JPH01209767A - Electric/electronic device element - Google Patents

Electric/electronic device element

Info

Publication number
JPH01209767A
JPH01209767A JP63033935A JP3393588A JPH01209767A JP H01209767 A JPH01209767 A JP H01209767A JP 63033935 A JP63033935 A JP 63033935A JP 3393588 A JP3393588 A JP 3393588A JP H01209767 A JPH01209767 A JP H01209767A
Authority
JP
Japan
Prior art keywords
film
layer
organic
substrate
monomolecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63033935A
Other languages
Japanese (ja)
Inventor
Isaaki Kawade
一佐哲 河出
Harunori Kawada
河田 春紀
Kunihiro Sakai
酒井 邦裕
Hiroshi Matsuda
宏 松田
Kiyoshi Takimoto
瀧本 清
Yoshihiro Yanagisawa
芳浩 柳沢
Takeshi Eguchi
健 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63033935A priority Critical patent/JPH01209767A/en
Publication of JPH01209767A publication Critical patent/JPH01209767A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/701Langmuir Blodgett films

Abstract

PURPOSE:To manufacture an electric/electronic device element with an amplifying operation as observed in a multielectrode vacuum tube or the like and economically by disposing a thin organic film having insulation or semiinsulation between a pair of electrodes, and providing a control lattice region having a shape for controlling the flow of carriers in the film and simultaneously passing the carriers. CONSTITUTION:A primary electrode 1 is provided on a substrate 6, a thin organic film 2, a control lattice layer 3 and a thin organic film layer 4 are so sequentially formed in this order thereon as to sandwich the lattice layer between the film layers, and an upper electrode 5 is further laminated thereon. The material to be applied to the films 2, 4 is needed to be of an organic material exhibiting insulation or semi- insulation, and most of organic materials may be employed. In order to form the thin organic film layer, a depositing method may be applied, and an LB method is preferable in view of controllability, easiness and its reproducibility. A single molecule film of an organic compound having hydrophobic and hydrophilic properties in one molecule or its accumulated film can be easily formed on the substrate, and an uniform and homogeneous, ultrathin organic film with the thickness of molecular order can be stably supplied over a large area.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電気・電子デバイス素子に関するものであり
、更に詳しくは、一対の電極間に配置した有機薄膜中に
制御格子領域を有することにより三極真空管あるいは多
極真空管等と同様の増幅作用を有する電気・電子デバイ
ス素子に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to electric/electronic device elements, and more specifically, by having a control grid region in an organic thin film disposed between a pair of electrodes. The present invention relates to electric/electronic device elements having an amplifying effect similar to triode vacuum tubes, multi-electrode vacuum tubes, etc.

[従来の技術] 項一作用を有する電気・電子デバイスとして、真空管が
20世世紀的に発明され、三極真空管あるいは多極真空
管等の増幅器が実用化されてきた。
[Prior Art] Vacuum tubes were invented in the 20th century as electric/electronic devices having a single function, and amplifiers such as triode vacuum tubes or multiode vacuum tubes have been put into practical use.

しかしこの真空管は真空容器が必要、大型で重い、加熱
電源を必要とする、といった種々の問題点が有り、現在
では1847年にベル電話研究所のショックレー、パー
デイン、ブラッテンの3人が発明した半導体を使用した
トランジスタが増幅作用を有する電気・電子デバイス素
子の花形となっている。このトランジスタはバイポーラ
トランジスタ(以下BPTと称する)あるいは電界効果
トランジスタ(以下FETと称する)等があり基本的に
はn型とp型の半導体をサンドイッチ状にnpnあるい
はpnpの形に接合した構造をとるもので、真空管に比
べ構造が簡単で、極めて軽量・小型となり、加熱Ml源
を必要とせず、才た寿命が長いといった長所がある。し
かし、その反面、BPTにしてもFETにしても、その
電流−電圧特性は電圧の増加に対して電流が飽和してし
まうという特性を示しており、三極真空管に見られる様
な電流−電圧特性が不飽和形となる特性は得られないと
いう問題点があり、真空管全てをトランジスタに代替す
ることはできなかった。この問題点を解決するものとし
て、三極真空管に似た構造・機能を半導体で形成した静
電誘導トランジスタ(SIT:5tatic Indu
ction Transistor)が提案されていた
[西沢潤−eT、 alの特許No、2050B8  
(出願:1950) ] 、このSITは製造技術が従
来のトランジスタに比べて難しくなかなか実用化でSな
かったが、近年、半導体結晶の成長技術が急進展し、実
用化開発が進み現在種々のSITが開発されている。こ
のSITは従来の半導体に比べ入力信号を忠実に増幅し
、ひずみが極めて少ない、高速動作が可能、消費電力が
少ない、大電力用が可能となる、などの特徴を持ってい
る。
However, this vacuum tube had various problems, such as requiring a vacuum container, being large and heavy, and requiring a heating power source.Currently, it was invented by Shockley, Pardein, and Brattain of Bell Telephone Laboratories in 1847. Transistors using semiconductors have become the star of electrical and electronic device elements that have an amplification effect. This transistor is a bipolar transistor (hereinafter referred to as BPT) or a field effect transistor (hereinafter referred to as FET), and basically has a structure in which n-type and p-type semiconductors are joined in a sandwich shape in the form of npn or pnp. Compared to vacuum tubes, they have a simple structure, are extremely lightweight and compact, do not require a heating Ml source, and have a long lifespan. However, on the other hand, the current-voltage characteristics of both BPT and FET show that the current saturates as the voltage increases, and the current-voltage characteristic is similar to that seen in triode vacuum tubes. There was a problem in that it was not possible to obtain unsaturated characteristics, and it was not possible to replace all vacuum tubes with transistors. As a solution to this problem, a static induction transistor (SIT), which is made of semiconductor and has a structure and function similar to a triode vacuum tube, has been developed.
ction Transistor) was proposed [Jun Nishizawa-eT, al. Patent No. 2050B8
(Application: 1950) ], the manufacturing technology for this SIT is difficult compared to conventional transistors, and it has been difficult to put it into practical use. However, in recent years, semiconductor crystal growth technology has made rapid progress, and development for practical use has progressed. is being developed. Compared to conventional semiconductors, this SIT amplifies input signals more faithfully, has extremely low distortion, can operate at high speed, consumes little power, and can be used with high power.

しかし1以上の如き種々のトランジスタは主として無機
材料の半導体素子から形成されるものであり、−船釣に
高価な材料と高温処理等の複雑な製造プロセスを必要と
し、かつ製造装置自1体も大がかりで高価なものとなっ
てしまうため、経済的な面で問題が有る。このような問
題を解決すべく有機材料による半導体素子の研究も行な
われているが、全ての問題を解決した、半導体素子は提
供されていないのが現状である。
However, such various transistors are mainly formed from semiconductor elements made of inorganic materials, and require expensive materials and complicated manufacturing processes such as high-temperature treatment, and require the manufacturing equipment itself. Since it is large-scale and expensive, there is an economical problem. In order to solve these problems, research is being conducted on semiconductor devices using organic materials, but at present no semiconductor device has been provided that solves all the problems.

また、三極真空管にかわる電気・電子デバイス素子とし
てトンネル・エミッタ増幅器が提案されている[R,H
,DaviS& H,H,Ho5ack著JAP 34
(1983) 8114 ] 、このトンネル・エミッ
タ増幅器は、金属−絶縁性無機薄膜一金属薄膜一絶縁性
無機薄膜一金属とサンドイッチ構造にし、3つの金属部
分をエミッタ、ベース、コレクタとしたものであり、薄
膜の厚さを100A以下にし、エミッタからベースへの
電子の流れをトンネルで行なわせ、トンネル電流をベー
ス電極で制御するものである。これにより、増幅作用を
もち、理論的には非常に高い周波数まで動作可能となる
のであるが、現在のところ増幅器としてまだ実用化され
ていない。
Additionally, a tunnel emitter amplifier has been proposed as an electric/electronic device element to replace the triode vacuum tube [R, H
, Davi S & H, H, Ho5ack JAP 34
(1983) 8114], this tunnel emitter amplifier has a sandwich structure of metal-insulating inorganic thin film-metal thin film-insulating inorganic thin film-metal, and the three metal parts are used as the emitter, base, and collector. The thickness of the thin film is set to 100 A or less, electrons flow from the emitter to the base through a tunnel, and the tunnel current is controlled by the base electrode. As a result, it has an amplification effect and can theoretically operate at very high frequencies, but it has not yet been put into practical use as an amplifier.

〔発明が解決しようとしている課題] 従って、本発明の目的は、三極真空管、多極真空管等に
みられるような増幅作用を持ちトランジスタの長所を兼
ね備え、なおかつ経済的に製造できる電気・電子デバイ
ス素子を提供することである。
[Problems to be Solved by the Invention] Accordingly, an object of the present invention is to provide an electrical/electronic device that has an amplifying effect as seen in triode vacuum tubes, multipolar vacuum tubes, etc., has the advantages of transistors, and can be manufactured economically. The purpose is to provide an element.

[課題を解決するための手段及び作用]本発明によれば
、一対の電極間に絶縁性もしくは半絶縁性を有する有機
薄膜を配置し、その有機薄膜中に電子および正孔等の担
体の流れを制御すると同時に担体が通過しうるような形
状を持つ制御格子領域を設けることにより、三極真空管
あるいは多極真空管等と同様の増幅作用を有する電気・
電子デバイス素子を実現したものである。
[Means and effects for solving the problem] According to the present invention, an insulating or semi-insulating organic thin film is arranged between a pair of electrodes, and carriers such as electrons and holes flow through the organic thin film. By providing a control grid region with a shape that allows the carrier to pass through at the same time as controlling the
This realizes an electronic device element.

以下、本発明を図面を用いて詳細に説明する。Hereinafter, the present invention will be explained in detail using the drawings.

第1図は本発明に係わる電気・電子デバイス素子の一構
成例を示す断面図である。第1図では、基板6上に下地
電極1を設け、その上に有機frJII!2層2.制御
格子層3.有機薄膜層4の順にM制御格子層を有機薄膜
層でサンドイッチする様に形成し、さらにその上に上部
電極5を積層することにより本発明で示す電気・電子デ
バイス素子を作製している。
FIG. 1 is a sectional view showing an example of the configuration of an electric/electronic device element according to the present invention. In FIG. 1, a base electrode 1 is provided on a substrate 6, and an organic frJII! 2 layers 2. Control grid layer 3. An electric/electronic device according to the present invention is manufactured by forming an M-controlled lattice layer sandwiched between organic thin film layers in the order of organic thin film layer 4, and further laminating upper electrode 5 thereon.

本発明に係る有機薄膜2及び4に適用可能な材料として
は、絶縁性もしくは半絶縁性を示す有機材料であること
が必要だが、現在公知の有機材料のほとんどが可能であ
る。
The material applicable to the organic thin films 2 and 4 according to the present invention must be an organic material exhibiting insulating or semi-insulating properties, but most of the currently known organic materials can be used.

有機薄膜層の形成に関しては、具体的には蒸着法やクラ
スターイオンビーム法等の適用も可能であるが、制御性
、容易性そして再現性から公知の従来技術の中ではLB
法が極めて好適である。
Regarding the formation of organic thin film layers, it is possible to specifically apply vapor deposition methods, cluster ion beam methods, etc., but among known conventional techniques, LB is preferred due to controllability, ease, and reproducibility.
The method is highly preferred.

このLB法によれば、1分子中に疎水性部位と親水性部
位とを有する有機化合物の単分子膜またはその累積膜を
基板上に容易に形成することができ1分子オーダの厚み
を有し、かつ大面積にわたって均一、均質な有機超薄膜
を安定に供給することができる。
According to this LB method, a monomolecular film of an organic compound having a hydrophobic site and a hydrophilic site in one molecule or a cumulative film thereof can be easily formed on a substrate and has a thickness on the order of one molecule. , and can stably supply a uniform and homogeneous ultra-thin organic film over a large area.

LB法は1分子内に親木性部位と疎水性部位とを有する
構造の分子において1両者のバランス(両親媒性のバラ
ンス)が適度に保たれている時1分子は水面上で親水性
基を下に向けて単分子の層になることを利用して単分子
膜またはその累積膜を作成する方法である。
The LB method uses a molecule with a structure that has a lignophilic site and a hydrophobic site in one molecule, and when the balance between the two (amphiphilic balance) is maintained appropriately, one molecule has a hydrophilic group on the water surface. This is a method to create a monomolecular film or a cumulative film thereof by using the fact that the monomolecular layer is turned downward to form a monomolecular layer.

疎水性部位を構成する基としては一般に広く知られてい
る飽和及び不飽和炭化水素基や縮合多環芳香放基及び鎖
状多環フェニル基等の各種疎水基が挙げられる。これら
は各々単独又はその複数が組合されて疎水性部分を構成
する。一方親木性部分の構成要素として最も代表的なも
のは、例えばカルボキシル基、スルホン酸基及び四級ア
ミノ基等の親水性基等が挙げられる。
Examples of the group constituting the hydrophobic moiety include various hydrophobic groups such as saturated and unsaturated hydrocarbon groups, condensed polycyclic aromatic radicals, and chain polycyclic phenyl groups, which are generally widely known. Each of these may be used singly or in combination to form a hydrophobic portion. On the other hand, the most typical constituent elements of the wood-philic moiety include hydrophilic groups such as carboxyl groups, sulfonic acid groups, and quaternary amino groups.

これらの疎水性基と親水性基をバランス良く併有する分
子であれば、水面上で単分子膜を形成することが可能で
ある。尚、−船釣にはこれらの分子は絶縁性もしくは半
絶縁性の単分子膜を形成し、よって単分子累積膜も絶縁
性もしくは半絶縁性を示すことから本発明に対し極めて
好適な材料といえる。
If the molecule has both these hydrophobic groups and hydrophilic groups in a well-balanced manner, it is possible to form a monomolecular film on the water surface. In addition, for boat fishing, these molecules form an insulating or semi-insulating monomolecular film, and therefore, the monomolecular cumulative film also exhibits insulating or semi-insulating properties, making it an extremely suitable material for the present invention. I can say that.

下記の如き分子等が挙げられる。Examples include the following molecules.

有機材料 [I]脂肪酸 C)13 (CH2ラーCO2Hn = 11〜22[
II ]クロコニックメチン色素 R1OOR+ [I[I]スクアリリウム色素 [■]で挙げた化合物のクロコニックメチン基を下記の
構造をもつクスアリリウム基でおきかえた化合物。
Organic material [I] Fatty acid C) 13 (CH2raCO2Hn = 11~22[
II] Croconic methine dye R1OOR+ [I [I] Squarylium dye A compound in which the croconic methine group of the compound listed in [■] is replaced with a kusarylium group having the following structure.

[IV]ポルフィリン系色素化合物 −CH2NH03H7 M = H2、Cu、旧、 AI!−C1)及び希土類
金属イオン R=OCR(COOH)CnHzn4+   5 < 
n <25M = H2、Cu、旧、 Zn、 A11
−CI及び 希土類金属イオン R= CnH2n、+    5 < n < 25M
=H2,Cu、旧、 Zn、 AR−C12及び 希土
類金属イオン [V]fiIA合多環芳香族化合物 COOH [VI]ジアセチレン化合物 CH3(CH2)n CmC−C=C(CH2)!XO
くn1文<20 但しn十文>10 Xは親水基で一般的には−COOHが用いられるが−O
H,−CONH2等も使用できる。
[IV] Porphyrin dye compound-CH2NH03H7 M = H2, Cu, old, AI! -C1) and rare earth metal ion R=OCR(COOH)CnHzn4+ 5 <
n <25M = H2, Cu, old, Zn, A11
-CI and rare earth metal ion R = CnH2n, + 5 < n < 25M
=H2, Cu, old, Zn, AR-C12 and rare earth metal ion [V]fiIA combination polycyclic aromatic compound COOH [VI] diacetylene compound CH3(CH2)n CmC-C=C(CH2)! XO
n1 sentences<20 However, n1 sentences>10 X is a hydrophilic group, generally -COOH is used, but -O
H, -CONH2, etc. can also be used.

[■]その他 Quinquethienyl 分子量10000以上の有機高分子材料[I]付加重合
体 りポリアクリル酸 2)ポリアクリル酸エステル 3)アクリル酸コポリマー 4)アクリル酸エステルコポリマー 5)ポリビニルアセテート 6)酢酸ビニルコポリマー COCH3 [rI]縮合重合体 l)ポリアミド R( 2)ポリカーボネート [ml開環重合体 1)ポリエチレンオキシド ここでR1は水面上で単分子膜を形成しやすくするため
に導入された長鎖アルキル基で、その炭素数nは5≦n
≦30が好適である。
[■]Other Quinquethienyl Organic polymeric materials with a molecular weight of 10,000 or more [I] Addition polymer polyacrylic acid 2) Polyacrylic ester 3) Acrylic acid copolymer 4) Acrylic ester copolymer 5) Polyvinyl acetate 6) Vinyl acetate copolymer COCH3 [rI] Condensation polymer l) Polyamide R (2) Polycarbonate [ml Ring-opening polymer 1) Polyethylene oxide Here, R1 is a long-chain alkyl group introduced to facilitate the formation of a monomolecular film on the water surface, The number of carbon atoms n is 5≦n
≦30 is suitable.

またR5は短鎖アルキル基であり炭素数nはl≦n≦4
が好適である0重合度mは100≦m≦5000が好適
である。
Furthermore, R5 is a short-chain alkyl group, and the number of carbon atoms n is l≦n≦4.
The degree of polymerization m is preferably 100≦m≦5000.

尚、上記以外でもLB法に適している有機材料、有機高
分子材料があれば、本発明に好適なのは言うまでもない
0例えば近年研究が盛んになりつつある生体材料(例え
ばバタテリオロドプシンやチトクロームC)や合成ポリ
ペプチド(PBLGなと)等も適用が可能である。
It goes without saying that any organic materials or organic polymer materials other than those mentioned above that are suitable for the LB method are also suitable for the present invention. Also applicable are synthetic polypeptides (PBLG nato), etc.

係る両親媒性の分子は水面上で親木基を下に向けて単分
子の層を形成する。このとき、水面上の単分子層は二次
元系の特徴を有し、分子がまばらに散開しているときは
、一分子当り面積Aと表面圧πとの間に二次元理想気体
の式、 πA=にT が成り立ち、°“気体膜″となる。ここに、にはポルツ
マン定数、Tは絶対温度である。Aを十分小さくすれば
分子間相互作用が強まり、二次元固体の“凝縮M(また
は固体膜)”になる、縮合膜はガラスや樹脂の如き種々
の材質や形状を有する任意の物体の表面へ一層ずつ移す
ことができる。この方法を用いて、単分子膜またはその
累積膜を形成し、これを本発明が示す有機薄膜層2及び
4として使用することができる。
Such amphiphilic molecules form a monomolecular layer on the water surface with the parent group facing downward. At this time, the monomolecular layer on the water surface has the characteristics of a two-dimensional system, and when the molecules are sparsely dispersed, the two-dimensional ideal gas equation is expressed between the area A per molecule and the surface pressure π. T holds true for πA=, resulting in a "gas film". Here, is the Portzmann constant and T is the absolute temperature. If A is made small enough, the intermolecular interaction will become stronger, resulting in a two-dimensional solid "condensation M" (or solid film).The condensation film can be applied to the surface of any object with various materials and shapes, such as glass and resin. Can be transferred layer by layer. Using this method, a monomolecular film or a cumulative film thereof can be formed and used as the organic thin film layers 2 and 4 according to the present invention.

具体的な製法としては、例えば、以下に示す方法を挙げ
ることができる。
As a specific manufacturing method, for example, the method shown below can be mentioned.

所望の有機化合物をクロロホルム、ベンゼン、アセトニ
トリル等の溶剤に溶解させる0次に第4図に示す如き適
当な装置を用いて、係る溶液を水相9上に展開させて有
機化合物の展開層11膜状に形成させる。
A desired organic compound is dissolved in a solvent such as chloroform, benzene, acetonitrile, etc. Next, the solution is spread on the aqueous phase 9 using a suitable device as shown in FIG. 4 to form a spread layer 11 of the organic compound. Form into a shape.

次にこの展開層11が水相9上を自由に拡散して広がり
すぎないように仕切板(または浮子)を設け、展開層1
1の面積を制限して膜物質の集合状態を制御し、その集
合状態に比例した表面圧πを得る。この仕切板12を動
かし、展開層11の面積を縮小して膜物質の集合状態を
制御し、表面圧を徐々に上昇させ、膜の製造に適する表
面圧πを設定することができる。この表面圧を維持しな
がら、静かに清浄な基板lOを垂直に上昇または下降さ
せることにより有機化合物の単分子膜13が基板lO上
に移し取られる。このような単分子11!13は第5a
図または第5b図に模式的に示す如く分子が秩序正しく
配列した膜である。
Next, a partition plate (or float) is provided to prevent the spread layer 11 from freely diffusing and spreading too much on the aqueous phase 9.
The aggregated state of the membrane material is controlled by limiting the area of 1, and a surface pressure π proportional to the aggregated state is obtained. By moving the partition plate 12, the area of the spreading layer 11 is reduced to control the state of aggregation of the film material, and the surface pressure can be gradually increased to set the surface pressure π suitable for film production. While maintaining this surface pressure, the monomolecular film 13 of the organic compound is transferred onto the substrate IO by gently raising or lowering the clean substrate IO vertically. Such a single molecule 11!13 is the fifth a
It is a film in which molecules are arranged in an orderly manner as schematically shown in Figure 5 or Figure 5b.

単分子膜13は以上で製造されるが、前記の操作を繰り
返すことにより所望の累積数の累積膜が形成される。単
分子膜を基板上に移すには、上述した垂直浸漬法の他、
水平付着法、回転円筒法等の方法でも可能である。
The monomolecular film 13 is manufactured as described above, and by repeating the above operations, a desired number of cumulative films can be formed. To transfer the monolayer onto the substrate, in addition to the vertical dipping method described above,
Methods such as horizontal adhesion method and rotating cylinder method are also possible.

水平付着法は、基板lOを水面に水平に接触させて単分
子膜13を移しとる方法であり、回転円筒法は円筒形の
基板10を水面上を回転させて単分子膜13を基板IO
の表面に移しとる方法である。
The horizontal deposition method is a method in which the monomolecular film 13 is transferred by bringing the substrate 10 into horizontal contact with the water surface, and the rotating cylinder method is a method in which the cylindrical substrate 10 is rotated on the water surface to transfer the monomolecular film 13 onto the substrate IO.
This is a method of transferring it to the surface of

前述した垂直浸漬法では、表面が親水性である基板lO
を水面を横切る方向に水中から引き上げると有機化合物
の親水性基が基板lOの側に向いた有機化合物の単分子
[13が基板lOの上に形成される(第5b図)、前述
のように基板lOを上下させると、各行程ごとに一枚ず
つ単分子[13が積み重なって累積膜16が形成される
。!膜分子の向きが引上行程と浸漬行程で逆になるので
、この方法によると単分子f1113の各層間は有機化
合物の疎水基と疎水基が向かいあうY型膜が形成される
(第6a図)、これに対し、水平付着法は、有機化合物
の疎水性基が基板lOの側に向いた単分子膜13が基板
10の上に形成される(第5a図)、この方法では、単
分子[ji13を累積しても成膜分子の向きの交代はな
く全ての層において、疎水性基が基板lOの側に向いた
X型膜が形成される(第6b図)0反対に全ての層にお
いて親木性基が基板10の側に向いた累積膜16はZ型
膜と呼ばれる(第6C図)。
In the vertical immersion method described above, a substrate lO with a hydrophilic surface is used.
When it is pulled out of the water in a direction across the water surface, a single molecule of the organic compound [13] with the hydrophilic group of the organic compound facing toward the substrate IO is formed on the substrate IO (Figure 5b), as described above. When the substrate 10 is moved up and down, single molecules [13] are stacked one by one at each step, forming a cumulative film 16. ! Since the direction of the film molecules is reversed between the pulling process and the dipping process, according to this method, a Y-shaped film is formed between each layer of monomolecular f1113 in which the hydrophobic groups of the organic compound face each other (Figure 6a). In contrast, in the horizontal deposition method, a monomolecular film 13 with the hydrophobic groups of the organic compound facing the substrate 10 is formed on the substrate 10 (Fig. 5a). Even if ji13 is accumulated, there is no change in the direction of the film-forming molecules, and an X-type film is formed in which the hydrophobic group faces the substrate lO in all layers (Fig. 6b) 0On the contrary, in all layers The cumulative film 16 in which the woody groups face the substrate 10 is called a Z-type film (FIG. 6C).

単分子11jJ13を基板lOの上に移す方法は、上記
方法に限定されるわけではなく、大面積基板を用いる時
には、ロールから水相中に基板lOを押し出していく方
法なども採り得る。また、前述した親水性基および疎水
性基の基板lOへの向きは原則であり、基板10の表面
処理等によって変えることもできる。
The method of transferring the single molecules 11jJ13 onto the substrate IO is not limited to the above method, and when a large-area substrate is used, a method of extruding the substrate IO from a roll into the aqueous phase may also be adopted. Further, the directions of the hydrophilic groups and hydrophobic groups described above toward the substrate 10 are in principle, and can be changed by surface treatment of the substrate 10, etc.

以上の如くして有機化合物の単分子膜13またはその累
積fi1Bからなる有機薄膜層2及び4が形成される。
As described above, the organic thin film layers 2 and 4 consisting of the monomolecular film 13 of the organic compound or its cumulative fi1B are formed.

次に本発明における有機薄膜層2と4の間に位置する制
御格子層3は、導電性もしくは半導電性材料でできてお
り担体(電子または正孔)の流れを制御すると同時に担
体が通過しうるような形状を持つことが必要である。制
御格子層は例えば第7図に示す様な網目形、平行線形、
あるいは穴あき形等が考えられるが前述した機能を満足
する形状であれば、これらに限定されることなく所望の
形状を選択できる。
Next, the control grid layer 3 located between the organic thin film layers 2 and 4 in the present invention is made of a conductive or semiconductive material, and controls the flow of carriers (electrons or holes) and at the same time allows the carriers to pass through. It is necessary to have a watery shape. The control grid layer may have, for example, a mesh shape, a parallel linear shape, as shown in FIG.
Alternatively, a hole-shaped shape may be considered, but any desired shape can be selected without being limited to these as long as the shape satisfies the above-mentioned functions.

また、制御格子層を形成する材料は、導電性もしくは半
導電性を示す材料であれば有機・無機を問わない0例え
ば無機材料であれば、Au、 Ag。
The material forming the control lattice layer may be organic or inorganic as long as it exhibits conductivity or semiconductivity; for example, inorganic materials such as Au and Ag.

Aj)、旧、Ptなどの金属や合金、グラファイトやS
i(単結晶ポリシリコン、アモルファス)やシリサイド
にッケルシリサイド、パラジウムシリサイド)  、 
GaAs、 GaP、 CdS、 CdSeなどの半導
体を始めとして数多くの材料が挙げられる。
Aj), old metals and alloys such as Pt, graphite and S
i (single crystal polysilicon, amorphous), silicide, nickel silicide, palladium silicide),
There are many materials including semiconductors such as GaAs, GaP, CdS, and CdSe.

また、有機材料においても、N−メチルフェナジウムT
CNQ錯体テトラシ7ノキジメタンドコシルピリジニウ
ム、ドコシルピリジニウムージテトラシ7ノキジメタン
、オクタデシルピリジニウムージテトラシアノキノジメ
タン等の導電性の有機化合物が挙げられる。
Also, in organic materials, N-methylphenadium T
Examples include conductive organic compounds such as the CNQ complex tetracyanoquinodimethane, docosylpyridinium-ditetracyanoquinodimethane, and octadecylpyridinium-ditetracyanoquinodimethane.

制御格子層の形成に関しては例えば、所望の制御格子層
の形状にあわせたマスクを使用して蒸着法やスパッタリ
ング法、あるいはクラスターイオンビーム法等により導
電性材料もしくは半導電極材料を成膜する方法が可能で
ある。この場合は担体通過部は導電性材料もしくは半導
電性材料が形成されない事になり、この部分は直接、有
機薄膜層4が積層され、2の層と直接接し、担体の通過
が可能となる部分ができる。また、蒸着法やスパッタリ
ング法あるいはクラスターイオンビーム法等により導電
性材料もしくは半導電性材料を有機薄膜層2上に成膜し
た後、リソグラフィー技術を用いて所望の形状にパター
ニングして制御格子層を形成することも可能である。た
だし、この場合は有機薄膜層2の材料がパターニングに
耐えられることが必要である。
Regarding the formation of the control lattice layer, for example, a method of forming a film of conductive material or semiconducting electrode material by vapor deposition, sputtering, cluster ion beam method, etc. using a mask matching the shape of the desired control lattice layer. is possible. In this case, no conductive material or semiconductive material is formed in the carrier passage part, and this part is directly stacked with the organic thin film layer 4 and is in direct contact with layer 2, allowing the carrier to pass through. Can be done. Further, after forming a conductive material or a semiconductive material on the organic thin film layer 2 by vapor deposition, sputtering, cluster ion beam method, etc., it is patterned into a desired shape using lithography technology to form a control lattice layer. It is also possible to form However, in this case, the material of the organic thin film layer 2 needs to be able to withstand patterning.

上記の形成方法以外に、LB法を用いた制御格子層形成
方法がある。その方法はLB法によって制御格子層を成
膜する際に所望の形状に応じて液面に導電性を示す分子
もしくは半導電性を示す分子と有機薄膜層2および4の
絶縁性もしくは半絶縁性を示す分子をパターン状に展開
し、そのパターン状の成膜分子を有機薄膜層2上に移し
取ることによって制御格子層を形成する方法である。そ
の−例を第8図を用いて簡単に説明する。
In addition to the above-mentioned formation method, there is a control lattice layer formation method using the LB method. This method involves forming a control lattice layer by the LB method, and depending on the desired shape, conductive molecules or semiconductive molecules on the liquid surface and insulating or semi-insulating organic thin film layers 2 and 4. This is a method of forming a control lattice layer by developing molecules exhibiting a pattern in a pattern and transferring the patterned film-forming molecules onto the organic thin film layer 2. An example thereof will be briefly explained using FIG.

例えば第8a図に示す如くに成膜分子をパターン状に液
面に展開する。一方をアラキシン酸などの絶縁性もしく
は半絶縁性を示す分子(これを分子Aとする)、他方を
テトラシアノキジメタンドコシルピリジニウムなどの導
電性もしくは半導電性を示す分子(これを分子Bとする
)として、これら2種の分子を第8a図に示す如くに液
面17にA。
For example, as shown in FIG. 8a, film-forming molecules are spread out in a pattern on the liquid surface. One is an insulating or semi-insulating molecule such as araxic acid (this is referred to as molecule A), and the other is an electrically conductive or semiconductive molecule such as tetracyanoquidimethanandocylpyridinium (this is referred to as molecule B). ), these two types of molecules are placed on the liquid surface 17 as shown in FIG. 8a.

B、A、B・・・の順に交互に展開−して、該液面17
上にそれぞれ分子A、Bよりなる単分子膜a、bをスト
ライプ状(例えば”l + bI + a2 + b2
・・・と言ったように)に形成した後、基板lOを液面
17を横切るように垂直に上下させてこれをそのまま移
し取り、第8b図に示した如き平行線形の制御格子層を
基板IO上に形成したものである。
B, A, B... are developed alternately in the order of the liquid level 17.
On top, monomolecular films a and b consisting of molecules A and B are formed in stripes (for example, "l + bI + a2 + b2
...), the substrate lO is vertically moved up and down across the liquid level 17 and transferred as it is, and a parallel linear control grating layer as shown in FIG. 8b is formed on the substrate. It is formed on the IO.

具体的には、上記の如き液面への成膜分子の展開は例え
ば以下のようにして行なうとよい。
Specifically, the above-mentioned spreading of the film-forming molecules on the liquid surface may be carried out, for example, as follows.

まず、成膜分子を所要の溶媒、例えば上記アラキシン酸
であればクロロホルム等、またテトラシアノキジメタン
ドコシルピリジニウムであればアセトニトリルとベンゼ
ンの(1: l)i合溶媒等に溶解させた後、液面の面
積を可変にすることのできる移動障壁等を有する水相に
展開する。この際、例えば上記第8b図に示したような
ストライプ状のパターンを得るのであれば、まず分子A
を液面17に展開し、移動障壁18−1を前方に移動さ
せて分子の表面圧を上げ、単分子膜alを得る。この時
、移動障壁18−2はフック18−3により18−1と
同様に前後に動くことが可能である。
First, the film-forming molecule is dissolved in a required solvent, such as chloroform for the above-mentioned alaxic acid, or a (1:l)i mixture of acetonitrile and benzene for tetracyanoquidimethanandocylpyridinium, and the like. It is developed into an aqueous phase that has a moving barrier etc. that can make the area of the liquid surface variable. At this time, if you want to obtain a striped pattern as shown in FIG. 8b above, first, molecule A
is spread on the liquid surface 17, and the moving barrier 18-1 is moved forward to increase the surface pressure of the molecules to obtain a monomolecular film Al. At this time, the movable barrier 18-2 can be moved back and forth by the hook 18-3 in the same way as the movable barrier 18-1.

次に、移動障壁18−1に隣接するようにして膜拡散防
止のための固定障壁(不図示)を設けた後。
Next, a fixed barrier (not shown) for preventing film diffusion is provided adjacent to the moving barrier 18-1.

分子Bを液面に展開するべく移動障壁18−1を後方に
移動させる。このような状態で、移動障壁18−1と単
分子膜a1との間に分子Bを展開し、移動障壁を上記と
同様に前方に移動させ単分子膜blを得る。このような
操作を順次繰り返して、それぞれ分子AおよびBがal
 + bl + a2 * b2・・・の順に交互に繰
り返されたストライプ状のパターンを液面に得るのであ
る。この際、固定障壁は液面に分子を展開するたび毎に
順次移動させてゆき、液面へのパターン形成後にこれを
取り除くとよい。
The moving barrier 18-1 is moved backward to spread the molecules B on the liquid surface. In this state, molecules B are spread between the migration barrier 18-1 and the monolayer a1, and the migration barrier is moved forward in the same manner as described above to obtain the monomolecular film bl. By repeating these operations sequentially, molecules A and B each become al
A striped pattern alternately repeated in the order + bl + a2 * b2 . . . is obtained on the liquid surface. At this time, it is preferable to move the fixed barrier sequentially each time molecules are spread on the liquid surface, and remove it after forming a pattern on the liquid surface.

尚、移動障壁および固定障壁の形状を種々に変更するこ
とにより、上記ストライプパターンのみならず、所望形
状のパターンを液面に得ることができるものである。
By variously changing the shapes of the moving barrier and the fixed barrier, it is possible to obtain not only the above-mentioned stripe pattern but also a pattern of a desired shape on the liquid surface.

以上の様なLB法を用いた制御格子層形成方法を使えば
、有機薄膜層2、制御格子層3、有機薄膜層4は全てL
B法で形成することができ非常に有利となる。
If the control lattice layer formation method using the LB method as described above is used, the organic thin film layer 2, the control lattice layer 3, and the organic thin film layer 4 are all L
It can be formed by method B, which is very advantageous.

また、本発明においては、一対の電極間の有機薄膜層中
に流れる担体を制御格子層によって制御するため、電極
間の厚さは10,0OOA以下、好ましくは1,000
 A以下にする必要がある。
Furthermore, in the present invention, since the carrier flowing in the organic thin film layer between a pair of electrodes is controlled by a control grid layer, the thickness between the electrodes is 10,000 OOA or less, preferably 1,000 OOA or less.
Must be below A.

本発明において、上記の如き薄膜を支持するための基板
は、金属、ガラス、セラミックス、プラスチック材料等
いずれの材料でもよく、更に耐熱性の著しく低い生体材
料も使用できる。
In the present invention, the substrate for supporting the thin film as described above may be made of any material such as metal, glass, ceramics, or plastic materials, and biomaterials with extremely low heat resistance may also be used.

上記の如き基板は、任意の形状でよく平板状であるのが
好ましいが、平板に何ら限定されない。
The above-mentioned substrate may have any shape and is preferably flat, but is not limited to a flat plate.

すなわち前記成膜法においては、基板の表面がいかなる
形状であってもその形状通りに膜を形成し得る利点を有
するからである。
That is, the above film forming method has the advantage that a film can be formed in accordance with the shape of the surface of the substrate, no matter what shape it is.

一方、係る有機薄膜を挟持する電極材料も高い伝導性を
有するものであれば良く、例えばAu。
On the other hand, the electrode material for sandwiching the organic thin film may be any material as long as it has high conductivity, such as Au.

Pt、 Ag、 Pd、 AR,In、 Sn、 Pb
などの金属やこれらの合金、さらにはグラファイトやシ
リサイド、またさらにはITOなどの導電性酸化物を始
めとして数多くの材料が挙げられ、これらの本発明への
適用が考えられる。係る材料を用いた電極形成法として
も従来公知の薄膜技術で充分である。但し、ここで注意
を要するのは本発明における電気・電子デバイス素子作
成において該LBllji上に設け、電極形成の際、L
B層に損傷を与えてはならず、そのためには高温(>1
00℃)を要する製造成いは処理行程を避ける。また基
板上に直接形成される電極材料はその電極必要があるこ
とである6表面がLB膜形成の際、絶縁性の酸化膜をつ
くらない導電材料、例えば貴金属やITOなとの酸化物
導電体を用いることが好ましい。
Pt, Ag, Pd, AR, In, Sn, Pb
There are many materials including metals such as , alloys thereof, graphite, silicide, and even conductive oxides such as ITO, and these materials can be considered to be applied to the present invention. As a method for forming electrodes using such materials, conventionally known thin film techniques are sufficient. However, what should be noted here is that when forming an electrode on the LBllji in the production of an electric/electronic device element in the present invention,
The B layer must not be damaged, and for this purpose high temperatures (>1
Avoid manufacturing processes that require temperatures (00°C). In addition, the electrode material that is directly formed on the substrate must be made of a conductive material that does not form an insulating oxide film when forming the LB film on the surface, such as a noble metal or an oxide conductor such as ITO. It is preferable to use

[実施例] 以下に実施例を示して本発明をさらに詳細に説明する。[Example] The present invention will be explained in more detail by showing examples below.

実施例1 以下に示す手順で下地電極(金属)1/有機薄膜層(単
分子累積膜)2/制御格子層(金属)3/有機薄膜層(
単分子累積膜)4/上部電極(金属)5の構造を有する
試料(第2図)を作成した。第2a図は平面図を、第2
b図は試料をA−A′面で切断した時の断面図をあられ
しており、?−1.7−2.7−3は取り出し電極を示
している。
Example 1 Base electrode (metal) 1/organic thin film layer (single molecule cumulative film) 2/control lattice layer (metal) 3/organic thin film layer (
A sample (FIG. 2) having a structure of monomolecular cumulative film) 4/upper electrode (metal) 5 was prepared. Figure 2a shows the top view;
Figure b shows a cross-sectional view when the sample is cut along the A-A' plane. -1.7-2.7-3 indicates an extraction electrode.

まず、LB法により疎水処理(アラキシン酸Cd塩[C
H3(CH2)I s CO5・Cd2・1を3層累積
)したガラス基板10(コーニング社製、7059)上
にCrを下引き層として厚さ500A真空蒸着(抵抗加
熱法、基板温度室温)し、更にAuを同法により蒸着(
膜厚1000A) I、、これを下地電極11とした。
First, hydrophobic treatment (araxic acid Cd salt [C
On a glass substrate 10 (manufactured by Corning, 7059) on which three layers of H3(CH2)Is CO5.Cd2.1 were accumulated, Cr was vacuum deposited as an undercoat layer to a thickness of 500 A (resistance heating method, substrate temperature at room temperature). , further Au was evaporated by the same method (
Film thickness: 1000 A) I. This was used as the base electrode 11.

ただし、第2a図に示した様な形状にマスク蒸着した。However, mask deposition was performed in the shape shown in FIG. 2a.

係る基板6を担体としてLB法によりアラキシン酸Cd
塩の単分子膜の累積を行ない、累積膜2を作成した0次
に、累積方法の詳細を記す、アラキシン醜(CH3(C
H2)+aCOOH)を濃度1 rag/laRで溶か
したクロロホルム溶媒を、 KH(03でpH8,4に
調製したGdCh 8度4 X 1O−4s+oi)/
j) テ水温20℃の水相上に展開し水面上に単分子膜
13を形成した溶媒の蒸発除去を待って係る単分子膜1
3の表面圧を30+sN/gまで高め、更にこれを一定
に保ちながら前記基板6を水面を横切る方向に定速io
ms/winで静かに浸漬した後、続いて同速度で静か
に引き上げ2HのY型単分子膜の累積を行なった。係る
操作を適当回数繰り返すことによって前記基板6上に、
それぞれ2,4,6.8と10fiの累積膜2を形成し
た。
Using the substrate 6 as a carrier, araxic acid Cd is produced by the LB method.
A monomolecular film of salt was accumulated to create a cumulative film 2. Next, the details of the accumulation method are described.
The chloroform solvent in which H2) + aCOOH) was dissolved at a concentration of 1 rag/laR was mixed with KH (GdCh adjusted to pH 8.4 in 03 8 degrees 4 X 1O-4s + oi)/
j) The monomolecular film 1 is developed on the water phase at a water temperature of 20° C. and the monomolecular film 13 is formed on the water surface after the solvent is evaporated and removed.
The surface pressure of the substrate 6 was increased to 30+sN/g, and while keeping this constant, the substrate 6 was moved at a constant speed in the direction across the water surface.
After being gently immersed at ms/win, it was then gently pulled up at the same speed to accumulate a 2H Y-type monomolecular film. By repeating this operation an appropriate number of times, on the substrate 6,
Cumulative films 2 of 2, 4, 6.8 and 10 fi were formed, respectively.

次に係る膜面上にストライプ状のパターンのAJ(幅t
og腸、膜厚1GOA)をマスク蒸着(下地電極形成と
同じ方法)し平行線形の制御格子層3を形成した。但し
、取り出し電極72の部分のみ全面にAβを蒸着した0
次にアラキシン膜Cd塩の単分子膜を前記と全く同じ方
法でそれぞれ2,4,6.8と10層累積し、累積膜4
を形成し、更に上部電極5としてAuを第2a図に示し
た様な形状にマスク蒸着(膜厚10GOA) した。
Next, a striped pattern AJ (width t
A parallel linear control grid layer 3 was formed by vapor deposition using a mask (same method as for forming the base electrode). However, only the part of the extraction electrode 72 is coated with Aβ on the entire surface.
Next, 10 layers of 2, 4, and 6.8 monomolecular films of Araxin film Cd salt were accumulated in exactly the same manner as above, and the cumulative film 4
was formed, and then Au was deposited using a mask (thickness: 10 GOA) as the upper electrode 5 in the shape shown in FIG. 2a.

次に単分子累積膜が2層の試料に於て下部電極1、制御
格子層3と上部電極5のそれぞれに対し?−1,7−2
,?−3に於いてプローブを立てコンタクトを取った。
Next, in a sample with two layers of monomolecular cumulative films, for each of the lower electrode 1, control grid layer 3, and upper electrode 5? -1,7-2
,? At -3, I set up the probe and made contact.

このとき特に?−1に於いては単分子累積膜層をつき破
る様、プローブを強くC金子圧≧50層g)押しつけて
コンタクトを取った。更に係るプローブにバイアス電圧
VBp用直流電源8−1、入力信号電源Vtn 8−2
 、入力バイアス電圧vB、用直流電源8−3、負荷抵
抗RL 8−4を接続し、第3図に示す電気回路を組み
立てた。尚RLには金属被膜型300Ωの抵抗体を用い
、係る負荷抵抗に発生する電位VOutをその両端に接
続したオシロスコープ(入力抵抗IMΩ)にて観察した
Especially at this time? In case -1, contact was made by pressing the probe strongly to break through the monomolecular cumulative film layer. Furthermore, a DC power supply 8-1 for bias voltage VBP and an input signal power supply Vtn 8-2 are connected to the probe.
, input bias voltage vB, DC power supply 8-3, and load resistor RL 8-4 were connected to assemble the electric circuit shown in FIG. A metal film type 300Ω resistor was used for RL, and the potential VOut generated in the load resistance was observed with an oscilloscope (input resistance IMΩ) connected to both ends of the resistor.

まず、入力信号源Vin 8−2 オヨびVH2,8−
3(1)出力をOvに保ったまま、バイアス電圧Vep
用直流電源8−1により電極両端間にIOVのバイアス
電圧を印加し、次に入力バイアス電圧V[19用直流電
源8−3により一3vのバイアス電圧を印加した後。
First, the input signal source Vin 8-2 and VH2, 8-
3 (1) While keeping the output at Ov, increase the bias voltage Vep.
A bias voltage of IOV is applied between both ends of the electrode by the DC power source 8-1 for input bias voltage V[19].

入力信号源Vinにより振Il@120mV、周波数1
 kHzの正弦波を印加したところ、抵抗体の両端に同
じく1 kHzの振幅的100mVの正弦波が得られた
。すなわち、係る試料が増幅素子として機能することが
示された。
Vibration Il@120mV, frequency 1 due to input signal source Vin
When a kHz sine wave was applied, a 1 kHz sine wave with an amplitude of 100 mV was obtained at both ends of the resistor. In other words, it was shown that such a sample functions as an amplification element.

尚1周波数をI GHzまで変化させた限りに於いては
その増幅率はほとんど変化しなかった。
Note that as long as the frequency was changed up to I GHz, the amplification factor hardly changed.

また、単分子累積膜が4 、6 、8 、10層の試料
において同様の検討を行なった結果、層数が増すにつれ
若干増幅特性が落ちるものの同様の増幅特性が得られ、
係る試料が増幅素子として機能することが示された。
In addition, as a result of conducting similar studies on samples with 4, 6, 8, and 10 layers of monomolecular cumulative films, similar amplification characteristics were obtained, although the amplification characteristics deteriorated slightly as the number of layers increased.
It was shown that such a sample functions as an amplification element.

実施例2 有機薄膜2および4の単分子累積膜の暦数を変えたこと
を除いては実施例1と全く同じ方法、同じm成で第2図
に示した試料を作成した。このときの単分子累積膜の暦
数を下表に示す。
Example 2 The sample shown in FIG. 2 was prepared using the same method and composition as in Example 1, except that the number of monomolecular cumulative films of organic thin films 2 and 4 was changed. The number of monomolecular cumulative films at this time is shown in the table below.

表  1 有機薄膜2および4の層数をそれぞれ2層、6層とじ2
単分子累積膜合計層数が8層の試料について実施例1と
同じ実験をしたところV。、tにVinと同じ周波数の
振幅的120mVの正弦波が得られ。
Table 1 The number of layers of organic thin films 2 and 4 is 2 layers and 6 layers, respectively.
When the same experiment as in Example 1 was conducted on a sample with a total number of monomolecular cumulative film layers of 8, V was obtained. , t, a sine wave with the same frequency as Vin and an amplitude of 120 mV is obtained.

実施例1で示した有機薄膜2と4の層数が4層づつで合
計層数が8層の試料よりも良い増幅特性が得られた。
Better amplification characteristics were obtained than the sample shown in Example 1 in which the number of layers of organic thin films 2 and 4 was 4 each, and the total number of layers was 8.

尚、表中の他の試料(単分子累積膜合計層数が12層、
 18層、20層のもの)についても同様の結果が得ら
れ、係る試料が増幅素子として機能することが示された
In addition, other samples in the table (the total number of monomolecular cumulative film layers is 12 layers,
Similar results were obtained for samples with 18 layers and 20 layers, indicating that such samples functioned as amplification elements.

実施例3 有機薄膜2および4の材料をポリ−α−n−ヘキサデシ
ルアクリル酸に変えたことを除いては実施例1と全く同
じ方法、同じ構成で第2図に試した試料を作成した。た
だし、ポリ−α−n−ヘキサデシルアクリル酸の単分子
累積膜は以下の様に形成した。
Example 3 The sample shown in Figure 2 was prepared using the same method and configuration as in Example 1, except that the material for organic thin films 2 and 4 was changed to poly-α-n-hexadecyl acrylic acid. . However, a monomolecular cumulative film of poly-α-n-hexadecyl acrylic acid was formed as follows.

ポリ−α−n−ヘキサデシルアクリル酸(分子量的lO
万)を濃度I X 10−3%(vatハol) テ溶
かしたベンゼン溶液をKHCO3でpH8,7に調整し
たCdCIh濃度5×10−’moj!/i’ 、水温
20°Cの水相上に展開し、水面上に単分子膜を形成し
た。溶媒の蒸発除去を待ってこの単分子膜の表面圧を1
5mN/sまで高め、更にこれを一定に保ちながら基板
を水面に横切る方向に速度3 am/winで浸漬・引
き上げを行い、単分子膜の累積を行った。係る操作を適
当回数繰り返すことによりそれぞれ2,4,6.8と1
0層の累積膜2または4を作成した。
Poly-α-n-hexadecyl acrylic acid (molecular weight lO
CdCIh concentration 5 x 10-' moj!, which was prepared by dissolving a benzene solution with a concentration of I x 10-3% (vat haol) and adjusting the pH to 8.7 with KHCO3. /i' and developed on an aqueous phase at a water temperature of 20°C to form a monomolecular film on the water surface. Waiting for the solvent to evaporate, the surface pressure of this monomolecular film is reduced to 1
The temperature was increased to 5 mN/s, and while keeping this constant, the substrate was immersed and pulled up at a speed of 3 am/win in the direction across the water surface to accumulate a monomolecular film. By repeating the above operation an appropriate number of times, 2, 4, 6.8 and 1, respectively.
A cumulative film 2 or 4 with 0 layers was created.

有機薄H2および4の層数が2層の試料について実施例
1と同じ実験をしたところ、VoutにVinと同じ周
波数の振幅約110層Vの正弦波が得られ、係る素子が
増幅素子として機能をすることがわかった。
When the same experiment as in Example 1 was carried out on samples with two organic thin layers H2 and H4, a sine wave with the same frequency as Vin and an amplitude of about 110 layers V was obtained at Vout, and such an element functioned as an amplification element. It turns out that it does.

また、単分子累積膜が4 、6 、8 、10層の試料
において同様の検討を行なった結果、暦数が増すにつれ
て若干増幅特性が落ちるものの同様の増幅特性が得られ
、係る試料が増幅素子として機能することが示された。
In addition, as a result of conducting similar studies on samples with 4, 6, 8, and 10 layers of monomolecular cumulative films, it was found that similar amplification characteristics were obtained, although the amplification characteristics deteriorated slightly as the number of calendars increased. It was shown that it functions as

実施例4 有機薄II! 2および4の材料をポリ−イソブチルメ
タクリレート(PIBM)に変えたことを除いては実施
例1と全く同じ方法、同じ構成で第2図に試した試料を
作成した。ただし、 PIBMの単分子累積膜は以下の
様に形成した。
Example 4 Organic Thin II! The sample shown in FIG. 2 was prepared in exactly the same manner and with the same configuration as in Example 1, except that the materials in Examples 2 and 4 were changed to poly-isobutyl methacrylate (PIBM). However, the monomolecular cumulative film of PIBM was formed as follows.

PIBMを濃度I X 10−3%(vol/vol)
 テ溶カシたベンゼン溶液をKHCO3でpH8,7に
調整したCdCh濃度5 X 10−’moR# 、水
温20℃の水相上に展開し。
PIBM at a concentration of I x 10-3% (vol/vol)
The dissolved benzene solution was developed on an aqueous phase with a CdCh concentration of 5 x 10-'moR# adjusted to pH 8.7 with KHCO3 and a water temperature of 20°C.

水面上に単分子膜を形成した。溶媒の蒸発除去を待って
この単分子膜の表面圧を15mN/mまで高め、更にこ
れを一定に保ちながら基板を水面に横切る方向に速度I
Q+*m/winで浸漬・引き上げを行い、単分子膜の
累積を行った。係る操作を適当回数繰り返すことにより
それぞれ2,4,6.8と10層の累積膜2または4を
作成した。
A monomolecular film was formed on the water surface. After waiting for the solvent to evaporate and be removed, the surface pressure of this monomolecular film was increased to 15 mN/m, and while keeping this pressure constant, the substrate was moved at a speed I in the direction across the water surface.
Dipping and pulling were performed at Q+*m/win to accumulate a monomolecular film. By repeating this operation an appropriate number of times, cumulative films 2 and 4 having 2, 4, 6.8, and 10 layers, respectively, were created.

有機薄膜2および4の層数が2層の試料について実施例
1と同じ実験をしたところ、voutにVinと同じ周
波数の振幅的100■Vの正弦波が得られ、係る素子が
増幅素子として機能をすることがわかった。
When the same experiment as in Example 1 was carried out on a sample with two layers of organic thin films 2 and 4, a sine wave with an amplitude of 100 V and the same frequency as Vin was obtained at vout, and the element functioned as an amplification element. It turns out that it does.

また、単分子累積膜が4 、6 、8 、10層の試料
において同様の検討を行なった結果、暦数が増すにつれ
若干増幅特性が落ちるものの同様の増幅特性が得られ、
係る試料が増幅素子として機能することが示された。
In addition, as a result of conducting similar studies on samples with 4, 6, 8, and 10 layers of monomolecular cumulative films, similar amplification characteristics were obtained, although the amplification characteristics deteriorated slightly as the number of calendars increased.
It was shown that such a sample functions as an amplification element.

実施例5 制御格子層3の材料を有機材料にしてLB法を用いて形
成した事を除いては実施例1と全く同じ方法・同じ構成
で第2図に示した試料を作成した。
Example 5 The sample shown in FIG. 2 was prepared in exactly the same manner and with the same configuration as in Example 1, except that the control grid layer 3 was formed using an organic material using the LB method.

まず、実施例1と同様にして、ガラス基板を疎水処理し
た後下地電極lを成膜し、その上に有機f!J膜層2と
なる単分子累積膜をそれぞれ2,4゜6.8と10層の
計5個の試料を形成した後、制御格子層3を形成する。
First, in the same manner as in Example 1, a glass substrate was subjected to hydrophobic treatment, and then a base electrode l was formed, and an organic f! After forming a total of five samples of 2, 4° 6.8 and 10 layers of monomolecular cumulative films which will become the J film layer 2, the control grid layer 3 is formed.

次いで、移動障壁に隣接するように固定障壁13を配し
た。そして、移動障壁18を初期位置まで移動させた後
、ドコシルピリジニウムージテトラシアノキジメタンを
上記アラキシン酸の単分子膜と移動障壁の間の液面に展
開した(第9d図参照)。
Next, a fixed barrier 13 was placed adjacent to the moving barrier. After the migration barrier 18 was moved to the initial position, docosylpyridinium ditetracyanokidimethane was spread on the liquid surface between the monomolecular film of alexic acid and the migration barrier (see Figure 9d).

溶媒を蒸発除去後、移動障壁18を移動させ、表面圧を
30dyn/cmまで高めて上記アラキシン酸の単分子
膜々に隣接した状態で、ドコシルピリジニウムージテト
ラシアノキジメタンの単分子Hbを20層腫幅に液面に
形成した(第9e図参照)。
After removing the solvent by evaporation, the transfer barrier 18 was moved, the surface pressure was increased to 30 dyn/cm, and monomolecular Hb of docosylpyridinium-ditetracyanokidimethane was transferred adjacent to the monomolecular films of araxic acid. 20 layers were formed on the liquid surface (see Figure 9e).

以後同様な操作を繰り返し行ない、液面17上に第8f
図の如きストライプ状のパターンを得た。
After that, the same operation is repeated, and the 8th f is placed on the liquid level 17.
A striped pattern as shown in the figure was obtained.

最後に下地電極lおよび有機薄膜層2を積層しであるガ
ラス基板を速度losm/履inで液面を横切るように
往復させて該液面上のパターンを移し取ることにより、
ドコシルピリジニウムージテトラシアノキジメタンを導
電層とするストライプ状のパターンを持つ平行線形制御
格子層を形成することができた。
Finally, by reciprocating the glass substrate on which the base electrode 1 and the organic thin film layer 2 are laminated across the liquid surface at a speed of losm/in to transfer the pattern on the liquid surface,
A parallel linear control lattice layer with a striped pattern was successfully formed using docosylpyridinium-ditetracyanoki dimethane as a conductive layer.

その後、また実施例1と同様にして単分子膜をそれぞれ
2,4,6.8と10層累積し累積膜4を形成後上部電
極を積層して第2に示した試料を作成した。
Thereafter, in the same manner as in Example 1, 10 layers of 2, 4, and 6.8 monomolecular films were accumulated to form a cumulative film 4, and then an upper electrode was laminated to prepare the second sample.

上記の様に作成した試料に於いて実施例1と同じ実験を
行なった結果、本実施例の全てのサンプルに於いてほぼ
同等の増幅特性が得られ、係る試料が増幅素子として機
能することが示された。
As a result of conducting the same experiment as in Example 1 using the samples prepared as described above, almost the same amplification characteristics were obtained for all the samples of this example, and it was confirmed that the samples functioned as amplification elements. Shown.

以上述べてきた実施例中では有機薄膜層2および4に7
ラキジン酸の膜を使用していたが、絶縁性もしくは半絶
縁性を有する材料であればこれに限定することなく、ま
たその形成方法もLB法に限らず、極めて薄く均一な絶
縁性もしくは半絶縁性を示す有機薄膜が作成できる成膜
法であれば使用可能である。具体的には真空蒸着法や電
解重合法、 CVO法等が挙げられ、使用可能な有機材
料の範囲が広がる。又、有機薄膜にサンドイッチされる
制御格子層に関しても、形状は実施例中で述べた平行線
形に限定することなく、担体の流れを制御すると同時に
担体が通過しうるような形状であればよく、例えば網目
形、穴あき形等が挙げられる。又、その形成法について
も、前述の機能を有する制御格子層を作成しうる成膜法
であれば使用可能である。
In the embodiments described above, organic thin film layers 2 and 4 have 7
Although a rachidic acid film was used, the film is not limited to this as long as it is an insulating or semi-insulating material, and the formation method is not limited to the LB method. Any film forming method that can produce an organic thin film exhibiting properties can be used. Specifically, vacuum evaporation methods, electrolytic polymerization methods, CVO methods, etc. are mentioned, and the range of usable organic materials is expanded. Furthermore, the shape of the control grid layer sandwiched between the organic thin films is not limited to the parallel linear shape described in the examples, but may be any shape that can control the flow of the carrier and at the same time allow the carrier to pass through. Examples include a mesh shape, a hole shape, and the like. Also, any film forming method that can create a control lattice layer having the above-mentioned functions can be used.

更に、基板材料やその形状も本発明は何ら限定するもの
ではない。
Furthermore, the present invention does not limit the substrate material or its shape in any way.

[発明の効果] 以上説明したように、一対の電極間に絶縁性もしくは半
絶縁性を有する有機薄膜を配置し、その有機薄膜中に電
子および正孔等の担体の流れを制御すると同時に担体が
通過しうるような形状を持つ制御格子領域を設けること
により、増幅作用をもつ電気・電子デバイス素子を実現
することができた。それと同時に有機材料を使用すれば
良いため材料の自由度が高くなり、また、LB法を使用
して成膜できるため、分子オーダ(数A〜数十人)によ
る膜厚制御が容易に実現でき素子を形成する時の再現性
が高くなり、なおかつ成膜装置自身が安価なため、経済
的に製造できる電気・電子デバイス素子を提供すること
が可能となった。
[Effects of the Invention] As explained above, an insulating or semi-insulating organic thin film is arranged between a pair of electrodes, and the flow of carriers such as electrons and holes is controlled in the organic thin film, and at the same time the carriers are By providing a control grid region with a shape that allows it to pass through, we were able to realize an electrical/electronic device element with an amplification effect. At the same time, since it is only necessary to use organic materials, there is a high degree of freedom in materials, and since films can be formed using the LB method, film thickness control on the molecular order (several A to several dozen) can be easily realized. Since the reproducibility when forming elements is improved and the film forming apparatus itself is inexpensive, it has become possible to provide electrical/electronic device elements that can be manufactured economically.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電気・電子デバイス素子の断面図で、
第2d図、第2b図は実施例で作成した試料の平面図お
よび断面図である。第3図は本発明の増幅特性を測定し
た時に用いた測定器の電気回路図である。第4図は本発
明の有機薄膜層をLB法によって形成する方法を図解的
に示す図である。第5a図および第5b図は単分子膜の
模式図であり、第6a図、第8b図、第8c図は累積膜
の模式図である。 第7図は本発明の制御格子層の形状の例である。 第8a図および第8a図〜第9f図は本発明の制御格子
層をLB法によって形成する方法を図解的に示す図であ
り、第8b図は形成したパターンを示している。
FIG. 1 is a cross-sectional view of the electric/electronic device element of the present invention.
Figures 2d and 2b are a plan view and a cross-sectional view of the sample prepared in the example. FIG. 3 is an electrical circuit diagram of a measuring instrument used when measuring the amplification characteristics of the present invention. FIG. 4 is a diagram schematically showing a method of forming an organic thin film layer of the present invention by the LB method. Figures 5a and 5b are schematic diagrams of monomolecular films, and Figures 6a, 8b, and 8c are schematic diagrams of cumulative films. FIG. 7 is an example of the shape of the control grid layer of the present invention. 8a and 8a to 9f are views schematically showing a method of forming the control grating layer of the present invention by the LB method, and FIG. 8b shows the formed pattern.

Claims (2)

【特許請求の範囲】[Claims] (1)一対の電極と、該電極間に配置した有機薄膜から
構成される素子において、有機薄膜中に担体である電子
または正孔の流れを制御すると同時に該担体が通過しう
るような形状を持つ制御格子領域を有する事を特徴とす
る電気・電子デバイス素子。
(1) In an element consisting of a pair of electrodes and an organic thin film placed between the electrodes, the organic thin film has a shape that controls the flow of carriers, such as electrons or holes, and at the same time allows the carriers to pass through the organic thin film. An electrical/electronic device element characterized by having a control grid region.
(2)有機薄膜が分子内に親水性部位と疎水性部位とを
有する有機化合物の薄膜であることを特徴とする特許請
求の範囲第一項記載の電気・電子デバイス素子。
(2) The electric/electronic device element according to claim 1, wherein the organic thin film is a thin film of an organic compound having a hydrophilic site and a hydrophobic site within the molecule.
JP63033935A 1988-02-18 1988-02-18 Electric/electronic device element Pending JPH01209767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63033935A JPH01209767A (en) 1988-02-18 1988-02-18 Electric/electronic device element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63033935A JPH01209767A (en) 1988-02-18 1988-02-18 Electric/electronic device element

Publications (1)

Publication Number Publication Date
JPH01209767A true JPH01209767A (en) 1989-08-23

Family

ID=12400368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63033935A Pending JPH01209767A (en) 1988-02-18 1988-02-18 Electric/electronic device element

Country Status (1)

Country Link
JP (1) JPH01209767A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0429296A2 (en) * 1989-11-20 1991-05-29 Taro Hino Dielectric ultra-low resistivity heterofilm
US5284779A (en) * 1989-11-24 1994-02-08 Semiconductor Energy Laboratory Co., Ltd. Method of forming organic charge-transfer thin films
WO2004008545A1 (en) * 2002-07-15 2004-01-22 Pioneer Corporation Organic semiconductor device and method for manufacturing same
JP2004335557A (en) * 2003-04-30 2004-11-25 Ricoh Co Ltd Vertical organic transistor
JP2011054775A (en) * 2009-09-02 2011-03-17 Dainippon Printing Co Ltd Organic transistor, circuit element, and manufacturing method of those
JP4848522B2 (en) * 2005-03-31 2011-12-28 国立大学法人 千葉大学 Organic thin film transistor and semiconductor device using the same
CN109282836A (en) * 2018-08-23 2019-01-29 浙江理工大学 A kind of preparation method of tetrasulfonic acid phenyl manganoporphyrin nanotube-cadmium sulfide nano piece complex light sensitive sensing material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0429296A2 (en) * 1989-11-20 1991-05-29 Taro Hino Dielectric ultra-low resistivity heterofilm
US5284779A (en) * 1989-11-24 1994-02-08 Semiconductor Energy Laboratory Co., Ltd. Method of forming organic charge-transfer thin films
WO2004008545A1 (en) * 2002-07-15 2004-01-22 Pioneer Corporation Organic semiconductor device and method for manufacturing same
JP2004335557A (en) * 2003-04-30 2004-11-25 Ricoh Co Ltd Vertical organic transistor
JP4848522B2 (en) * 2005-03-31 2011-12-28 国立大学法人 千葉大学 Organic thin film transistor and semiconductor device using the same
JP2011054775A (en) * 2009-09-02 2011-03-17 Dainippon Printing Co Ltd Organic transistor, circuit element, and manufacturing method of those
CN109282836A (en) * 2018-08-23 2019-01-29 浙江理工大学 A kind of preparation method of tetrasulfonic acid phenyl manganoporphyrin nanotube-cadmium sulfide nano piece complex light sensitive sensing material
CN109282836B (en) * 2018-08-23 2020-08-11 浙江理工大学 Preparation method of phenylsulfate manganoporphyrin nanotube-cadmium sulfide nanosheet composite photosensitive sensing material

Similar Documents

Publication Publication Date Title
US4939556A (en) Conductor device
EP0272937B1 (en) Switching device
US5359204A (en) Switching device
Metzger Unimolecular electronics
Weiss et al. The study of charge transport through organic thin films: mechanism, tools and applications
JPH01214078A (en) Switching device
JPH01209767A (en) Electric/electronic device element
Umeta et al. Stable Resistance Switching in Lu3N@ C80 Nanowires Promoted by the Endohedral Effect: Implications for Single-Fullerene Motion Resistance Switching
Chen et al. Adsorption of phenacenes on a metallic substrate: Revisited
JPS62222669A (en) Organic thin-film element
CA1333637C (en) Method of driving device having mim structure
US5270965A (en) Method of driving device having metal-insulator-metal(mim)structure
JPS6396956A (en) Switching element
JPH01166555A (en) Semiconductor element
JPS63146464A (en) Semiconductor element
Miura et al. Spherulitic Crystallization in Langmuir–Blodgett Films of the Ditetradecyldimethylammonium-Au (dmit) 2 Salt
JPS63160389A (en) Switching device
JPS6373560A (en) Semiconductor element
JPS63296273A (en) Switching device
JP4639703B2 (en) Electronic device manufacturing method and semiconductor device manufacturing method
JPH01165186A (en) Switching device
JP3235120B2 (en) Molecular arrangement method and apparatus
JP2009032897A5 (en)
US20100243984A1 (en) Live bioelectronic cell gated nanodevice
JPH07121917A (en) Recording medium, manufacture thereof and recording/ reproducing apparatus using the medium