JPH01166555A - Semiconductor element - Google Patents

Semiconductor element

Info

Publication number
JPH01166555A
JPH01166555A JP62326095A JP32609587A JPH01166555A JP H01166555 A JPH01166555 A JP H01166555A JP 62326095 A JP62326095 A JP 62326095A JP 32609587 A JP32609587 A JP 32609587A JP H01166555 A JPH01166555 A JP H01166555A
Authority
JP
Japan
Prior art keywords
semiconductor device
thin film
film
group
element selected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62326095A
Other languages
Japanese (ja)
Inventor
Harunori Kawada
河田 春紀
Kunihiro Sakai
酒井 邦裕
Hiroshi Matsuda
宏 松田
Kiyoshi Takimoto
瀧本 清
Isaaki Kawade
一佐哲 河出
Yuuko Morikawa
森川 有子
Takeshi Eguchi
健 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62326095A priority Critical patent/JPH01166555A/en
Publication of JPH01166555A publication Critical patent/JPH01166555A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To improve thermal stability, durability and workability by alternately laminating a thin organic polymer film and a thin inorganic film on a substrate to construct a periodic laminated structure, and forming the laminated structure in a superlattice structure of the repetition of a heterojunction. CONSTITUTION:A metal (base electrode) 9, a monolayer lamination 10, metal 11, a monolayer lamination 12 and metal (upper electrode) 13 are laminated on a substrate 2 to construct a periodic laminated structure, thin organic polymer films having insulation and thin inorganic films having conductivity or semiconductivity which are alternately laminated have a heterojunction, and the laminated structure has a superlattice structure of the repetition of the heterojunction. With this structure, mechanical strength, solvent resistance and heat resistance are improved, a preferable heterojunction is easily obtained, and the heterojunction is repeated thereby to construct an artificial periodic structure and a superlattice structure having high degree of freedom of materials.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は有機半導体素子に関するものである。[Detailed description of the invention] 〔Technical field〕 The present invention relates to organic semiconductor devices.

更に詳しくは有機高分子及び無機の複合材料によって構
成されるものであり、特に主たる通電方向に対し有機高
分子材料によって形成されるポテンシャル障壁が2回以
上繰り返す超格子構造を有する半導体素子に関する。
More specifically, the present invention relates to a semiconductor element composed of an organic polymer and an inorganic composite material, and particularly to a semiconductor element having a superlattice structure in which a potential barrier formed by an organic polymer material repeats two or more times in the main current direction.

〔背景分野〕[Background field]

近年、半導体技術分野並びに光学技術分野に於いて、加
工特に成膜技術の高精度、高微細化に伴ない、電気的に
も光学的にも極めて良質な半導体ヘテロ接合界面が作ら
れるように至った。係る方法で異なる半導体を層状に積
み重ね、長周期構造をもたせたものは、半導体ヘテロ構
造超格子と呼ばれ、その電子構造に起因する物性(高移
動度、負性抵抗など)が注目を集めており、多くの研究
機関に於いて半導体素子への実用化が試みられている。
In recent years, in the fields of semiconductor technology and optical technology, with the high precision and fineness of processing, especially film formation technology, it has become possible to create semiconductor heterojunction interfaces that are of extremely high quality both electrically and optically. Ta. A structure in which different semiconductors are stacked in layers using this method to create a long-period structure is called a semiconductor heterostructure superlattice, and its physical properties (high mobility, negative resistance, etc.) resulting from its electronic structure have attracted attention. Many research institutes are attempting to put it to practical use in semiconductor devices.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来、上記の如き検討は、取扱いが比較的容易なGaA
sやSiといった無機材料に対象を限って進められてき
た。又、その大半が分子線エピタキシー法によって薄膜
を形成するものであり、そのため製造工程が複雑で、か
つ超高真空や高温などの極端条件下での処理を必要とし
、製造装置自体も大がかりなものとなっている。又、無
機材料である為、素材選択における自由度が低いといっ
た問題点も抱えている。
Conventionally, the above studies have been conducted using GaA, which is relatively easy to handle.
Progress has been limited to inorganic materials such as S and Si. In addition, most of the thin films are formed using molecular beam epitaxy, which means that the manufacturing process is complex and requires processing under extreme conditions such as ultra-high vacuum and high temperatures, and the manufacturing equipment itself is large-scale. It becomes. Furthermore, since it is an inorganic material, there is also the problem that there is a low degree of freedom in material selection.

一方、これに反し有機材料は、安価かつ製造容易であり
機能性に富んでおり、最近脂肪酸9色素等の有機材料を
用いた半導体素子の開発が盛んである。
On the other hand, organic materials, on the other hand, are inexpensive, easy to manufacture, and highly functional, and semiconductor devices using organic materials such as fatty acid 9 dyes have recently been actively developed.

しかしながら、現状では脂肪酸1色素等の低分子有機化
合物を用いて半導体素子を形成した場合、熱安定性、耐
久性、加工性が不充分であるといった問題点を抱えてい
る。
However, at present, when semiconductor elements are formed using low-molecular organic compounds such as fatty acid 1 dyes, there are problems such as insufficient thermal stability, durability, and processability.

従って、本発明は前述の問題点を解消した新規な半導体
素子を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a novel semiconductor device that solves the above-mentioned problems.

〔問題点を解決するための手段及び作用〕本発明者らは
、上述の如き従来の問題点を解消すべ(鋭意研究の結果
、有機高分子材料と無機材料とを積層して得られるヘテ
ロ接合及びヘテロ構造超格子が半導体素子の熱安定性、
耐久性。
[Means and effects for solving the problems] The present inventors have solved the conventional problems as described above (as a result of intensive research, a heterojunction obtained by laminating organic polymeric materials and inorganic materials) has been proposed. and the heterostructure superlattice improves the thermal stability of semiconductor devices,
durability.

加工性の向上及び半導体素子構成要素として極めて有望
であることを見出した。本発明は、一般に高い絶縁性(
又は半絶縁性)を示す有機高分子薄膜と、導電性(又は
半導電性)を有する無機薄膜を交互に積層することで、
ポテンシャル障壁が2、回収玉、好ましくは2〜20回
、特に2〜10回繰返す電気的ポテンシャルの周期構造
を容易に実現できることに着目し、又特に係る周期構造
に於いてその繰り返す幅(有機高分子薄膜の膜厚又は無
機薄膜の膜厚を言う)が極めて小さい場合に、無機材料
のみで形成した従来公知の超格子半導体素子同様、非線
型電流電圧特性等が発現することを期待し、かつその実
現を図ったものである。更に係る特性を用い増幅機能等
を有する新規半導体素子をも実現したものである。尚、
上述した「極めて小さい」は本発明に於いて数Å〜数1
00人の範囲を示すもので、更に望ましくは10Å〜1
00人の範囲を云うものである。
It has been found that it is extremely promising for improving processability and as a component of semiconductor devices. The present invention generally has high insulating properties (
By alternately laminating organic polymer thin films exhibiting conductivity (or semi-insulating) and inorganic thin films exhibiting conductivity (or semi-conductivity),
We focused on the fact that it is possible to easily realize a periodic structure of electric potential in which the potential barrier is 2 and the recovery ball is repeated preferably 2 to 20 times, especially 2 to 10 times, and in particular, the repetition width (organic high We expect that nonlinear current-voltage characteristics, etc., similar to conventionally known superlattice semiconductor devices formed only from inorganic materials will be exhibited when the thickness of the molecular thin film or the thickness of the inorganic thin film is extremely small. This is an attempt to achieve this goal. Furthermore, a new semiconductor element having an amplification function and the like has been realized using such characteristics. still,
In the present invention, the above-mentioned "extremely small" refers to the range of several angstroms to several 1 angstroms.
00 people, more preferably 10 Å to 1
This refers to the range of 00 people.

係る本発明に於いて、適用可能な材料というのは無機薄
膜に於いても有機高分子薄膜に於いても著しく多岐にわ
たる。現在公知の有機高分子材料の殆どは絶縁性若しく
は半絶縁性を示すことから本発明におけるポテンシャル
の障壁を成す材料としての必要条件を満足する。一方、
無機材料も係る有機材料に較べて導電性の高いものは枚
挙にいとまない。Au、  Ag、  Af、  Ni
、  Pt  などの金属や合金、グラファイトやSi
(単結晶、ポリシリコン。
In the present invention, applicable materials are extremely wide-ranging, including inorganic thin films and organic polymer thin films. Since most of the currently known organic polymer materials exhibit insulating or semi-insulating properties, they satisfy the requirements for materials forming potential barriers in the present invention. on the other hand,
There are countless inorganic materials that have higher conductivity than organic materials. Au, Ag, Af, Ni
, Pt and other metals and alloys, graphite and Si
(Single crystal, polysilicon.

アモルファス)やシリサイドにッケルシリサイド。amorphous) and silicide.

パラジウムシリサイド)、GaAs、GaP、CdS。palladium silicide), GaAs, GaP, CdS.

CdBeなどの半導体を始めとして数多くの材料が挙げ
られこれらの本発明への適用が考えられる。
There are many materials including semiconductors such as CdBe, and their application to the present invention can be considered.

■ 特に本発明では、長周期型周期表の■B族から選ばれた
元素(C,Si、Ge)を含む半導体物質、IIB族か
ら選ばれた元素(Ga)とVB族から選ばれた元素(A
s、 P)とを含む半導体物質あるいはIIB族から選
ばれた元素(Cd)とVIB族から選ばれた元素(S。
In particular, in the present invention, semiconductor materials containing elements selected from Group B of the long periodic table (C, Si, Ge), elements selected from Group IIB (Ga), and elements selected from Group VB (A
S, P) or an element selected from Group IIB (Cd) and an element selected from Group VIB (S.

Be)とを含む半導体物質を用いることができる。Semiconductor materials containing Be) can be used.

本発明で用いる有機薄膜と無機薄膜とのヘテロ接合界面
で形成されるバンドギャップは、通常0.1eV〜数e
Vである。
The band gap formed at the heterojunction interface between the organic thin film and the inorganic thin film used in the present invention is usually 0.1 eV to several eV.
It is V.

係る材料を用いた素子形成法としても従来公知の薄膜技
術で充分本発明の目的を達成することができる。特に、
本発明では素子中に有機高分子材料が含まれることから
、300℃以下の条件下で成膜可能な方法を採用するの
が好ましい。例えば、本発明で用いつる好適な無機薄膜
層形成法として真空蒸着法やスパッタリング法をここで
は挙げることができる。一方、有機薄膜層の形成に関し
ては、具体的には蒸着や電解重合などの適用も可能であ
るが、制御性、容易性そして再現性からラングミュアら
が提案したラングミュア・プロジェット法(LB法)が
極めて好適である。
As a method for forming an element using such a material, the object of the present invention can be sufficiently achieved by conventionally known thin film technology. especially,
In the present invention, since the element contains an organic polymer material, it is preferable to employ a method that can form a film under conditions of 300° C. or lower. For example, a vacuum evaporation method and a sputtering method can be cited as suitable inorganic thin film layer forming methods for use in the present invention. On the other hand, regarding the formation of organic thin film layers, it is possible to specifically apply methods such as vapor deposition and electrolytic polymerization, but the Langmuir-Prodgett method (LB method) proposed by Langmuir et al. is extremely suitable.

このLB法によれば、1分子中に疎水性部位と親水性部
位とを有する有機化合物の単分子膜またはその累積膜を
基板上に容易に形成することができ、分子オーダの厚み
を有し、かつ大面積に亙って均一、均質な有機超薄膜を
安定に供給することができる。
According to this LB method, a monomolecular film of an organic compound having a hydrophobic site and a hydrophilic site in one molecule or a cumulative film thereof can be easily formed on a substrate, and has a thickness on the order of a molecule. , and can stably supply a uniform and homogeneous ultra-thin organic film over a large area.

LB法は、分子内に親水性部位と疎水性部位とを有する
構造の分子において、両者のバランス(両親媒性のバラ
ンス)が適度に保たれている時、分子は水面上で親水性
基を下に向けて単分子の層になることを利用して単分子
膜またはその累積膜を作成する方法である。
The LB method is a molecule with a structure that has a hydrophilic site and a hydrophobic site, and when the balance between the two (amphiphilic balance) is maintained appropriately, the molecule has a hydrophilic group on the water surface. This is a method of creating a monomolecular film or a cumulative film thereof by utilizing the fact that the monomolecular layer forms downward.

疎水性部位を構成する基としては一般に広(知られてい
る飽和及び不飽和炭化水素基や縮合多環炭化水素基等の
各種疎水基が挙げられる。これらは各々単独又はその複
数が組合されて疎水性部分を構成する。一方親水性部分
の構成要素として最も代表的なものは、例えばカルボキ
シル基、スルホン酸基及び四級アミノ基等の親水性基等
が挙げられる。
Groups constituting the hydrophobic moiety generally include various hydrophobic groups such as widely known saturated and unsaturated hydrocarbon groups and condensed polycyclic hydrocarbon groups. It constitutes a hydrophobic part.On the other hand, the most typical constituent elements of the hydrophilic part include hydrophilic groups such as carboxyl groups, sulfonic acid groups, and quaternary amino groups.

これらの疎水性基と親水性基をバランス良(併有する分
子であれば、水面上で単分子膜を形成することが可能で
ある。尚、−船内にはこれらの分子は絶縁性の単分子膜
を形成し、よって単分子累積膜も絶縁性を示すことから
本発明に対し極めて好適な材料といえる。
Molecules with a good balance of these hydrophobic groups and hydrophilic groups can form a monolayer on the water surface. Since a monomolecular cumulative film also exhibits insulating properties, it can be said to be an extremely suitable material for the present invention.

下記の如き分子等が挙げられる。Examples include the following molecules.

(1)付加重合体 1)ポリアクリル酸 V皿 2)ポリアクリル酸エステル R。(1) Addition polymer 1) Polyacrylic acid V plate 2) Polyacrylic acid ester R.

3)アクリル酸コポリマー 卜! 4)アクリル酸エステルコポリマー 5)ポリビニルアセテート ぜ1 OCOCR。3) Acrylic acid copolymer Boku! 4) Acrylic ester copolymer 5) Polyvinyl acetate Ze1 OCOCR.

6)酢酸ビニルコポリマー Vl 〔u〕縮合重合体 3)ポリカーボネート (III]開環重合体 l)ポリエチレンオキシド −1−0−CH−CH2−)− ここでR1は前述のσ電子準位をもつ群に相当したもの
で、しかも水面上で単分子膜を形成しやすくするために
導入された長鎖アルキル基で、その炭素数nは5≦n≦
30が好適である。
6) Vinyl acetate copolymer Vl [u] Condensation polymer 3) Polycarbonate (III) Ring-opening polymer l) Polyethylene oxide -1-0-CH-CH2-)- Here, R1 is a group having the above-mentioned σ electron level It is a long-chain alkyl group introduced to facilitate the formation of a monomolecular film on the water surface, and its carbon number n is 5≦n≦
30 is preferred.

またR2は短鎖アルキル基であり、炭素数nはl≦n<
4である。重合度mは、too<m<5000が好適で
ある。
Further, R2 is a short-chain alkyl group, and the number of carbon atoms n is l≦n<
It is 4. The degree of polymerization m is preferably too<m<5000.

以上具体例として挙げた化合物は基本構造のみであり、
これら高分子の種々な置換体も本発明に於いて好適であ
ることは言うにおよばない。
The compounds mentioned above as specific examples are only basic structures,
Needless to say, various substituted forms of these polymers are also suitable in the present invention.

尚、上記以外でもLB法に適している高分子材料であれ
ば、本発明に好適なのは言うまでもない。
It goes without saying that any polymer material other than those mentioned above is suitable for the present invention as long as it is suitable for the LB method.

例えば近年研究が盛んになりつつある生体材料(例えば
バクテリオロドプシンやチトクロームC)や合成ポリペ
プチド(PBLGなど)等も適用が可能である。係る両
親媒性の分子は水面上で親水基を下に向けて単分子の層
を形成する。このとき、水面上の単分子層は二次元系の
特徴を有し、分子がまばらに散開しているときは、一分
子当り面積Aと表面圧πとの間に二次元理想気体の式、
π A=kT が成り立ち、“気体膜”となる。ここに、kはポルツマ
ン定数、Tは絶対温度である。Aを十分小さくすれば分
子間相互作用が強まり、二次元固体の“凝縮膜(または
固体膜)”になる。凝縮膜はガラスや樹脂の如き種々の
材質や形状を有する任意の物体の表面へ一層ずつ移すこ
とができる。この方法を用いて、単分子膜またはその累
積膜を形成し、これを本発明が示す半導体素子用のポテ
ンシャル障壁層として使用することができる。
For example, biological materials (such as bacteriorhodopsin and cytochrome C) and synthetic polypeptides (such as PBLG), which have been actively researched in recent years, can also be applied. Such amphiphilic molecules form a monomolecular layer on the water surface with the hydrophilic groups facing downward. At this time, the monomolecular layer on the water surface has the characteristics of a two-dimensional system, and when the molecules are sparsely dispersed, the two-dimensional ideal gas equation is expressed between the area A per molecule and the surface pressure π.
π A=kT holds true, resulting in a "gas film". Here, k is Portzmann's constant and T is absolute temperature. If A is made sufficiently small, the intermolecular interaction becomes stronger, resulting in a two-dimensional solid "condensation film (or solid film)." The condensed film can be transferred layer by layer onto the surface of arbitrary objects having various materials and shapes, such as glass and resin. Using this method, a monomolecular film or a cumulative film thereof can be formed and used as a potential barrier layer for a semiconductor device according to the present invention.

具体的な製法としては、例えば、以下に示す方法を挙げ
ることができる。
As a specific manufacturing method, for example, the method shown below can be mentioned.

所望の有機化合物をクロロホルム、ベンゼン、アセトニ
トリル、ジメチルアセトアミド等の溶剤に溶解させる。
The desired organic compound is dissolved in a solvent such as chloroform, benzene, acetonitrile, dimethylacetamide, or the like.

次に添付図面の第3図に示す如き適当な装置を用いて、
係る溶液を水相l上に展開させて有機化合物の展開層1
1を膜状に形成させる。
Then, using a suitable device as shown in Figure 3 of the accompanying drawings,
The solution is developed on an aqueous phase 1 to form a developed layer 1 of an organic compound.
1 is formed into a film.

次にこの展開層11が水相l上を自由に拡散して広がり
すぎないように仕切板(または浮子)3を設け、展開層
11の面積を制限して膜物質の集合状態を制御し、その
集合状態に比例した表面圧πを得る。この仕切板3を動
かし、展開層11の面積を縮小して膜物質の集合状態を
制御し、表面圧を徐々に上昇させ、膜の製造に適する表
面圧πを設定することができる。この表面圧を維持しな
がら、静かに清浄な基板2を垂直に上昇または下降させ
ることにより有機化合物の単分子膜4が基板2上に移し
取られる。このような単分子膜4は第4図(a)または
第4図(b)に模式的に示す如く分子が秩序正しく配列
した膜である。
Next, a partition plate (or float) 3 is provided to prevent this spread layer 11 from freely diffusing and spreading too much on the aqueous phase l, and the area of the spread layer 11 is restricted to control the aggregation state of the film substance. Obtain the surface pressure π proportional to the collective state. By moving the partition plate 3, the area of the spread layer 11 is reduced to control the state of aggregation of the film material, gradually increasing the surface pressure, and setting the surface pressure π suitable for film production. While maintaining this surface pressure, the monomolecular film 4 of the organic compound is transferred onto the substrate 2 by gently raising or lowering the clean substrate 2 vertically. Such a monomolecular film 4 is a film in which molecules are arranged in an orderly manner as schematically shown in FIG. 4(a) or FIG. 4(b).

単分子膜4は以上で製造されるが、前記の操作を繰り返
すことにより所望の累積数の累積膜が形成される。単分
子膜を基板上に移すには、上述した垂直浸漬法の他、水
平付着法、回転円筒法等の方法でも可能である。
The monomolecular film 4 is manufactured as described above, and by repeating the above operations, a desired cumulative number of films can be formed. In addition to the above-mentioned vertical dipping method, methods such as a horizontal deposition method and a rotating cylinder method can also be used to transfer the monomolecular film onto a substrate.

水平付着法は、基板2を水面に水平に接触させて単分子
膜4を移しとる方法であり、回転円筒法は円筒形の基板
2を水面上を回転させて単分子膜4を基板2の表面に移
しとる方法である。
The horizontal deposition method is a method in which the monomolecular film 4 is transferred by bringing the substrate 2 into horizontal contact with the water surface, and the rotating cylinder method is a method in which the cylindrical substrate 2 is rotated on the water surface to transfer the monomolecular film 4 onto the substrate 2. This is a method of transferring it to the surface.

前述した垂直浸漬法では、表面が親水性である基板2を
水面を横切る方向に水中から引き上げると有機化合物の
親水性基が基板2の側に向いた有機化合物の単分子膜4
が基板2の上に形成される(第4図−b−)。前述のよ
うに基板2を上下させると、各行程ごとに一枚ずつ単分
子膜4が積み重なって累積膜5が形成される。成膜分子
の向きが引上行程と浸漬行程で逆になるので、この方法
によると単分子膜4の各層間は有機化合物の疎水基と疎
水基が向かいあうY側膜が形成される(第5図−a−)
In the above-mentioned vertical immersion method, when the substrate 2 having a hydrophilic surface is lifted out of water in a direction across the water surface, a monomolecular film 4 of an organic compound is formed with the hydrophilic groups of the organic compound facing toward the substrate 2.
is formed on the substrate 2 (FIG. 4-b). When the substrate 2 is moved up and down as described above, the monomolecular films 4 are stacked one by one in each step, forming a cumulative film 5. Since the direction of the film-forming molecules is reversed between the pulling process and the dipping process, this method forms a Y-side film in which the hydrophobic groups of the organic compound face each other between each layer of the monomolecular film 4 (the fifth Figure-a-)
.

これに対し、水平付着法は、有機化合物の疎水性基が基
板2の側に向いた単分子膜4が基板2の上に形成される
(第4図−a−)。この方法では、単分子膜4を累積し
ても成膜分子の向きの交代はなく全ての層において、疎
水性基が基板2の側に向いたX型膜が形成される(第5
図−b−)。反対に全ての層において親水性基が基板2
の側に向いた累積膜5はZ型膜と呼ばれる(第5図−c
−)。
On the other hand, in the horizontal deposition method, a monomolecular film 4 with the hydrophobic groups of the organic compound facing the substrate 2 is formed on the substrate 2 (FIG. 4-a). In this method, even if the monomolecular film 4 is accumulated, there is no change in the direction of the film-forming molecules, and an X-shaped film is formed in which the hydrophobic groups face the substrate 2 in all layers (No. 5
Figure-b-). On the contrary, in all layers the hydrophilic groups are connected to the substrate 2.
The cumulative film 5 facing the side is called a Z-type film (Fig. 5-c)
-).

単分子膜4を基板2の上に移す方法は、上記方法に限定
されるわけではな(、大面積基板を用いる時には、ロー
ルから水相中に基板2を押し出していく方法なども採り
得る。また、前述した親水性基および疎水性基の基板2
への向きは原則であり、基板2の表面処理等によって変
えることもできる1、以上の如くして有機化合物の単分
子膜4またfツその累積膜5からなるポテンシャル障壁
層が基板」・に形成される。
The method of transferring the monomolecular film 4 onto the substrate 2 is not limited to the above method (when a large-area substrate is used, a method of extruding the substrate 2 from a roll into an aqueous phase may also be adopted). In addition, the substrate 2 of the hydrophilic group and hydrophobic group described above
As a general rule, the direction toward the substrate 2 can be changed by surface treatment of the substrate 2, etc. 1. As described above, the potential barrier layer consisting of the monomolecular film 4 of the organic compound or the cumulative film 5 of the organic compound is directed to the substrate. It is formed.

本発明において、上記の如き無機及び有機材(:が積層
された薄膜を支持するための基板2は、金属、。
In the present invention, the substrate 2 for supporting the thin film laminated with the above-mentioned inorganic and organic materials is metal.

ガラス、セラミックス、プラスチック材料等いず′J:
の材料でもよく、更に耐熱性の著しく低い生体材ネ“1
も使用できる。
Glass, ceramics, plastic materials, etc.:
Furthermore, biomaterials with extremely low heat resistance “1” may be used.
can also be used.

上記の如き基板2は、任意の形状でよく、平板朴である
のが好ましいが、平板に何ら限定されない。
The substrate 2 as described above may have any shape, preferably a flat plate, but is not limited to a flat plate at all.

すなわち前記成膜法においては、基板2の表面がいかな
る形状であってもその形状通りに膜を形j、Qし得る利
点を有するからである。
That is, the above-mentioned film forming method has the advantage that the film can be shaped according to the shape of the surface of the substrate 2, regardless of the shape.

〔実施例1〕 以下に示す手順で金属(下地電極)9層単分子累積膜1
0/金属11/単分子累積膜12/金属(上部電極)1
3の構造を有する試料(第1図)を作成した。尚このと
き中間の金属層11をはさむ両側の単分子累積膜10と
12の層数は等しくした(図中、41と42は取出し電
極を表わす)。まず、ヘキサメチルジシラザン(HMD
S )の飽和蒸気中に一昼夜放置して疎水処理したガラ
ス基板(コーニング社製#7059)上に下引き層とし
てCrを真空蒸着法により厚さ500人堆積させ、更に
Auを同法により蒸着(膜厚1000人)し、幅1mm
のストライブ状の下地電極を形成した。係る基板を担体
としてLB法によりポリイミド累積膜を作成し10を形
成した。
[Example 1] A 9-layer monomolecular cumulative film 1 of metal (base electrode) was prepared by the following procedure.
0/Metal 11/Single molecule cumulative film 12/Metal (upper electrode) 1
A sample (Fig. 1) having the structure No. 3 was prepared. At this time, the number of layers of the monomolecular cumulative films 10 and 12 on both sides sandwiching the intermediate metal layer 11 was made equal (in the figure, 41 and 42 represent extraction electrodes). First, hexamethyldisilazane (HMD
Cr was deposited to a thickness of 500 mm as an undercoat layer by vacuum evaporation method on a glass substrate (#7059 manufactured by Corning Inc.) which had been hydrophobically treated by leaving it in saturated steam of S2 for one day and night, and then Au was deposited by the same method ( Film thickness: 1000), width: 1mm
A striped base electrode was formed. A polyimide cumulative film 10 was formed by the LB method using such a substrate as a carrier.

次に累積膜作成法の詳細を記す。Next, details of the cumulative film production method will be described.

ポリアミック酸(分子量約20万)を濃度I X 10
−”%(vol/vol)で溶かしたジメチルアセトア
ミド溶液を純水、水温20℃の水相上に展開し、水面上
に単分子膜を形成した。この単分子膜の表面圧を25 
m N / mまで高め、更にこれを一定に保ちながら
、前記基板を水面に横切る方向に5mm/minで浸漬
、引き上げを行い、Y型単分子膜の累積を行った。係る
操作を繰り返すことにより18.24.30゜36、4
0層の5種類の累積膜を形成した。更にこれらの膜を3
00℃で10分加熱を行うことによりポリイミドにした
。次に係る膜面上にドツト状のパターンのAu(直径l
φ、膜厚80人)を蒸着し中間金属層11を形成した。
Polyamic acid (molecular weight approximately 200,000) at a concentration of I x 10
-''% (vol/vol) dimethylacetamide solution was spread on an aqueous phase of pure water at a water temperature of 20°C to form a monomolecular film on the water surface.The surface pressure of this monomolecular film was set to 25%.
mN/m, and while keeping this constant, the substrate was immersed and pulled up at 5 mm/min in the direction across the water surface to accumulate a Y-type monomolecular film. By repeating such operations, 18.24.30°36,4
Five types of cumulative films with zero layers were formed. Furthermore, these films are
Polyimide was obtained by heating at 00°C for 10 minutes. Next, a dot-like pattern of Au (diameter l) was formed on the film surface.
The intermediate metal layer 11 was formed by vapor-depositing φ, film thickness: 80 mm).

次にポリイミド累積膜を前記と全(同じ方法でそれぞれ
18.24.30.36゜40層累積(累積膜12)シ
、更に上部電極13としてAu(直径2φ、膜厚100
0人)を蒸着した。
Next, a polyimide cumulative film was formed as above (18, 24, 30, 36°, 40 layers (cumulative film 12) in the same manner), and then Au (diameter 2φ, film thickness 100) was used as the upper electrode 13.
0 people) were deposited.

以上の様にして作成した試料をクライオスタット(真空
容器)中に設置し、低温(77°K)下で上下電極間に
電圧を印加したときの電流特性(1特性)を測定した。
The sample prepared as described above was placed in a cryostat (vacuum container), and current characteristics (1 characteristic) were measured when a voltage was applied between the upper and lower electrodes at low temperature (77°K).

その結果、単分子累積膜か18層及び24層の試料のV
I特性に於いて、1〜2ボルト付近に極大を待つ上に、
凸の特性曲線が観察され、係る試料が負性抵抗を示すこ
とが確認された。第2図は、単分子累積膜が4層の試料
勺用いた時のV■特性を明らかにしている。
As a result, the V of monomolecular cumulative film, 18-layer and 24-layer samples
In the I characteristic, in addition to waiting for the maximum around 1 to 2 volts,
A convex characteristic curve was observed, confirming that the sample exhibited negative resistance. FIG. 2 clarifies the V■ characteristics when a sample with four monomolecular cumulative layers is used.

〔実施例2〜6〕 実施例1と同様の構造を有する試料を作成した1゜この
とき単分子累積膜(ポテンシャル障壁層)の構成分子に
は下記に示す1または2を用いた。単分子膜の形成及び
その累積条件及び工程は表面圧を15 m N / m
としたことと、累積速度を3mm/minとしたこと以
外は実施例1と全く同じとした。但し金属層によって挟
まれる各層10としてはそれぞれ4層、8層の累積膜と
した。
[Examples 2 to 6] Samples having the same structure as in Example 1 were prepared. At this time, molecules 1 or 2 shown below were used as constituent molecules of the monomolecular cumulative film (potential barrier layer). The formation of a monolayer and its cumulative conditions and processes are such that the surface pressure is 15 mN/m.
The procedure was exactly the same as in Example 1 except that the cumulative speed was 3 mm/min. However, each layer 10 sandwiched between the metal layers was a cumulative film of 4 layers and 8 layers, respectively.

↓  ポリイソブチルメタクリレート(分子量約50万
)H3 鳶 \ H3 2ポリ−α−n−ヘキサデシルアクリル酸(分子量約3
0万)O2H また、下地電極9及び上電極13も実施例1と全(同様
にして形成した。
↓ Polyisobutyl methacrylate (molecular weight approx. 500,000) H3 Tobi\ H3 2 Poly-α-n-hexadecyl acrylic acid (molecular weight approx. 3
00,000) O2H Further, the base electrode 9 and the upper electrode 13 were also formed in the same manner as in Example 1.

単分子累積膜に、挟まれる中間の金属層11には試料毎
にそれぞれA7!、 Au、 NiとPtを用いた。
The intermediate metal layer 11 sandwiched between the monomolecular cumulative films has A7! for each sample. , Au, Ni and Pt were used.

但し膜厚は全て50人とし、その形成法は下表中に示す
方法を用いた。係る形成法はいずれも従来公知であり、
かつすでに確立されている技術であることから、その手
順等に関しての詳細な説明は省く。
However, the thickness of each film was 50, and the method shown in the table below was used for forming the film. All such formation methods are conventionally known,
Since this technology is already established, a detailed explanation of its procedures will be omitted.

但し本発明に於いて留意すべき条件等は下記に示す。However, conditions to be kept in mind in the present invention are shown below.

イ、AA(スパッタリング法);実施例5具体的にはマ
グネトロンスパッタ法を用い膜への損傷を低減させた。
B. AA (sputtering method); Example 5 Specifically, a magnetron sputtering method was used to reduce damage to the film.

Ar正ビイオン用い、ガス圧2X10−3Torr、タ
ーゲット電圧250vとし、成膜速度が2人/secと
なる様ターゲット電流を調整した。
Ar positive bioions were used, the gas pressure was 2×10 −3 Torr, the target voltage was 250 V, and the target current was adjusted so that the film formation rate was 2 persons/sec.

口、Pt(電子ビーム法);実施例6 ターゲツト(Pt20φ10t)加熱時に、他の金属に
較べて極めてスプラッシュ(粒状になって飛ぶ)が生じ
易い為、電子ビーム出力を絞り、成膜速度を0.05人
/Sまで下げる必要があった。
Pt (electron beam method); Example 6 When heating the target (Pt20φ10t), splashes (flying in the form of particles) are more likely to occur than with other metals, so the electron beam output was reduced and the film formation rate was reduced to 0. It was necessary to lower the number to .05 people/S.

以上の様にして作成した試料に関し、実施例1と同様に
してVl特性の測定を行った処、以下の表に示す結果を
得た。
Regarding the samples prepared as described above, the Vl characteristics were measured in the same manner as in Example 1, and the results shown in the table below were obtained.

2     I    AI!  抵抗加熱(蒸着)法
    03    2    N i      /
IQ4     //    A 7!、、     
    05     ”    Aj7  スパッタ
リング法     06    〃   Pt 電子ビ
ーム加熱(蒸着)法  △表中、O印で示した様にほと
んどの試料に関し負性抵抗性が認められた。又、負性抵
抗を示す電圧はいずれの試料に於いても数ボルト程度で
あるのは、異なる試料に於いても各層の膜厚等の構造パ
ラメータがほぼ等しい為と考える。但し、実施例6に於
いて、同一条件で作成した12個の試料中食性抵抗が認
められたのはわずかに2点を、顕著な負性抵抗は観察さ
れなかった(表中△印で示した)。
2 I AI! Resistance heating (vapor deposition) method 03 2 N i /
IQ4 // A 7! ,,
05 ” Aj7 Sputtering method 06 〃 Pt Electron beam heating (evaporation) method △As indicated by O in the table, negative resistance was observed for most of the samples. The reason why the voltage is about several volts in the samples is considered to be because the structural parameters such as the film thickness of each layer are almost the same even in different samples.However, in Example 6, the 12 samples made under the same conditions Corrosion resistance was observed in only two samples, and no significant negative resistance was observed (indicated by △ in the table).

これは、Ptに於いては50人程度の均一な薄膜を得る
のが難しかったことに起因すると考えられる。
This is considered to be due to the fact that it was difficult to obtain a uniform thin film of approximately 50 layers for Pt.

〔実施例7〕 実施例4で作成した試料の1つを選び、第6図に示す電
気回路を構成した。第6図中61が2端子素子を形成す
る試料であり、62は直流バイアス用電圧源Vo、63
は入力信号源V、。で、詳しくは低周波発振器を用いた
。又64は負荷抵抗で、金属被膜型300Ωの抵抗体を
用いた。尚、係る負荷抵抗に発生する電位をその両端に
接続したオシロスコープ(入力抵抗IMΩ)にて観察し
た。
[Example 7] One of the samples prepared in Example 4 was selected, and an electric circuit shown in FIG. 6 was constructed. In FIG. 6, 61 is a sample forming a two-terminal element, 62 is a DC bias voltage source Vo, and 63 is a sample forming a two-terminal element.
is the input signal source V,. In detail, a low frequency oscillator was used. Further, 64 is a load resistor, which is a metal film type resistor of 300Ω. Note that the potential generated in the load resistance was observed with an oscilloscope (input resistance IMΩ) connected to both ends thereof.

まず、入力信号源vIn14の出力を零としておき、試
料61が負性抵抗を示す電圧、具体的には2.2vとな
る様に直流バイアス用電圧源VB13を設定した。孫子
後に、入力信号源V In 63に波高値50mV。
First, the output of the input signal source vIn14 was set to zero, and the DC bias voltage source VB13 was set to a voltage at which the sample 61 exhibited negative resistance, specifically, 2.2V. After Sun Tzu, the input signal source V In 63 has a peak value of 50 mV.

周波数IKHzの正弦波を印加したところ、抵抗体64
の両端に同じ(1KHzの、波高値約85 m Vの正
弦波が得られた。すなわち、係る試料61が増幅素子と
して機能することが示された。
When a sine wave with a frequency of IKHz was applied, the resistor 64
The same (1 KHz) sine wave with a peak value of about 85 mV was obtained at both ends of the sample 61. In other words, it was shown that the sample 61 functions as an amplification element.

尚、周波数をI M Hzまで変化させた限りに於いて
はその増幅率はほとんど変化しなかった。
Incidentally, as long as the frequency was changed up to I MHz, the amplification factor hardly changed.

〔実施例8〕 実施例4と全く同様の構成の試料を作成した。[Example 8] A sample having exactly the same configuration as in Example 4 was prepared.

但し、この時単分子累積膜で挟まれる中間金属層11に
外部取出し電極を設けた。具体的には第7図に示す素子
構成を行った。これは金属蒸着時のマスクパターンを取
り換えるだけで他は実施例4と全(同一の方法で形成し
得た。
However, at this time, an external lead electrode was provided on the intermediate metal layer 11 sandwiched between the monomolecular stacked films. Specifically, the device configuration shown in FIG. 7 was made. This could be formed by the same method as in Example 4, except that the mask pattern during metal vapor deposition was replaced.

次に係る試料に於いて上部電極13、中間電極11と下
部電極9をそれぞれに対し領域7、72.73に於いて
プローブを立てコンタクトを取った。このとき特に領域
72に於いては単分子累積膜層をつき破る様、プローブ
を強く(針圧>50mg)押しっけてコンタクトを取っ
た。更に係るプローブに電流計81、バイアス電圧VB
用直流電源62、信号源V in用直流電流6βを接続
し、第8図に示す電気回路を組み立てた。次に、信号源
V in用直流電源63の出力をOvに保ったまま、電
流が最も流れる様にバイアス電圧VB用直流電源62の
出力を設定した。
Next, in the sample, probes were set up in areas 7 and 72.73 to make contact with the upper electrode 13, intermediate electrode 11, and lower electrode 9, respectively. At this time, in particular in region 72, contact was made by pushing the probe strongly (needle force > 50 mg) so as to break through the monomolecular cumulative film layer. Further, the probe includes an ammeter 81 and a bias voltage VB.
The electric circuit shown in FIG. 8 was assembled by connecting the direct current power supply 62 for signal source V in and the direct current 6β for signal source Vin. Next, while keeping the output of the DC power source 63 for signal source V in at Ov, the output of the DC power source 62 for bias voltage VB was set so that the maximum current flows.

このときVBは、およそ、4=−4であった。At this time, VB was approximately 4=-4.

以下の様にして得た条件下でV Inを250mVずつ
変化させたときの回路に流れる1電流を測定した処、第
9図で示す様な結果が得られた。この結果は、係る3端
子素子が電圧制御型電流増幅素子として機能することを
示している。もちろん印加する電圧によって電流量を大
きく変化させていることからスイッチング素子としての
応用も可能であることを示している。
When the current flowing through the circuit was measured when V In was varied by 250 mV under the conditions obtained as follows, the results shown in FIG. 9 were obtained. This result shows that the three-terminal element functions as a voltage-controlled current amplification element. Of course, the amount of current varies greatly depending on the applied voltage, indicating that it can also be applied as a switching element.

〔実施例9〕 実施例8の上、下の電極に挟まれる領域に於いて、ポテ
ンシャル障壁層(実施例8では単分子累積膜を用いた)
が2回以上、具体的には本実施例では4回繰り返す構造
を有する3端子素子を作成した。断面構造の概略を第1
0図(c)に示す。下地金属層9及び上部金属層13並
びに単分子累積膜10a、  10b。
[Example 9] In the region sandwiched between the upper and lower electrodes of Example 8, a potential barrier layer (a monomolecular cumulative film was used in Example 8)
A three-terminal element having a structure in which the process is repeated two or more times, specifically, four times in this example, was created. The first outline of the cross-sectional structure
This is shown in Figure 0 (c). Base metal layer 9, upper metal layer 13, and monomolecular cumulative films 10a, 10b.

10c、12、中間金属層11a、llb、llcとも
に実施例8と同様の条件で形成した。但し単分子累積膜
層/金属層の成膜を3回繰り返した後、最上の単分子累
積膜層を形成した。又、中間金属層とのコンタクトを確
実なものとする為に単分子累積膜を含む積層膜の一部を
剥離(剥離部101)L、更に同領域に取出電極用金属
100aと1o00bを注入する方法をとった。その様
子、手順を第10図a。
10c, 12, and intermediate metal layers 11a, llb, and llc were formed under the same conditions as in Example 8. However, after repeating the formation of the monomolecular cumulative film layer/metal layer three times, the uppermost monomolecular cumulative film layer was formed. In addition, in order to ensure contact with the intermediate metal layer, a part of the laminated film including the monomolecular cumulative film is peeled off (peeled part 101) L, and lead-out electrode metals 100a and 1o00b are injected into the same area. I took a method. The situation and procedure are shown in Figure 10a.

bとCに示す。具体的には、所望の形状を有したM。Shown in b and c. Specifically, M having a desired shape.

製のマスク(t=0.1)を試料に密着させ、これをガ
ス導入口と電子ビーム蒸発源を併せ持つ高周波イオンブ
レーティング装置真空容器内に設置し、Arガス(ガス
圧5X10−”Torr)を導入、高周波電力(13、
56M Hz 、  12 W )を印加し、得られた
Ar”イオンビーム102を100eVで加速し、試料
上方から10分間照射してマスクで覆われていない領域
をエツチングした。尚、基板温度は室温とした。更に試
料を真空容器から取り出さずに再び容器中を真空に保ち
(2x10−’Torr)、今度は電子ビーム蒸着源を
用いてエミッション電流600mA。
A manufactured mask (t = 0.1) was placed in close contact with the sample, and this was placed in a vacuum chamber of a high-frequency ion brating device that has both a gas inlet and an electron beam evaporation source. Introduced high frequency power (13,
The resulting Ar'' ion beam 102 was accelerated at 100 eV and irradiated from above the sample for 10 minutes to etch the area not covered by the mask.The substrate temperature was set at room temperature. Furthermore, without taking out the sample from the vacuum container, the inside of the container was kept in vacuum again (2 x 10-'Torr), and this time an emission current of 600 mA was applied using an electron beam evaporation source.

加速電圧10KVの条件下でAI!を蒸着(膜厚500
人)を行った。上部電極の形成はこの後行った。
AI under the condition of acceleration voltage 10KV! evaporated (thickness: 500
person). After this, the upper electrode was formed.

以上の様にして得た素子に関し実施例8と全く同様にし
て一定バイアスJでの電流電圧特性を観察したところ、
増幅機能を有していることが確かめられた。
Regarding the device obtained as described above, the current-voltage characteristics at a constant bias J were observed in exactly the same manner as in Example 8.
It was confirmed that it has an amplification function.

以上述べてきた実施例中ではポテンシャル障壁層の形成
にLB法を使用してきたが、極めて薄(均一な絶縁性あ
るいは半導電性の有機薄膜が作成できる成膜法であれば
LB法に限らず使用可能である、具体的には真空蒸着法
や電界重合法、CVD法等が挙げられ、使用可能な有機
材料の範囲が広がる。
In the examples described above, the LB method was used to form the potential barrier layer, but the LB method is not limited to any film formation method that can create an extremely thin (uniform insulating or semiconductive organic thin film). Specific examples of methods that can be used include vacuum evaporation, electrolytic polymerization, and CVD, expanding the range of usable organic materials.

又、ポテンシャル障壁に囲まれる導電層に関しても既に
述べている様に、有機薄膜層上に均一な薄膜を作成しう
る成膜法であれば使用可能であり、真空蒸着法やスパッ
タ法に限られるものではない。
In addition, as already mentioned for the conductive layer surrounded by potential barriers, any film formation method that can create a uniform thin film on the organic thin film layer can be used, and is limited to vacuum evaporation and sputtering. It's not a thing.

更に基板材料や3の形状も本発明は何ら限定するもので
はない。
Further, the present invention does not limit the material of the substrate or the shape of 3 in any way.

〔発明の効果〕〔Effect of the invention〕

■ 有機材料に高分子を用いているため、機械強度・耐
溶剤性・耐熱性に優れている。
■ Because it uses polymer as an organic material, it has excellent mechanical strength, solvent resistance, and heat resistance.

■ 無機材料、有機高分子材料を交互に積層することに
より極めて急俊な組成変化を有する良好なヘテロ接合が
容易に得られた。
(2) By alternately laminating inorganic materials and organic polymer materials, a good heterojunction with extremely rapid compositional changes was easily obtained.

■ 係るヘテロ接合を繰り返すことで人工的な周期構造
及び超格子構造を構築し得た。このとき従来の無機材料
のみからなる超格子素子に較べ材料の自由度が高いこと
を示した。
■ Artificial periodic structures and superlattice structures could be constructed by repeating such heterojunctions. At this time, it was shown that the material has a higher degree of freedom than conventional superlattice elements made only of inorganic materials.

■ 単分子膜の累積によって有機高分子材料層を形成す
る方法とした為、分子オーダ(数Å〜数十人)による膜
厚制御が容易に実現できた。
■ Since the organic polymer material layer is formed by accumulating monomolecular films, film thickness control on the order of molecules (several angstroms to tens of angstroms) can be easily achieved.

制御性が優れている為、素子を形成した時再現性が高く
、また生産性に富む。
Since it has excellent controllability, it has high reproducibility when forming elements and is highly productive.

■ 以上の結果、超格子構造を有する素子に於いて、所
望の非線型電流電圧特性(負性抵抗)が観察された。
(2) As a result, desired nonlinear current-voltage characteristics (negative resistance) were observed in the device having a superlattice structure.

■ 無機材料、有機高分子材料のヘテロ接合を有する新
規な2端子並びに3端子素子を提案し、更に係る素子に
於いて、増幅特性、スイッチング特性が得られることを
示した。
(2) We proposed new two-terminal and three-terminal devices having heterojunctions of inorganic and organic polymeric materials, and furthermore showed that such devices can provide good amplification and switching characteristics.

■ 係る素子は、従来の無機材料のみからなる超格子素
子に比べ高温等の極端条件下での処理を必要としないた
め、将来分子エレクトロニクス、バイオエレクトロニク
ス等、生体との親和性の高い素子が提供しうる。
■ Since such devices do not require processing under extreme conditions such as high temperatures compared to conventional superlattice devices made only of inorganic materials, devices with high affinity with living organisms such as molecular electronics and bioelectronics will be provided in the future. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体素子の断面図で、第2図はその
VI特性を示す特性図である。 第3図は本発明のポテンシャル障壁層をLB法によって
形成する方法を図解的に示す図である。 第4図(a)及び(b)は単分子膜の模式図であり、第
5図(a)、(b)及び(c)は累積膜の模式図である
。 第6図は本発明のVl特性を測定した時に用いた測定器
の電気回路図である。 第7図(a)は本発明の別の半導体素子の平面図で、第
7図(b)はそのA −A’断面図で、第8図はその半
導体素子のvB特性を測定した時に用いた測定器の電気
回路図で、第9図はその時のVl特性を示す特性図であ
る。 第1O図(a)、 (b)及び(c)は本発明の別の半
導体素子を作成するプロセスを示す断面図である。 印加ε圧 活3図 躬5 間 (cL) (bン (Q〕 第8図 啼vryt、反Vin
FIG. 1 is a sectional view of a semiconductor device of the present invention, and FIG. 2 is a characteristic diagram showing its VI characteristics. FIG. 3 is a diagram schematically showing a method of forming the potential barrier layer of the present invention by the LB method. FIGS. 4(a) and (b) are schematic diagrams of a monomolecular film, and FIGS. 5(a), (b), and (c) are schematic diagrams of a cumulative film. FIG. 6 is an electrical circuit diagram of a measuring instrument used when measuring the Vl characteristics of the present invention. FIG. 7(a) is a plan view of another semiconductor device of the present invention, FIG. 7(b) is a cross-sectional view taken along line A-A', and FIG. 8 is a plan view of another semiconductor device of the present invention. FIG. 9 is a characteristic diagram showing the Vl characteristics at that time. FIGS. 1O (a), (b) and (c) are cross-sectional views showing a process for producing another semiconductor device of the present invention. Application ε pressure activation 3 Figure 5 Between (cL) (bn (Q) Figure 8 vryt, anti-Vin

Claims (21)

【特許請求の範囲】[Claims] (1)基体と、有機高分子薄膜と無機薄膜を交互に積層
した周期積層構造体とを有することを特徴とする半導体
素子。
(1) A semiconductor device comprising a substrate and a periodic laminated structure in which organic polymer thin films and inorganic thin films are alternately laminated.
(2)有機高分子薄膜と無機薄膜とがヘテロ接合を有し
ており、前記周期積層構造体がヘテロ接合の繰返しによ
る超格子構造を形成している特許請求の範囲第1項記載
の半導体素子。
(2) The semiconductor device according to claim 1, wherein the organic polymer thin film and the inorganic thin film have a heterojunction, and the periodic stacked structure forms a superlattice structure by repeating the heterojunctions. .
(3)前記有機高分子薄膜が絶縁性を有しているととも
に、前記無機薄膜が導電性又は半導電性を有している特
許請求の範囲第1項又は第2項記載の半導体素子。
(3) The semiconductor device according to claim 1 or 2, wherein the organic polymer thin film has insulating properties, and the inorganic thin film has conductivity or semiconductivity.
(4)前記周期積層構造体が一対の電極間に配置されて
いる特許請求の範囲第1項記載の半導体素子。
(4) The semiconductor device according to claim 1, wherein the periodic laminated structure is arranged between a pair of electrodes.
(5)前記無機薄膜が蒸着法又はスパッタリング法によ
って形成した薄膜である特許請求の範囲第1項記載の半
導体素子。
(5) The semiconductor device according to claim 1, wherein the inorganic thin film is a thin film formed by a vapor deposition method or a sputtering method.
(6)前記蒸着法が電子ビーム加熱法を用いた蒸着法で
ある特許請求の範囲第5項記載の半導体素子。
(6) The semiconductor device according to claim 5, wherein the vapor deposition method is a vapor deposition method using an electron beam heating method.
(7)前記有機高分子薄膜が分子内に親水性部位と疎水
性部位とを有する有機高分子の薄膜である特許請求の範
囲第1項記載の半導体素子。
(7) The semiconductor device according to claim 1, wherein the organic polymer thin film is an organic polymer thin film having a hydrophilic site and a hydrophobic site within the molecule.
(8)ヘテロ接合界面の数が2〜20である特許請求の
範囲第1項記載の半導体素子。
(8) The semiconductor device according to claim 1, wherein the number of heterojunction interfaces is 2 to 20.
(9)ヘテロ接合界面の数が2〜10である特許請求の
範囲第1項記載の半導体素子。
(9) The semiconductor device according to claim 1, wherein the number of heterojunction interfaces is 2 to 10.
(10)前記有機高分子薄膜の膜厚が数Å〜数百Åであ
る特許請求の範囲第1項記載の半導体素子。
(10) The semiconductor device according to claim 1, wherein the organic polymer thin film has a thickness of several angstroms to several hundred angstroms.
(11)前記有機薄膜の膜厚が10Å〜100Åである
特許請求の範囲第1項記載の半導体素子。
(11) The semiconductor device according to claim 1, wherein the organic thin film has a thickness of 10 Å to 100 Å.
(12)前記無機薄膜の膜厚が数Å〜数百Åである特許
請求の範囲第1項記載の半導体素子。
(12) The semiconductor device according to claim 1, wherein the inorganic thin film has a thickness of several angstroms to several hundred angstroms.
(13)前記無機薄膜の膜厚が10Å〜100Åである
特許請求の範囲第1項記載の半導体素子。
(13) The semiconductor device according to claim 1, wherein the inorganic thin film has a thickness of 10 Å to 100 Å.
(14)前記無機薄膜が金属又は合金で形成した薄膜で
ある特許請求の範囲第1項記載の半導体素子。
(14) The semiconductor device according to claim 1, wherein the inorganic thin film is a thin film formed of a metal or an alloy.
(15)前記金属又は合金がAl、Ag、Au、Ni又
はPtである特許請求の範囲第14項記載の半導体素子
(15) The semiconductor device according to claim 14, wherein the metal or alloy is Al, Ag, Au, Ni, or Pt.
(16)前記無機薄膜が長周期型周期表のIVB族から選
ばれた元素を含む物質、IIIB族から選ばれた元素及び
VB族から選ばれた元素とを含む物質又はIIB族から選
ばれた元素及びVIB族から選ばれた元素とを含む物質で
形成した薄膜である特許請求の範囲第1項記載の半導体
素子。
(16) The inorganic thin film is a substance containing an element selected from Group IVB of the long periodic table, a substance containing an element selected from Group IIIB, an element selected from Group VB, or a substance selected from Group IIB. The semiconductor device according to claim 1, which is a thin film formed of a substance containing an element and an element selected from Group VIB.
(17)前記IVB族から選ばれた元素がC又はSiであ
る特許請求の範囲第16項記載の半導体素子。
(17) The semiconductor device according to claim 16, wherein the element selected from Group IVB is C or Si.
(18)前記IIIB族から選ばれた元素がGaで、前記
VB族から選ばれた元素がAs又はPである特許請求の
範囲第16項記載の半導体素子。
(18) The semiconductor device according to claim 16, wherein the element selected from Group IIIB is Ga, and the element selected from Group VB is As or P.
(19)前記IIB族から選ばれた元素がCdで、前記V
IB族から選ばれた元素がS又はBeである特許請求の
範囲第16項記載の半導体素子。
(19) The element selected from Group IIB is Cd, and the V
17. The semiconductor device according to claim 16, wherein the element selected from Group IB is S or Be.
(20)前記無機薄膜がシリサイドで形成された薄膜で
ある特許請求の範囲第1項記載の半導体素子。
(20) The semiconductor device according to claim 1, wherein the inorganic thin film is a thin film formed of silicide.
(21)前記シリサイドがニッケルシリサイド又はパラ
ジウムシリサイドである特許請求の範囲第20項記載の
半導体素子。
(21) The semiconductor device according to claim 20, wherein the silicide is nickel silicide or palladium silicide.
JP62326095A 1987-12-22 1987-12-22 Semiconductor element Pending JPH01166555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62326095A JPH01166555A (en) 1987-12-22 1987-12-22 Semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62326095A JPH01166555A (en) 1987-12-22 1987-12-22 Semiconductor element

Publications (1)

Publication Number Publication Date
JPH01166555A true JPH01166555A (en) 1989-06-30

Family

ID=18184042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62326095A Pending JPH01166555A (en) 1987-12-22 1987-12-22 Semiconductor element

Country Status (1)

Country Link
JP (1) JPH01166555A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03182725A (en) * 1989-12-08 1991-08-08 Internatl Business Mach Corp <Ibm> Non-linear optical element and manufacture thereof
US6124964A (en) * 1997-05-30 2000-09-26 Hitachi, Ltd. Organic/inorganic composite superlattice type optical modulator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03182725A (en) * 1989-12-08 1991-08-08 Internatl Business Mach Corp <Ibm> Non-linear optical element and manufacture thereof
US6124964A (en) * 1997-05-30 2000-09-26 Hitachi, Ltd. Organic/inorganic composite superlattice type optical modulator

Similar Documents

Publication Publication Date Title
US4939556A (en) Conductor device
US5140398A (en) Switching device
US9281385B2 (en) Semiconducting graphene composition, and electrical device including the same
Tang et al. Memory Effect and Negative Differential Resistance by Electrode‐Induced Two‐Dimensional Single‐Electron Tunneling in Molecular and Organic Electronic Devices
KR100642113B1 (en) Organic electronic device and its manufacturing method
JPH01214078A (en) Switching device
JPH01166555A (en) Semiconductor element
Kever et al. Preparation and characterisation of amorphous Cu: 7, 7, 8, 8-tetracyanoquinodimethane thin films with low surface roughness via thermal co-deposition
JPH01209767A (en) Electric/electronic device element
KR101823523B1 (en) Graphene quantum-dot thin film, preparing method of the same, and thin film transistor using the same
JPS6396956A (en) Switching element
JP2694531B2 (en) Driving method of MIM type element
JPS6373560A (en) Semiconductor element
JPH01165165A (en) Switching device
Kim et al. π-A isotherms and electrical properties of polyamic acid alkylamine salts (PAAS) Langmuir-Blodgett films
JPH01165186A (en) Switching device
JPH01166579A (en) Organic thin film pressure sensitive device
JPS63296273A (en) Switching device
EP3792304A1 (en) Compositions and films comprising a vinylidene fluoride (co)polymer and an aromatic compound, and their preparation and uses
JPS63160389A (en) Switching device
JPH02190754A (en) Humidity sensor
JPH0779173B2 (en) Semiconductor element
JPH07121917A (en) Recording medium, manufacture thereof and recording/ reproducing apparatus using the medium
JPH02257543A (en) Electron emitting element
JPH01175766A (en) Semiconductor element