JPH03182725A - Non-linear optical element and manufacture thereof - Google Patents

Non-linear optical element and manufacture thereof

Info

Publication number
JPH03182725A
JPH03182725A JP1317916A JP31791689A JPH03182725A JP H03182725 A JPH03182725 A JP H03182725A JP 1317916 A JP1317916 A JP 1317916A JP 31791689 A JP31791689 A JP 31791689A JP H03182725 A JPH03182725 A JP H03182725A
Authority
JP
Japan
Prior art keywords
optical element
nonlinear optical
substrate
thin film
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1317916A
Other languages
Japanese (ja)
Inventor
Kaoru Fukuzawa
福沢 薫
Satoru Kano
狩野 覚
Kiyoshi Kumada
熊田 清志
Y Lee Victor
ビクター・ワイ・リー
M Schellenberg Franklin
フランクリン・エム・シェレンバーグ
Yutaka Takahashi
豊 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Priority to JP1317916A priority Critical patent/JPH03182725A/en
Priority to EP90313351A priority patent/EP0431973B1/en
Priority to DE69025564T priority patent/DE69025564T2/en
Publication of JPH03182725A publication Critical patent/JPH03182725A/en
Priority to US07/939,965 priority patent/US5547705A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3556Semiconductor materials, e.g. quantum wells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

PURPOSE: To obtain a nonlinear optical element at low cost by forming a thin- film structural body so as to have fine structures by intercalation constitution in a direction perpendicular to a substrate and forming the fine structures of super-lattice structures. CONSTITUTION: When a (C10 H21 NH3 )2 PbI4 thin film 2 is formed on the substrate 1, the so-called multiple quantum well structures in which the two-dimensional layers of Pb exist an intervals of 21.3Å along the c-axis direction in the crystal and the respective layer of PbI4 , i.e., the quantum wells exist at every 21.25Å are formed on the substrate surface. The quantum confinement effect depends only on the structure in the c-axis direction even in the case of the (C10 H21 NH3 )2 PbI4 single crystal itself. The sufficient optical effect based on the quantum confinement effect is obtd. even in the case having the quantum wells structures only in the c-axis direction. As a result, the formation of the nonlinear optical element without using intricate and costly equipment is made possible.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は光データ処理装置あるいは光通信に用いられ、
外部の光電気信号によって制御される光学素子に関する
[Detailed Description of the Invention] A. Industrial Application Field The present invention is used in optical data processing devices or optical communications,
It relates to optical elements controlled by external opto-electrical signals.

B、従来技術及びその課題 第3次非線形光係数χは非線形光素子材料を評価するキ
ー・パラメータである。屈折率の実部及び虚数部はχが
十分に大きいときに顕著に光強度によって変化する。外
部の光あるいは電気によって制御される光素子は実用上
、大きなχ値を有する必要がある。
B. Prior art and its problems The third-order nonlinear optical coefficient χ is a key parameter for evaluating nonlinear optical element materials. The real part and imaginary part of the refractive index change significantly depending on the light intensity when χ is sufficiently large. For practical purposes, optical elements controlled by external light or electricity need to have a large χ value.

半導体はよく知られるように大きなχを有するものがあ
り、半導体光素子との集積化の可能性を有している。
As is well known, some semiconductors have a large χ and have the potential for integration with semiconductor optical devices.

これらの技術を示す文献としては以下のものがある。Documents showing these techniques include the following.

(1)  S、Y、 Yuen and P、A、 W
olff :TechnicalDigest pp 
150−153 of Non1inear 0pti
calProperties of Material
s Topical Meeting;August、
1988.Troy、New YorkD、A、B、M
iller、C,T、5eaton、M、E、Pr1c
eand S、D、Sm1th : Phys、Rev
、Lett、47,197(1981) C,に、N、 Patel、 R,E、 5lushe
r、 and、P、んFle’ury:Phys、 R
ev、 Lett、  17.1011−1017(1
966)D、A、 B、 Mi 1ler、 D、 S
、  Chemla、 D、J。
(1) S, Y, Yuen and P, A, W
olff :Technical Digest pp
150-153 of Non1inear 0pti
calProperties of Material
s Topical Meeting; August,
1988. Troy, New York D, A, B, M
iller, C.T., 5eaton, M.E., Pr1c.
eand S, D, Sm1th: Phys, Rev
, Lett, 47, 197 (1981) C, N, Patel, R, E, 5rushe
r, and, P, Fle'ury: Phys, R
ev, Lett, 17.1011-1017(1
966) D, A, B, Mi 1ler, D, S
, Chemla, D.J.

Eilenberger、P、W、Sm1th、A、G
、Gossardand W、Wiegmann  :
 Appl、Phys、Lett、。
Eilenberger, P.W., Smlth, A.G.
, Gossardand W., Wiegmann:
Appl, Phys, Lett.

42.925(1983) H,M、Gibbs、S、S、Tarng、J、L、J
ewell、D、A。
42.925 (1983) H.M., Gibbs, S.S., Tarng, J.L.J.
ewell, D.A.

Weinberger、and K、Tai  : A
ppl、Phys、Lett、。
Weinberger, and K., Tai: A.
ppl, Phys, Lett.

41.221−222(1982) A、Honold、L、5chultheis、J、K
uhl  andC,W、Tu  :  Techni
cal Digest  of  16thInter
natjonal  Conf、on Quantum
Electronics、 Tokyo、 (1988
)T、 l5hihara、 J、 Takahagh
i and T、Goto  :5olid 5tat
e Communication、 69.933(1
989)(8)  E、Hanamura : Nat
o workshop on″OpticalSwit
ching in Low−dimensional 
Systems 。
41.221-222 (1982) A., Honold, L., 5chultheis, J.K.
uhl and C, W, Tu: Techni
cal Digest of 16thInter
Natjonal Conf, on Quantum
Electronics, Tokyo, (1988
) T, l5hihara, J, Takahagh
i and T, Goto: 5olid 5tat
eCommunication, 69.933(1
989) (8) E, Hanamura: Nat
o workshop on”OpticalSwit
Ching in Low-dimensional
Systems.

0ctober、 (1988)、 Marballa
、 5pain(9)  Yu、1.Dolzhenk
o、 T、 Inaba and Y、 Maruya
ma :Bull、 Chum、 Soc、Japan
、 59.563. (1986)狭いバンド・ギャッ
プを有する半導体はバンド・フィリング効果(参照文献
2)及び伝導帯(参照文献3)の非放物線形がきわめて
大きな非線形(例えばInSb単結晶に釦いて=3X1
0  ’eau)を引き起こす。しかし、この半導体で
は長波長域(5〜10μm)にかいてのみ非線形効果が
大きく、光データ処理分野等で実用的に使用することが
できない。
0ctober, (1988), Marballa
, 5pain(9) Yu, 1. Dolzhenk
o, T, Inaba and Y, Maruya
ma: Bull, Chum, Soc, Japan
, 59.563. (1986) Semiconductors with a narrow band gap have band filling effects (Ref. 2) and conduction bands (Ref. 3) with extremely large non-parabolic shapes (for example, in InSb single crystals = 3×1
0 'eau). However, this semiconductor has a large nonlinear effect only in the long wavelength range (5 to 10 μm), and cannot be used practically in the field of optical data processing.

光学素子の高いバッキング密度の達成のために、より短
波長域での大きなχ値を達成するメカニズムが望まれる
。半導体量子井戸における励起子の示す非線形性は最も
期待されるものである(参照文献4.5)。大きなχ値
は励起子吸収における吸収飽和により生じる。励起子遷
移における効果はバンド・ギャップが、広いときに(バ
ンド相互間遷移に比較して)よシ大きいため、このメカ
ニズムはよう短波長領域で効果的なものとなる。大きな
χ値を得るプロセスはバルク結晶のみならず、超格子構
造または量子井戸構造(以下、超格子構造体も含む意味
で用いる。)にかける励起子遷移の量子閉じ込め効果に
よるエンハンスメント効果があるため、−層効果的なも
のとなる。
In order to achieve a high backing density in an optical element, a mechanism that achieves a large χ value in a shorter wavelength region is desired. The nonlinearity exhibited by excitons in semiconductor quantum wells is the most promising (Reference 4.5). The large χ value is caused by absorption saturation in exciton absorption. Since the effect on exciton transitions is larger when the band gap is wide (compared to interband transitions), this mechanism is effective at very short wavelengths. The process of obtaining a large χ value has an enhancement effect due to the quantum confinement effect of exciton transitions applied not only to bulk crystals but also to superlattice structures or quantum well structures (hereinafter used to include superlattice structures). - Become layer effective.

しかしながら、バルク結晶に比較して、量子井戸構造は
よう良好な特性を示すが、現実にはまだ以下のようない
くつかの問題点を有する。
However, although the quantum well structure exhibits good properties compared to bulk crystals, it still has some problems in reality, as described below.

1)量子井戸における励起結合エネルギが低い(約10
meV)ため、室温に釦けるフォノンが励起子数を減少
させてしまう。そのためにデバイスの動作はよシ強い吸
収を得るために液体窒素温度よりも下で行う必要がある
1) The excitation coupling energy in the quantum well is low (approximately 10
meV), the phonons that warm up to room temperature reduce the number of excitons. Therefore, the device must be operated below liquid nitrogen temperature to obtain a strong absorption.

2)自由キャリアが長寿命であるためシステムの応答時
間が長くなシ、高速のデバイスが得にくい。
2) Since the free carriers have a long lifetime, the response time of the system is long, making it difficult to obtain high-speed devices.

3)半導体量子井戸の製造には高価な設備及び複雑な製
造工程を必要とする(MBE:分子線エピタキシ法、M
OCVD:有機金属化学気相堆積法、他)。
3) Manufacturing semiconductor quantum wells requires expensive equipment and complicated manufacturing processes (MBE: molecular beam epitaxy, M
OCVD: metal organic chemical vapor deposition, etc.).

さらに、原子レベルまで完全にフラットな構造を有する
理想的な量子井戸構造を製造することは、今なか困難で
ある。エピタキシャル成長過程における不均一性が量子
井戸のサイズの不均一性を構成する。理想的な量子井戸
の場合の励起子の寿命は理論的な予測では2.8paで
あるが、実際の構造では180paとなってしまう(参
照文献6)。
Furthermore, it is still difficult to manufacture an ideal quantum well structure having a completely flat structure down to the atomic level. Non-uniformity in the epitaxial growth process constitutes non-uniformity in quantum well size. The lifetime of an exciton in an ideal quantum well is theoretically predicted to be 2.8 pa, but in an actual structure it is 180 pa (Reference document 6).

応答が速く、かつ大きなχ値を得るためには、井戸構造
中に不均一性の存在しない半導体の量子井戸構造を得る
必要がある。この要請から半導体層と有機材料層とをイ
ンターカレーションさせた2次元ペロプスカイト型半導
体結晶(C10H21N H3) 2 P b I 4
が注目されている。この(C1゜H21NH3)2Pb
I4の結晶構造を第6図に示2+ す。この図に示すとと(Pb   と■とから構成サレ
ル単一量子井戸層がアルキルアンモニウムの2つの層に
挾まれた構成となっている。Pb2+イオンに隣接した
N原子が配位子場を形成し、Pb2+の光学遷移の波長
を決定する。これまで述べてきたことは半導体及び有機
材料のインターカレーションによる理想的な量子井戸構
造であり1井戸の厚みは結晶中全域にわた。り6.24
Aという一定の値を持つ。また、この量子井戸にかける
励起子結合エネルギは極めて大きく、観察された値によ
れば370mV(これはバルク結晶P b I 2の約
12倍である)となり1これによって第9図(、)に示
すように室温に訃いても十分な励起子の吸収ピークが得
られた。
In order to obtain a fast response and a large χ value, it is necessary to obtain a semiconductor quantum well structure in which there is no non-uniformity in the well structure. In response to this request, a two-dimensional perovskite semiconductor crystal (C10H21N H3) 2 P b I 4 was created by intercalating a semiconductor layer and an organic material layer.
is attracting attention. This (C1゜H21NH3)2Pb
The crystal structure of I4 is shown in Figure 6. As shown in this figure, a Sarel single quantum well layer composed of Pb and ■ is sandwiched between two layers of alkylammonium.N atoms adjacent to Pb2+ ions form a ligand field. Then, determine the wavelength of the optical transition of Pb2+.What has been described so far is an ideal quantum well structure formed by intercalation of a semiconductor and an organic material, and the thickness of one well extends throughout the entire crystal.6. 24
It has a constant value of A. In addition, the exciton binding energy applied to this quantum well is extremely large, and according to the observed value, it is 370 mV (which is about 12 times that of the bulk crystal P b I 2 )1. As shown, sufficient exciton absorption peaks were obtained even at room temperature.

2次元ペロプスカイト型半導体結晶は非線形光学素子と
して極めて有効であると考えられる。しかし、実際の装
置に組みこむデバイスとして使用するのに十分な大きさ
を有する素子を結晶成長法(参照文献9)によって製造
するのは極めて困難である。シリカ溶融法によってs 
2 X 2 X O−1m m 3の単結晶を得るには
1乃至2力月を要する。さらに、この方法は結晶サイズ
(特に結晶厚み)をコントロールするのが非常に難しい
Two-dimensional perovskite semiconductor crystals are considered to be extremely effective as nonlinear optical elements. However, it is extremely difficult to manufacture an element having a size sufficient to be used as a device incorporated into an actual device by a crystal growth method (Reference Document 9). s by silica melting method
It takes 1 to 2 months to obtain a single crystal of 2 x 2 x O-1 m m 3 . Furthermore, this method makes it very difficult to control crystal size (especially crystal thickness).

C0発明の概要および解決課題 本発明は透明基板の上に2次元ペロプスカイト薄膜を作
成する新規なエピタキシャル技術を提供するものである
。これは非線形光学データ処理デバイスを実現するため
の基盤技術となシ得るものである。すなわち、高い光学
的品質を保ち、極めて速い応答性能と良好な非線形光学
性能を有する非線形光学素子を提供する。
C0 Overview of the Invention and Problems to be Solved The present invention provides a novel epitaxial technique for creating a two-dimensional perovskite thin film on a transparent substrate. This can serve as a fundamental technology for realizing nonlinear optical data processing devices. That is, the present invention provides a nonlinear optical element that maintains high optical quality, has extremely fast response performance, and has good nonlinear optical performance.

D、実施例 実施例1 (a)  (cl 0H21NH3)2PbI 4の合
成フラスコ内の150m1蒸留水中に9.5gの鉛アセ
テートを混入する。氷酢酸2.86 m l を攪拌し
ながら加える。10m1 のデシル・アミンを加え、1
0分間攪拌する。この溶液に16.6gのヨウ化カリウ
ムを溶解した100m1の蒸留水を攪拌しながら加える
。厚みのあるオレンジ色のサスペンションをフィルタで
除去し、水洗する。得られた結晶を真空下で乾燥する。
D. Examples Example 1 (a) Synthesis of (cl 0H21NH3)2PbI4 Mix 9.5 g of lead acetate in 150 ml of distilled water in a flask. 2.86 ml of glacial acetic acid are added with stirring. Add 10ml of decyl amine,
Stir for 0 minutes. 100 ml of distilled water in which 16.6 g of potassium iodide has been dissolved is added to this solution with stirring. Remove the thick orange suspension with a filter and wash with water. The crystals obtained are dried under vacuum.

生成物をニトロメタン中で金色の薄板状に再結晶する。The product is recrystallized in nitromethane to give golden platelets.

(b)  (C10 H21N H3) 2 P b 
I 4のスピン・コーティング アセトンに5 w t 96の(C10H21NH3)
2PbI4 を溶解した溶液を、直径1インチの石英基
板(第1図、1)上にスピンコートする。スピン・スピ
ードは2000rpm とする。
(b) (C10 H21N H3) 2 P b
Spin coating of I4 in acetone with 5 wt 96 (C10H21NH3)
A solution containing 2PbI4 is spin coated onto a 1 inch diameter quartz substrate (FIG. 1, 1). The spin speed is 2000 rpm.

(c)生成膜の評価 第1図に示すごとく、基板1の上に(C10H21N 
H3) 2 P b I4薄膜2が形成される。生成膜
の厚さ、及び平滑さは、WYKO干渉装置によって計測
した。結果を第7図に示す。基板のエツジ部を除いて、
1100n厚、凹凸がλ/100以下のオプティカル・
フラットな薄膜が得られた。
(c) Evaluation of produced film As shown in Figure 1, (C10H21N
H3) 2 P b I4 thin film 2 is formed. The thickness and smoothness of the produced film were measured using a WYKO interferometer. The results are shown in FIG. Except for the edge of the board,
Optical with a thickness of 1100n and unevenness of less than λ/100.
A flat thin film was obtained.

X線回折法によって薄膜の結晶構造評価を行った。第8
図にX線回折角度に対するX線回折強度分布を示す。図
から結晶は21.3 Aの明確な周期を有していること
がわかる。これは第6図に示すごとく、結晶中C軸方向
に沿ってpbの2次元層が21.3Aの間隔で存在して
いることを示すものである。この結果bpbI4の各層
、すなわち量子井戸が21.25Aごとに存在するいわ
ゆる多重量子井戸構造が基板表面上に形成されたことが
分かる。結晶のa軸、及びb軸方向の規則性はX線回折
においては検知できなかった。しかし、(C10H21
NH3)2PbI4単結晶そのものの場合でも量子閉じ
込め効果はC軸方向の構造にのみ依存するものであり、
このようなC軸方向にのみ量子井戸構造を有するケース
に釦いても量子閉じ込め効果に基づく光学的効果は十分
なものが得られる。
The crystal structure of the thin film was evaluated by X-ray diffraction method. 8th
The figure shows the X-ray diffraction intensity distribution with respect to the X-ray diffraction angle. It can be seen from the figure that the crystal has a well-defined period of 21.3 A. As shown in FIG. 6, this indicates that two-dimensional layers of pb exist at intervals of 21.3A along the C-axis direction in the crystal. As a result, it can be seen that a so-called multiple quantum well structure in which each layer of bpbI4, that is, a quantum well exists every 21.25 A, was formed on the substrate surface. Regularity in the a-axis and b-axis directions of the crystal could not be detected by X-ray diffraction. However, (C10H21
Even in the case of the NH3)2PbI4 single crystal itself, the quantum confinement effect depends only on the structure in the C-axis direction,
Even in such a case where the quantum well structure is provided only in the C-axis direction, sufficient optical effects based on the quantum confinement effect can be obtained.

薄膜(5%溶液から生成)の吸収スペクトルを第9図(
b)に示す。PbI4量子井戸の励起子吸収を示す2.
42eV付近での強い吸収ピークが単結晶の場合(第9
図(a))と同様に観察された。
The absorption spectrum of the thin film (produced from a 5% solution) is shown in Figure 9 (
Shown in b). 2. Showing exciton absorption in PbI4 quantum well.
In the case of a single crystal, a strong absorption peak near 42 eV (9th
Observations were made in the same manner as in Figure (a)).

顕微鏡観察によれば、この薄膜中には観察可能なりリス
タル・ドメインは存在しなかった。一方、10wt%(
C10H21NH3)2PbI4溶液を使用したスピン
コーティングにおいては、薄膜は不透明となり、多くの
結晶粒界が観察された。
According to microscopic observation, there were no observable listal domains in this thin film. On the other hand, 10 wt% (
Upon spin coating using C10H21NH3)2PbI4 solution, the thin film became opaque and many grain boundaries were observed.

従来の方法に従えば、例えば最□も大きい部類に属する
2 X 2 X O,1mm3の単結晶を成長させるに
は数カ月を要する。しかし、本発明で提示する技術に従
えば、半日程度で生成可能な粉末結晶を用いて、基板上
に大面積を有し、良好な光学的性能を備えた薄膜結晶を
スピンコートにより、たちどころに形成することができ
る。スピンコートによるこのような性質を有する薄膜の
形成技術は、従来行なわれてきたMBE法やMOCVD
法のような複雑でかつ高価な設備、及び高度な技術が要
求される製法に代わジ得る技術となう得るものである。
According to the conventional method, it takes several months to grow, for example, a single crystal of 2 x 2 x O, 1 mm3, which belongs to the largest category. However, according to the technology presented in the present invention, using powder crystals that can be produced in about half a day, a thin film crystal with a large area and good optical performance can be quickly formed on a substrate by spin coating. can be formed into The technology for forming thin films with these properties by spin coating is similar to the conventional MBE method and MOCVD.
This technology can replace manufacturing methods that require complicated and expensive equipment and advanced technology, such as manufacturing methods.

な訃、溶剤はアセトンに限らずデイメトキシン・エタン
等、(c 10 H21N Hs ) 2 P b I
 4に対して適当な溶剤が選択可能である。
The solvent is not limited to acetone, but also dimethoxine, ethane, etc. (c 10 H21N Hs ) 2 P b I
A suitable solvent can be selected for 4.

実施例2 第1実施例と異なる構造を第2図に示す。第1実施例と
の差異は導波路層3の存在である。当実施例では、石英
基板上にまず1μmのコーニング7059ガラス層がス
パッタされる。次に、第1実施例と同様スピンコートに
よって200 nmの(CHNH)  pbI4層2を
形成する。
Embodiment 2 A structure different from that of the first embodiment is shown in FIG. The difference from the first embodiment is the presence of the waveguide layer 3. In this example, a 1 μm layer of Corning 7059 glass is first sputtered onto a quartz substrate. Next, a 200 nm thick (CHNH)pbI4 layer 2 is formed by spin coating as in the first embodiment.

02132 これによって薄膜層及び7059ガラス層に沿った2、
 4 e Vのエネルギーを有するフォトンを光導波路
に入射する。導波モード励起のためにプリズム・カップ
ラ法を用いた。2psのパルス幅を有する2、 4 e
 Vの光を基板に垂直な方向から照射すると、もともと
導波層を通っていた2、 4 e Vのエネルギーを持
つ光ビームの強度は27倍に増加される。この光による
光学偏調は(C10H2jNH3)2P b I 4に
かける高速応答特性を示している。
02132 This results in 2 along the thin film layer and the 7059 glass layer.
Photons with an energy of 4 eV are incident on the optical waveguide. A prism coupler method was used for waveguide mode excitation. 2, 4 e with a pulse width of 2 ps
When the substrate is irradiated with light of V from a direction perpendicular to the substrate, the intensity of the light beam having an energy of 2.4 e V, which originally passed through the waveguide layer, is increased by 27 times. Optical polarization by this light shows a high-speed response characteristic applied to (C10H2jNH3)2P b I 4 .

実施例3 本実施例では(CI D H21N H3) 2 P 
b I 4とリソグラフィのためのレジストとの多重層
が形成される。第3図に示すごとく(C10H2□N 
H3) 2PbI4層4とポリ(ジーn−へキシルシラ
ン)層5から構成される。これらの各々の層は1100
nから3DOnmの厚みを有する(C1DH21N H
3) 2 P b I 4のスピンコーティングは第1
実施例と同様の方法で行なわれる。高分子ポリ(ジ−n
−ヘキシルシラン)層5はイソオクタンを溶媒とした2
、596溶液のスピンコーティングによつて形成される
Example 3 In this example, (CI D H21N H3) 2 P
A multilayer of b I 4 and resist for lithography is formed. As shown in Figure 3 (C10H2□N
H3) Consists of a 2PbI4 layer 4 and a poly(d-n-hexylsilane) layer 5. Each of these layers has 1100
(C1DH21N H
3) Spin coating of 2 P b I 4 is the first
It is carried out in the same manner as in the examples. High molecular weight poly(di-n)
-hexylsilane) layer 5 is 2 using isooctane as a solvent.
, 596 solution by spin coating.

この構造体を用いて光変調実験を行った。入射ビーム及
び制御ビームの波長は第2実施例と同様である。本実施
例では入射光は基板に垂直入射する平行光であう、入射
角15°の制御光ビームに因って制御される。入射画像
情報の光による情報処理は入射光ビーム・アレイの反対
方向に配置したCCDカメラで観測した。
Light modulation experiments were conducted using this structure. The wavelengths of the incident beam and control beam are the same as in the second embodiment. In this embodiment, the incident light is controlled by a control light beam having an incident angle of 15°, which is parallel light that is perpendicularly incident on the substrate. Information processing of incident image information by light was observed with a CCD camera placed in the opposite direction of the incident light beam array.

実施例4 第4図に示すように半透明鏡6を有する石英基板1をス
ピンコート用の基板として使用した。第1実施例と同様
(C10H21NH3)2Pb工。層が形成される。次
に、この層の上に半透明鏡7として金が蒸着される。こ
の2つの半透明鏡は光共振器として作用する。2.45
 e Vのエネルギーを持った光ビームを基板へ垂直入
射する。共振器を通過した光は第10図に示すような双
安定特性を有している。
Example 4 As shown in FIG. 4, a quartz substrate 1 having a semi-transparent mirror 6 was used as a substrate for spin coating. Same as the first example (C10H21NH3)2Pb process. A layer is formed. Gold is then evaporated onto this layer as a semi-transparent mirror 7. These two semi-transparent mirrors act as optical resonators. 2.45
A light beam with an energy of e V is vertically incident on the substrate. The light passing through the resonator has bistable characteristics as shown in FIG.

実施例5 他の2次元ペロブスカイト型MX4(CnH2n+1N
 u 3 ) 2 を合成し薄膜として使用した。ここ
でMは金属イオン:Cu、CdlMn%Ge及びFeイ
オン、Xはハロゲンイオン二I%Cl、及びBrイオン
を表す。モノ・アンモニウムであるアルキル・アンモニ
ウム: n=3.5% 8、又は10を使用した。これ
らのペロブスカイトにおいてもスピンコート薄膜層にお
いて、量子井戸構造の周期性を見い出した。
Example 5 Another two-dimensional perovskite type MX4 (CnH2n+1N
U 3 ) 2 was synthesized and used as a thin film. Here, M represents metal ions: Cu, CdlMn%Ge and Fe ions, and X represents halogen ions, I%Cl, and Br ions. Mono-ammonium alkyl ammonium: n=3.5% 8 or 10 was used. We also found periodicity in the quantum well structure in the spin-coated thin film layer of these perovskites.

実施例6 2次元ペロブスカイトとして(C5H11NH3)2P
bI。を用いた第4実施例に類似した構成を第5図に示
す。第4実施例と同様、金の半透明鏡8を形成した石英
ディスクが基板として用いられる。
Example 6 (C5H11NH3)2P as a two-dimensional perovskite
bI. FIG. 5 shows a configuration similar to the fourth embodiment using . As in the fourth embodiment, a quartz disk on which a gold semitransparent mirror 8 is formed is used as the substrate.

しかし本実施例では、薄膜9は基板1の金属層側に形成
される。さらにこの表面に半透明鏡10が形成される。
However, in this embodiment, the thin film 9 is formed on the metal layer side of the substrate 1. Furthermore, a semi-transparent mirror 10 is formed on this surface.

この実施例においても第4実施例(第11図)と同様の
双安定特性が得られた。
In this example as well, the same bistable characteristics as in the fourth example (FIG. 11) were obtained.

E1発明の効果 上述のごとく本発明によれば、複雑でかつ時間を要する
単結晶製造工程を経ずに量子井戸構造を構成することが
可能となシ、低コストで、かつ簡易な工程で非線形光学
素子を得ることができる。
E1 Effects of the Invention As described above, according to the present invention, it is possible to construct a quantum well structure without going through the complicated and time-consuming single crystal manufacturing process, and it is possible to construct a quantum well structure at low cost and with a simple process. An optical element can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図、第4図、第5図は各々本発明
の光学素子の異なる実施例の構成を示す断面図、第6図
は本発明で用いた(C5H1,NH3)2PbI4の単
結晶構造を示す結晶構造図、第7図は生成膜のWYKO
干渉装置による測定結果を示す図、第8図は生成膜のX
線回折図、第9図は本発明による薄膜と単結晶釜々の吸
収スペクトルを示す図、第10図、及び第11図はそれ
ぞれ本発明の異なる実施例の薄膜の双安定特性図である
。 1・・・・基板、2.4.9・・・・有機材料薄膜、3
・・・・ガラス層、5・・・・レジスト層、6.7.8
.10・・・・半透明鏡 第1図 第2図 第3図 第4図 第5図 第6図 第7図 ×回 電子エキル千1eVl IN9図 第10図 第11区 入力強度(イf、!目盛) 入力強度(任意目金)
1, 2, 3, 4, and 5 are cross-sectional views showing the configurations of different embodiments of the optical element of the present invention, and FIG. ) A crystal structure diagram showing the single crystal structure of 2PbI4, Figure 7 shows the WYKO of the produced film.
A diagram showing the measurement results by the interference device, Figure 8 shows the X of the produced film.
A line diffraction diagram, FIG. 9 is a diagram showing absorption spectra of a thin film according to the present invention and a single crystal pot, and FIGS. 10 and 11 are bistable characteristic diagrams of thin films of different embodiments of the present invention. 1...Substrate, 2.4.9...Organic material thin film, 3
...Glass layer, 5...Resist layer, 6.7.8
.. 10... Semi-transparent mirror Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 scale) Input strength (arbitrary scale)

Claims (1)

【特許請求の範囲】 (1)基板に対して接着剤を介することなく被着された
薄膜構造体であり、該薄膜構造体は互いにエネルギー・
ギャップの異なる半導体層と有機質層とからなるインタ
ーカレーシヨン構成による微細構造を上記基板に対して
垂直な方向に有しており、該微細構造は超格子構造であ
ることを特徴とする非線形光学素子。 (2)上記薄膜構造体は、該構造体に入射される入射光
の波長よりも短い結晶軸のみから構成される微細結晶の
集合であり、該微細結晶の各々は上記基板に対して垂直
な方向に結晶軸の所定軸を有し、上記基板に対して平行
な方向には各々ランダムに結晶軸を有する結晶であるこ
とを特徴とする特許請求の範囲第1項記載の非線形光学
素子。 (?)上記薄膜構造体は(C_1_0H_2_1NH_
3)_2PbI_4から成ることを特徴とする特許請求
の範囲第1項又は第2項記載の非線形光学素子。 (4)上記薄膜構造体はMX_4(C_nH_2_n_
+_1NH_3)_2(ただし、Mは金属イオンであつ
て、Cu、Cd、Mn、Ge、Feイオンのいずれかを
表わし、Xはハロゲン・イオンであつて、I、Cl、B
rイオンのいずれかを表わす) から成ることを特徴とする特許請求の範囲第1項又は第
2項記載の非線形光学素子。 (5)有機質材料を溶剤に溶解させ、該溶液を基板に対
してスピンコートすることにより、該基板に対して垂直
な方向に結晶軸の1軸を有し、該方向にエネルギ・ギャ
ップの異なる2種類の層が交互に積層する超格子構造を
持つ有機質材料薄膜を形成することを特徴とする非線形
光学素子の製造方法。 (6)上記有機質材料は(C_1_0H_2_1NH_
3)_2PbI_4から成ることを特徴とする特許請求
の範囲第5項記載の非線形光学素子の製造方法。 (7)上記有機質材料はMX_4(C_nH_2_n_
+_1NH_3)_2(ただし、Mは金属イオンであつ
て、Cu、Cd、Mn、Ge、Feイオンのいずれかを
表わし、Xはハロゲンイオンであつて、I、Cl、Br
イオンのいずれかを表わす) から成ることを特徴とする特許請求の範囲第5項記載の
非線形光学素子の製造方法。 (8)上記溶剤はアセトンであることを特徴とする特許
請求の範囲第5項乃至第7項のいずれかに記載の非線形
光学素子の製造方法。 (9)上記溶剤はデイメトキシン・エタンであることを
特徴とする特許請求の範囲第5項乃至第7項のいずれか
に記載の非線形光学素子の製造方法。 (10)(C_1_0H_2_1NH_3)_2PbI
_4をアセトンに溶解させ、10wt%未満の濃度の(
C_1_0H_2_1NH_3)_2PbI_4溶液を
作成し、該溶液を基板上に2000rpm以上のスピン
・スピードでスピンコートすることにより、基板に対し
て垂直な方向に結晶軸の1軸を有し、該方向にエネルギ
・ギャップの異なる2種類の層が交互に積層する超格子
構造を持つ(C_1_0H_2_1NH_3)_2Pb
I_4薄膜を形成することを特徴とする非線形光学素子
の製造方法。
[Scope of Claims] (1) A thin film structure adhered to a substrate without using an adhesive, and the thin film structure mutually absorbs energy.
A nonlinear optical element having a fine structure with an intercalation structure consisting of a semiconductor layer and an organic layer with different gaps in a direction perpendicular to the substrate, and the fine structure having a superlattice structure. . (2) The thin film structure is a collection of microcrystals consisting only of crystal axes shorter than the wavelength of the incident light incident on the structure, and each of the microcrystals is perpendicular to the substrate. 2. The nonlinear optical element according to claim 1, wherein the nonlinear optical element is a crystal having a predetermined crystal axis in a direction and having crystal axes randomly in a direction parallel to the substrate. (?) The above thin film structure is (C_1_0H_2_1NH_
3) The nonlinear optical element according to claim 1 or 2, characterized in that it is made of_2PbI_4. (4) The above thin film structure is MX_4 (C_nH_2_n_
+_1NH_3)_2 (where M is a metal ion and represents one of Cu, Cd, Mn, Ge, or Fe ions, and X is a halogen ion and represents I, Cl, or B
3. The nonlinear optical element according to claim 1 or 2, characterized in that the nonlinear optical element is made of: (5) By dissolving an organic material in a solvent and spin-coating the solution onto a substrate, a crystalline material with one crystal axis in a direction perpendicular to the substrate and with a different energy gap in this direction can be obtained. A method for manufacturing a nonlinear optical element, comprising forming an organic material thin film having a superlattice structure in which two types of layers are alternately laminated. (6) The above organic material is (C_1_0H_2_1NH_
3) The method for manufacturing a nonlinear optical element according to claim 5, characterized in that the nonlinear optical element is made of_2PbI_4. (7) The above organic material is MX_4 (C_nH_2_n_
+_1NH_3)_2 (However, M is a metal ion and represents either Cu, Cd, Mn, Ge, or Fe ion, and X is a halogen ion and represents I, Cl, or Br.
The method for manufacturing a nonlinear optical element according to claim 5, characterized in that the nonlinear optical element is made of: (8) The method for manufacturing a nonlinear optical element according to any one of claims 5 to 7, wherein the solvent is acetone. (9) The method for manufacturing a nonlinear optical element according to any one of claims 5 to 7, wherein the solvent is dimethoxine ethane. (10) (C_1_0H_2_1NH_3)_2PbI
_4 was dissolved in acetone and a concentration of less than 10 wt% (
By creating a C_1_0H_2_1NH_3)_2PbI_4 solution and spin-coating the solution onto a substrate at a spin speed of 2000 rpm or more, one crystal axis is perpendicular to the substrate and an energy gap is created in this direction. (C_1_0H_2_1NH_3)_2Pb has a superlattice structure in which two types of layers with different values are stacked alternately.
A method for manufacturing a nonlinear optical element, characterized by forming an I_4 thin film.
JP1317916A 1989-12-08 1989-12-08 Non-linear optical element and manufacture thereof Pending JPH03182725A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1317916A JPH03182725A (en) 1989-12-08 1989-12-08 Non-linear optical element and manufacture thereof
EP90313351A EP0431973B1 (en) 1989-12-08 1990-12-07 Nonlinear optical device and method of manufacturing
DE69025564T DE69025564T2 (en) 1989-12-08 1990-12-07 Nonlinear optical devices and manufacturing processes
US07/939,965 US5547705A (en) 1989-12-08 1992-09-04 Nonlinear optical device and method of manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1317916A JPH03182725A (en) 1989-12-08 1989-12-08 Non-linear optical element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH03182725A true JPH03182725A (en) 1991-08-08

Family

ID=18093479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1317916A Pending JPH03182725A (en) 1989-12-08 1989-12-08 Non-linear optical element and manufacture thereof

Country Status (4)

Country Link
US (1) US5547705A (en)
EP (1) EP0431973B1 (en)
JP (1) JPH03182725A (en)
DE (1) DE69025564T2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6700550B2 (en) 1997-01-16 2004-03-02 Ambit Corporation Optical antenna array for harmonic generation, mixing and signal amplification
US6038060A (en) * 1997-01-16 2000-03-14 Crowley; Robert Joseph Optical antenna array for harmonic generation, mixing and signal amplification
JP4537528B2 (en) * 2000-03-29 2010-09-01 株式会社東芝 Optical recording medium
JP2005099417A (en) * 2003-09-25 2005-04-14 Fuji Xerox Co Ltd Optical switching device and optical device
EP1917557A4 (en) 2005-08-24 2015-07-22 Trustees Boston College Apparatus and methods for solar energy conversion using nanoscale cometal structures
WO2007025023A2 (en) 2005-08-24 2007-03-01 The Trustees Of Boston College Apparatus and methods for optical switching using nanoscale optics
US7623746B2 (en) 2005-08-24 2009-11-24 The Trustees Of Boston College Nanoscale optical microscope
US7589880B2 (en) 2005-08-24 2009-09-15 The Trustees Of Boston College Apparatus and methods for manipulating light using nanoscale cometal structures
WO2007086903A2 (en) 2005-08-24 2007-08-02 The Trustees Of Boston College Apparatus and methods for solar energy conversion using nanocoax structures
EP2120569B1 (en) 2007-01-12 2013-08-14 Merck Sharp & Dohme Corp. Spirochromanon derivatives
PE20081559A1 (en) 2007-01-12 2008-11-20 Merck & Co Inc SPIROCHROMANONE DERIVATIVES SUBSTITUTED AS ACETYL COA CARBOXYLASE INHIBITORS
US8173045B2 (en) 2008-05-28 2012-05-08 University Of Washington Diels-Alder crosslinkable dendritic nonlinear optic chromophores and polymer composites

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6019108A (en) * 1983-07-13 1985-01-31 Fujitsu Ltd Production for optical guide
JPS63260854A (en) * 1987-03-16 1988-10-27 アメリカン テレフォン アンド テレグラフ カムパニー Superconductor and manufacture
JPH01166555A (en) * 1987-12-22 1989-06-30 Canon Inc Semiconductor element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63220219A (en) * 1987-03-10 1988-09-13 Fujitsu Ltd Electrooptic element and its production
US5045364A (en) * 1990-05-18 1991-09-03 At&T Bell Laboratories Nonlinear optical devices and methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6019108A (en) * 1983-07-13 1985-01-31 Fujitsu Ltd Production for optical guide
JPS63260854A (en) * 1987-03-16 1988-10-27 アメリカン テレフォン アンド テレグラフ カムパニー Superconductor and manufacture
JPH01166555A (en) * 1987-12-22 1989-06-30 Canon Inc Semiconductor element

Also Published As

Publication number Publication date
EP0431973A3 (en) 1992-07-22
US5547705A (en) 1996-08-20
DE69025564D1 (en) 1996-04-04
EP0431973A2 (en) 1991-06-12
EP0431973B1 (en) 1996-02-28
DE69025564T2 (en) 1996-09-19

Similar Documents

Publication Publication Date Title
Tanaka et al. Electronic and excitonic structures of inorganic–organic perovskite-type quantum-well crystal (C4H9NH3) 2PbBr4
Tanaka et al. Bandgap and exciton binding energies in lead-iodide-based natural quantum-well crystals
Ando et al. Magneto-optic effect of the ferromagnetic diluted magnetic semiconductor Ga 1− x Mn x As
JPH03182725A (en) Non-linear optical element and manufacture thereof
Xu et al. Optical third-harmonic generation in layered perovskite-type material (C10H21NH3) 2PbI4
US9909233B1 (en) Tunable infrared reflectance by phonon modulation
Fluegel et al. Electronic properties of hybrid organic–inorganic semiconductors
JPH0328831A (en) Nonlinear optical thin film
US4661829A (en) Device using ordered semiconductor alloy
US4879256A (en) Method of controlling the order-disorder state in a semiconductor device
Matsumoto et al. Optically induced absorption in porous silicon and its application to logic gates
JP2860094B2 (en) Organic-inorganic hybrid superlattice type optical modulator
Dosho et al. Atomic layer epitaxy of ZnSe-ZnTe strained layer superlattices
Valarmathi et al. Growth and characterization of organic nonlinear optical material: hemikis (piperazine) 4-hydroxybenzoic acid monohydrate single crystal
US5738720A (en) Method of manufacturing microstructure pattern of molecular material high orientation aggregate with the aid of difference of growth rate by substrate material
JP2649646B2 (en) New organic superlattice optoelectronic device
Leonardi et al. Growth of self-assembled (Zn) CdSe nanostructures on ZnSe by migration enhanced epitaxy
Bottomley et al. Linear and nonlinear optical properties of CuInSe 2 and CuGaSe 2 epitaxial thin films on GaAs (001)
Nakada et al. Aerosol deposition on transparent electro-optic films for optical modulators
USRE33693E (en) Device using ordered semiconductor alloy
Janik et al. Zinc‐blende MnTe (111) on BaF2 (111) substrates for optical measurements
Alonso et al. Raman and reflectivity spectra of cubic Cd 1− x Mn x Se epilayers grown by molecular-beam epitaxy
JP2577851B2 (en) Organic superlattice optoelectronic device and its manufacturing method.
Gupta et al. Plasmonic assisted two wave mixing phenomenon for energy transfer in ferroelectric PZT film
KR100400536B1 (en) Ⅱ-Ⅳ-Ⅴ2 Type Diluted Magnetic Semiconductor Grown In Single Crystal