
第2図(A)〜(C)を参照して説明する。
Next, how to make the electrical element of the electrical recording device will be explained with reference to FIGS. 2(A) to 2(C).

■まず、例えばCuからなるulN21上をアセトン中
で超音波洗浄し、油脂分を除去した。次に、フッ化水素
酸により表面の酸化層を除去した。つづいて、前記基t
?Z21を、アセトニトリル50m,77に対してT 
C N Q 100mgを溶解したTCNQ/アセトニ
トリル溶液に浸漬した。更に、浸漬してから反応温度2
0℃で30〜40秒(反応時間)経過した後、基板2l
を溶液中から取出した。この結果、基板21表面に針状
結晶3lと角柱状結品32からなる錯体含有薄膜22が
形成されていることが確認された(第2図(A)図示)
。ここで、針状結晶3lは主として基板2l上に整然と
形成された。しかし、角柱状結晶32は主として針状結
晶3l上に形成され、その配列,傾斜等はランダムであ
った。なお、上記アセトニトリルは、精製し、N2バル
ブリングを行ったものを用いた。
(1) First, ULN21 made of, for example, Cu was subjected to ultrasonic cleaning in acetone to remove oil and fat. Next, the oxide layer on the surface was removed using hydrofluoric acid. Continuing, the group t
? Z21 to acetonitrile 50m,77
It was immersed in a TCNQ/acetonitrile solution in which 100 mg of CNQ was dissolved. Furthermore, after immersion, the reaction temperature 2
After 30 to 40 seconds (reaction time) at 0°C, 2L of substrate
was taken out from the solution. As a result, it was confirmed that a complex-containing thin film 22 consisting of acicular crystals 3l and prismatic crystals 32 was formed on the surface of the substrate 21 (as shown in FIG. 2(A)).
. Here, the acicular crystals 3l were mainly formed in an orderly manner on the substrate 2l. However, the prismatic crystals 32 were mainly formed on the needle crystals 3l, and their arrangement, inclination, etc. were random. Note that the acetonitrile used was purified and subjected to N2 bulb ringing.

■次に、この基板2lを40m#のアセトニトリルへ静
置した状態のまま洗浄温度20℃で1時間(洗浄時間)
浸漬した。この結果、まず角柱状結品32が除去されて
第2図(B)に示すような状態になり、最終的に針状結
晶32からなる錯体含有薄膜22が形成された(第2図
(C)図示)。ここで、角柱状結品32を(溶解)除去
する過程で、アセトニトリル中に溶解した角往状結晶3
2を原料として針状結晶3lの隙間の基板露出面に新た
な針状結晶が成長し、その結果均一でち密な錯体含有薄
膜22が得られた。なお、赤外分光法により錯体含有薄
膜22がC u−T C N Qであることを確認した
。この後、真空乾燥を行ってア七トニトリルを除去した
後、アルミニウムを前記錯体含有薄膜上に蒸着して上部
電極を形成することにより電気的記憶装置を得た。
■Next, 2L of this substrate was left standing in 40m# of acetonitrile at a cleaning temperature of 20℃ for 1 hour (cleaning time)
Soaked. As a result, the prismatic crystals 32 were first removed to form a state as shown in FIG. ). Here, in the process of (dissolving) and removing the prismatic crystals 32, the prismatic crystals 3 dissolved in acetonitrile are
New needle-like crystals were grown on the exposed surface of the substrate in the gap between the needle-like crystals 3l using 2 as a raw material, and as a result, a uniform and dense complex-containing thin film 22 was obtained. In addition, it was confirmed by infrared spectroscopy that the complex-containing thin film 22 was Cu-TCNQ. Thereafter, after vacuum drying was performed to remove the a7tonitrile, aluminum was deposited on the complex-containing thin film to form an upper electrode, thereby obtaining an electrical memory device.

このようにして製造された電気的記{a装置は、基板(
下部電極) 21と上部電極23間にCu−TCNQを
含有してなる錯体含有薄膜22を介在させ、かつ第6図
に示す如く基板2lに対して上部電極23の電位を上昇
させて第1のしきい値電圧vth,までは比較的高抵抗
状態を維持し、V thlで電気索子24に流れる電流
を任意に選択して中抵抗状態又は低抵抗状態にスイッチ
ングし、更に第2のしきい値電圧V tb2で中抵抗状
態から晶抵抗状態へスイッチングする構成となっている
。実際の電気的記憶装置のall定データの1例では第
1のしきい値電圧VLb1は3V,第2 ノL ! イ
[電jf V 1+12 ハ0 .01v1低抵抗状態
は薄膜1l−2について数Ω以下、中抵抗状態は数百Ω
、高抵抗状聾は数百KΩであった。勿論、この数値は薄
膜の厚さ,電荷移動錯体の組成などにより大きく変動す
る。
The electrical memory device manufactured in this way has a substrate (
A complex-containing thin film 22 containing Cu-TCNQ is interposed between the lower electrode 21 and the upper electrode 23, and the potential of the upper electrode 23 is raised relative to the substrate 2l as shown in FIG. A relatively high resistance state is maintained up to a threshold voltage vth, and at Vthl the current flowing through the electric cord 24 is arbitrarily selected and switched to a medium resistance state or a low resistance state. It is configured to switch from the medium resistance state to the crystal resistance state at the value voltage V tb2. In an example of all constant data of an actual electrical storage device, the first threshold voltage VLb1 is 3V, and the second threshold voltage VLb1 is 3V. A [electric jf V 1+12 ha 0 . 01v1 low resistance state is several Ω or less for thin film 1l-2, medium resistance state is several hundred Ω
, the high-resistance deafness was several hundred kilohms. Of course, this value varies greatly depending on the thickness of the thin film, the composition of the charge transfer complex, etc.

従って、以下に列挙する効果を有する。Therefore, it has the effects listed below.

■1つの電気素子で、動作条件により中抵抗状態を一時
書込み型の記憶素子(R’AM)として使用し、かつ低
抵抗状態を永久書込み型の記憶素子(ROM)としても
使用可能である。
(2) With one electric element, depending on the operating conditions, the medium resistance state can be used as a temporary write type memory element (R'AM), and the low resistance state can be used as a permanent write type memory element (ROM).

■R A M動作の場合、従来のR A Mと異なり不
揮発性であるため、電源を切っても記憶内容は保持され
る。また、セル単位の書替えが高速で行なえる。
(2) In the case of RAM operation, unlike conventional RAM, it is non-volatile, so the memory contents are retained even if the power is turned off. In addition, rewriting in units of cells can be performed at high speed.

■ROM動作の場合、不揮発性で書替えできないため、
誤消去等のエラーの発生がなく、高信頼性の電気素子と
なる。
■In the case of ROM operation, it is non-volatile and cannot be rewritten, so
Errors such as erroneous erasure do not occur, and the electrical element becomes highly reliable.

■セル構成が非常に単純で、高密度化に最適である。■The cell structure is very simple and is ideal for high density.

【発明の効果] 以上詳述した如く本発明の電気的記taZ置によれば、
抵抗値が3段階の異なる抵抗状態に不連続に変化するこ
とにより、3lii!におけるスイッチングやメモリと
しての利用を可能にするものであり、例えば高抵抗状態
から中抵抗状態への1段目の変化を条件として中抵抗状
態から低抵抗状態への2段目の変化を行わせるようにす
れば、条件づけの選択メモリや選択信号の発生などの利
用が可能となる。
[Effects of the Invention] As detailed above, according to the electrical recording system of the present invention,
By discontinuously changing the resistance value into three different resistance states, 3lii! For example, if a first step change from a high resistance state to a medium resistance state is a condition, a second step change from a medium resistance state to a low resistance state is performed. By doing so, it becomes possible to use a selection memory for conditioning, generation of a selection signal, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る電気的記憶装置の説明
図、第2図(A)〜(C)はこの記憶装置の電気素子゛
の製造方法を工程順に示す説明図、第3図は従来の電気
素子の説明図、第4図は従来の電気素子に係る電圧・電
流特性図、第5図は本発明の実施例に係る電気素子の電
圧・電流特性図を示す。 11・・・基板(下部電極)、l2・・・錯体含白゜薄
膜、l3・・・上部電極、14・・・電気素子。 出願人代理人 弁理士 鈴江武a 第 図 第 図 ?圧■
FIG. 1 is an explanatory diagram of an electrical storage device according to an embodiment of the present invention, FIGS. FIG. 4 is an explanatory diagram of a conventional electric element, FIG. 4 is a voltage/current characteristic diagram of the conventional electric element, and FIG. 5 is a voltage/current characteristic diagram of an electric element according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 11...Substrate (lower electrode), l2... Complex-containing white thin film, l3... Upper electrode, 14... Electrical element. Applicant's agent Patent attorney Takeshi Suzue A Figure Figure Figure? Pressure■

Claims (8)

【特許請求の範囲】[Claims] (1)対向する電極間に電荷移動錯体化合物を含有して
なる有機膜を配置した電気的記憶装置において、抵抗値
が高抵抗な状態、抵抗値が中抵抗な状態及び抵抗値が低
抵抗な状態の3段階の異なる抵抗状態に不連続的に変化
することを特徴とする電気的記憶装置。
(1) In an electrical storage device in which an organic film containing a charge transfer complex compound is arranged between opposing electrodes, the resistance value is in a high resistance state, a resistance value in a medium resistance state, and a resistance value in a low resistance state. An electrical memory device characterized in that the state changes discontinuously into three different resistance states.
(2)高抵抗な状態と中抵抗な状態とを可逆的に変化す
る請求項1記載の電気的記憶装置。
(2) The electrical storage device according to claim 1, wherein the electrical storage device reversibly changes between a high resistance state and a medium resistance state.
(3)高抵抗な状態又は中抵抗な状態から低抵抗な状態
に不可逆的に変化する請求項1記載の電気的記憶装置。
(3) The electrical storage device according to claim 1, which irreversibly changes from a high resistance state or a medium resistance state to a low resistance state.
(4)高抵抗な状態で第1のしきい値電圧以上の電圧を
印加することにより高抵抗な状態から中抵抗な状態に変
化し、更に第2のしきい値電圧以上の電圧を印加するこ
とにより中抵抗な状態から低抵抗な状態に変化する請求
項1記載の電気的記憶装置。
(4) Applying a voltage equal to or higher than the first threshold voltage in a high-resistance state changes the state from a high-resistance state to a medium-resistance state, and then further applies a voltage equal to or higher than the second threshold voltage. 2. The electrical storage device according to claim 1, wherein the electrical storage device changes from a medium resistance state to a low resistance state.
(5)高抵抗な状態と中抵抗な状態の可逆的変化を消去
可能な一時書込みメモリとして用い、高抵抗な状態又は
中抵抗な状態から低抵抗な状態への可逆的変化を消去不
能な書込みメモリとして用いる請求項1記載の電気的記
憶装置。
(5) A reversible change between a high resistance state and a medium resistance state is used as an erasable temporary write memory, and a reversible change from a high resistance state or a medium resistance state to a low resistance state is used as a non-erasable write memory. The electrical storage device according to claim 1, which is used as a memory.
(6)高抵抗な状態でしきい値電圧以上の電圧を印加す
るとともに、流れる電流の最大値を制御することにより
、高抵抗な状態から中抵抗な状態又は低抵抗な状態のい
ずれか一方の状態に任意に変化させうる請求項2もしく
は請求項3記載の電気的記憶装置。
(6) By applying a voltage higher than the threshold voltage in a high resistance state and controlling the maximum value of the flowing current, the high resistance state can be changed from a high resistance state to either a medium resistance state or a low resistance state. 4. The electrical storage device according to claim 2 or claim 3, wherein the electrical storage device can change its state arbitrarily.
(7)中抵抗な状態で紫外から赤外の範囲の光を照射す
ることにより、高抵抗な状態に変化する請求項2記載の
電気的記憶装置。
(7) The electrical storage device according to claim 2, wherein the electrical storage device changes to a high resistance state by irradiating the medium resistance state with light in the ultraviolet to infrared range.
(8)中抵抗な状態でしきい値電圧以上の電圧を印加す
るとともに、流れる電流の最大値及び電圧印加時間を制
御することにより、中抵抗な状態から低抵抗な状態又は
高抵抗な状態のいずれか一方の状態に任意に変化させう
る請求項2もしくは請求項3記載の電気的記憶装置。
(8) By applying a voltage higher than the threshold voltage in a medium resistance state and controlling the maximum value of the flowing current and the voltage application time, it is possible to change from a medium resistance state to a low resistance state or a high resistance state. The electrical storage device according to claim 2 or claim 3, which can be arbitrarily changed to either one of the states.
JP1060400A 1989-03-13 1989-03-13 Electric memory Pending JPH02239664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1060400A JPH02239664A (en) 1989-03-13 1989-03-13 Electric memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1060400A JPH02239664A (en) 1989-03-13 1989-03-13 Electric memory

Publications (1)

Publication Number Publication Date
JPH02239664A true JPH02239664A (en) 1990-09-21

Family

ID=13141079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1060400A Pending JPH02239664A (en) 1989-03-13 1989-03-13 Electric memory

Country Status (1)

Country Link
JP (1) JPH02239664A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5814833A (en) * 1993-11-01 1998-09-29 Research Corporation Technologies, Inc. Conjugated polymer exciplexes and applications thereof
WO2003052827A1 (en) * 2001-12-18 2003-06-26 Matsushita Electric Industrial Co., Ltd. Non-volatile memory
JP2005501398A (en) * 2001-05-07 2005-01-13 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Floating gate memory device using composite molecular materials
JP2006148080A (en) * 2004-10-18 2006-06-08 Semiconductor Energy Lab Co Ltd Semiconductor device and driving method thereof
JP2006186346A (en) * 2004-12-03 2006-07-13 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2006253667A (en) * 2005-02-10 2006-09-21 Semiconductor Energy Lab Co Ltd Storage device and semiconductor device
JP2007073943A (en) * 2005-08-12 2007-03-22 Semiconductor Energy Lab Co Ltd Storage device and semiconductor device
JP2007528583A (en) * 2004-03-08 2007-10-11 ジ・オハイオ・ステイト・ユニバーシティ・リサーチ・ファウンデイション Electronic bonding equipment featuring redox electrodes
JP2009163860A (en) * 2007-12-14 2009-07-23 Semiconductor Energy Lab Co Ltd Semiconductor device and method for writing data into memory
JP2012212907A (en) * 2005-02-10 2012-11-01 Semiconductor Energy Lab Co Ltd Semiconductor device
US8507902B2 (en) 2004-12-03 2013-08-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8847209B2 (en) 2005-08-12 2014-09-30 Semiconductor Energy Laboratory Co., Ltd. Memory device and a semiconductor device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5814833A (en) * 1993-11-01 1998-09-29 Research Corporation Technologies, Inc. Conjugated polymer exciplexes and applications thereof
JP2005501398A (en) * 2001-05-07 2005-01-13 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Floating gate memory device using composite molecular materials
WO2003052827A1 (en) * 2001-12-18 2003-06-26 Matsushita Electric Industrial Co., Ltd. Non-volatile memory
US7027327B2 (en) 2001-12-18 2006-04-11 Matsushita Electric Industrial Co., Ltd. Non-volatile memory
JP2007528583A (en) * 2004-03-08 2007-10-11 ジ・オハイオ・ステイト・ユニバーシティ・リサーチ・ファウンデイション Electronic bonding equipment featuring redox electrodes
US8223531B2 (en) 2004-10-18 2012-07-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method of the same
JP2006148080A (en) * 2004-10-18 2006-06-08 Semiconductor Energy Lab Co Ltd Semiconductor device and driving method thereof
JP2006186346A (en) * 2004-12-03 2006-07-13 Semiconductor Energy Lab Co Ltd Semiconductor device
US8507902B2 (en) 2004-12-03 2013-08-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2006253667A (en) * 2005-02-10 2006-09-21 Semiconductor Energy Lab Co Ltd Storage device and semiconductor device
JP2012212907A (en) * 2005-02-10 2012-11-01 Semiconductor Energy Lab Co Ltd Semiconductor device
US8604547B2 (en) 2005-02-10 2013-12-10 Semiconductor Energy Laboratory Co., Ltd. Memory element and semiconductor device
JP2007073943A (en) * 2005-08-12 2007-03-22 Semiconductor Energy Lab Co Ltd Storage device and semiconductor device
US8847209B2 (en) 2005-08-12 2014-09-30 Semiconductor Energy Laboratory Co., Ltd. Memory device and a semiconductor device
JP2009163860A (en) * 2007-12-14 2009-07-23 Semiconductor Energy Lab Co Ltd Semiconductor device and method for writing data into memory

Similar Documents

Publication Publication Date Title
US7113420B2 (en) Molecular memory cell
US7145793B1 (en) Electrically addressable memory switch
JP4750119B2 (en) System and method for adjusting the programming threshold of a polymer memory cell
US5315131A (en) Electrically reprogrammable nonvolatile memory device
KR101067582B1 (en) Method for driving memory devices to exhibit multi-state
US6627944B2 (en) Floating gate memory device using composite molecular material
KR101390011B1 (en) Organic memory devices and preparation method thereof
JP2005500682A (en) Memory cell
JP2008510318A (en) Polymer memory with variable data retention time
JPH02239664A (en) Electric memory
JPS6295882A (en) Electrical memory equipment
WO2009115913A2 (en) Process for using and producing paper based on natural cellulose fibers, synthetic fibers or mixed fibers as physical support and storing medium for electrical charges in self-sustaining field-effect transistors with memory using active semiconductor oxides
US20060131560A1 (en) Rewritable nano-surface organic electrical bistable devices
KR101206605B1 (en) Organic memory devices and preparation method thereof
US7876596B2 (en) Memory element and method for manufacturing same
Higuchi et al. Metal doped polyaniline as neuromorphic circuit elements for in-materia computing
KR101224768B1 (en) Organic memory device and preparation method thereof
US20040240261A1 (en) Organic bistable element, organic bistable memory device using the same, and method for driving said organic bistable elment and organic bistable memory device
WO2020235591A1 (en) Variable resistance device and method for producing same
JPH0260166A (en) Memory element provided with thin fulvalenes film
JP2719359B2 (en) Non-linear electric conduction element
JPH03163873A (en) Charge-transfer complex electric element
RU2256957C2 (en) Memory cell
CN100541651C (en) A kind of bi-stable electric organic film and use its storer, overvoltage protection device
CN100411219C (en) Erasable, readable molecular-base electric double-stable negative-resistance component