JPS63220219A - Electrooptic element and its production - Google Patents

Electrooptic element and its production

Info

Publication number
JPS63220219A
JPS63220219A JP5315587A JP5315587A JPS63220219A JP S63220219 A JPS63220219 A JP S63220219A JP 5315587 A JP5315587 A JP 5315587A JP 5315587 A JP5315587 A JP 5315587A JP S63220219 A JPS63220219 A JP S63220219A
Authority
JP
Japan
Prior art keywords
thin film
electro
film crystal
spcd
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5315587A
Other languages
Japanese (ja)
Inventor
Tetsuzo Yoshimura
徹三 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5315587A priority Critical patent/JPS63220219A/en
Publication of JPS63220219A publication Critical patent/JPS63220219A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the practical application of an optical element having good characteristics by using a thin film crystal of SPCD composed of an org. material for the electrooptic element, thereby obtaining the large electrooptical effect of the titled device. CONSTITUTION:The titled device is constituted of the thin film crystal M of SPCD (Styrylpyridinium Cyanine Dye) composed of the org. material. At the method for producing the titled element, at first SPCD is dissolved in solvent to form a solution, and disposing at least two sheets of substrate plates (2a, 2b) overlapping with each other in said solution (N). The solution (N) infiltrates between the substrate plates, and then said solvent is evaporated, thereby forming the thin film crystal of SPCD between the substrates 2a, 2b. Thus, the titled element having the good electrooptical effect is obtd.

Description

【発明の詳細な説明】 〔1既   要〕 本発明は、電気光学素子及びその製造方法において、有
機材料である3 P CD (Styrylpyrid
iniumCyaninc Dye )が非常に大きい
SHG (第2高調波発生)効率を有するということに
新たに気付き、このSPCDのa!膜結晶を成長させ、
これで電気光学素子を構成したことにより、非常に良好
な電気光学効果を持つ電気光学素子の実現を可能にした
ものである。
DETAILED DESCRIPTION OF THE INVENTION [1] Summary of the Invention The present invention provides an electro-optical element and a method for manufacturing the same, using 3P CD (Styrylpyrid), which is an organic material.
IniumCyaninc Dye) has a very high SHG (second harmonic generation) efficiency, and this SPCD's a! grow film crystals,
By configuring the electro-optical element in this way, it has become possible to realize an electro-optical element with a very good electro-optic effect.

〔産業上の利用分野〕[Industrial application field]

本発明は、例えば光変調器や光スィッチ等に利用される
電気光学素子、およびその製造方法に関する。
The present invention relates to an electro-optical element used in, for example, an optical modulator or an optical switch, and a method for manufacturing the same.

〔従 来 の 技 術〕[Traditional techniques]

従来、電気光学物質としては、無機材料である1tNb
Qi等が知られており、これらの材料の持つ電気光学効
果を利用した光スィッチや光変調器も提案されている。
Conventionally, 1tNb, an inorganic material, has been used as an electro-optic material.
Qi and the like are known, and optical switches and optical modulators that utilize the electro-optic effect of these materials have also been proposed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、上述したような無機材料では充分な電気光学
効果がiqられないため、例えば全反射型の光スィッチ
を作製しても光路変更角が1°程度にしかならず、よっ
てマトリクス化や集、積比が困贈であった。また、上記
光スィッチに限らず、その他の種々の光素子を作製する
場合にも、電気光学効果が小さいことが難点となって、
その実用化を阻んでいた。
However, since a sufficient electro-optic effect cannot be achieved with the above-mentioned inorganic materials, for example, even if a total reflection type optical switch is manufactured, the optical path change angle is only about 1°, which makes it difficult to create a matrix, concentrator, or product ratio. was a gift. In addition, when manufacturing not only the above-mentioned optical switch but also various other optical devices, the small electro-optic effect is a drawback.
This hindered its practical application.

本発明は、上記問題点に濫み、良好な電気光学効果を得
ることのできる電気光学素子及びその製造方法を提供す
ることを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to overcome the above-mentioned problems and provide an electro-optical element and a method for manufacturing the same that can obtain good electro-optic effects.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の電気光学素子は、有機材料である5pCDの薄
膜結晶により構成されたことを特徴とするものである。
The electro-optical element of the present invention is characterized in that it is composed of a 5pCD thin film crystal which is an organic material.

また、本発明の電気光学素子の製造方法は、まず5PC
Dを溶媒に溶かす。そして、その溶液の中に少なくとも
2枚の基板を重ね合わせて配置し、その基板間に上記溶
液を侵入させる。その後に、溶媒を蒸発させて、上記基
板間にSPCDの薄膜結晶を形成する。以上の工程を有
することを特徴とするものである。
In addition, the method for manufacturing an electro-optical element of the present invention first includes a 5PC
Dissolve D in a solvent. Then, at least two substrates are placed one on top of the other in the solution, and the solution is allowed to penetrate between the substrates. Thereafter, the solvent is evaporated to form a thin film crystal of SPCD between the substrates. This method is characterized by having the above steps.

〔作   用〕[For production]

本発明の発明者は、有機材料であるSPCDのS HG
効率が、従来の無機材料のものと比して著しく(旧約に
)大きいということに着眼した。上記S 1Ka効率は
、電気光学効果と同様に2次の非線形光学効果に属して
いるため、S HG効率が大きければ電気光学効果も大
きいことが予想される。
The inventor of the present invention has developed SHG of SPCD which is an organic material.
We focused on the fact that the efficiency is significantly higher than that of conventional inorganic materials. Since the above S 1Ka efficiency belongs to the second-order nonlinear optical effect like the electro-optic effect, it is expected that if the S HG efficiency is large, the electro-optic effect is also large.

従って、このような特徴を持つSPCDの薄膜結晶を新
たに電気光学素子として用いることにより、非常に良好
な電気光学効果が得られるようになると発明者は考えた
。しかしながら現実には、SPCDの電気光学効果は今
まで観測されていなかった。これは、小結晶ができに(
いこと、評価法がなかったことなどが原因していた。発
明者は、上記2点を解決し、SPCDの電気光学効果が
LiNbO3よりはるかに大きいことをはじめて見い出
し、これのデバイス化を行なった。
Therefore, the inventor thought that by newly using a SPCD thin film crystal having such characteristics as an electro-optical element, a very good electro-optic effect can be obtained. However, in reality, the electro-optic effect of SPCD has not been observed until now. This results in the formation of small crystals (
This was due to the lack of evaluation methods. The inventor solved the above two points, discovered for the first time that the electro-optic effect of SPCD is much larger than that of LiNbO3, and developed this into a device.

〔実  施  例〕〔Example〕

以下、本発明の実施例について、図面を参照しながら説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

第1図(11)〜(P)は、本発明の一実施例に係る5
pCD薄膜結晶の作製方法を示す製造工程図である。
FIG. 1 (11) to (P) show 5 according to an embodiment of the present invention.
FIG. 3 is a manufacturing process diagram showing a method for manufacturing a pCD thin film crystal.

まず、5PCD (分子式を第2図に示す)をメチルア
ルコール メチルアルコール溶液)Nを第1図(alに示すように
シャーレ1に入れる。この中に、同図(blに示すよう
に、例えばガラス若しくは石英等でできた2枚の基板2
a、2bを重ね合わせて配置し、そのまま放置しておく
。すると、SPCDのメチルアルコール溶液Nが、毛管
現象によって基Fi2a、2b間に侵入してい(。それ
と共に、SPCDのメチルアルコール溶液N中のメチル
アルコールだけが、同図tc+に示すように徐々に蒸発
してい(。
First, 5PCD (the molecular formula is shown in Fig. 2) and methyl alcohol solution (N) are placed in a petri dish 1 as shown in Fig. 1 (al). Or two substrates 2 made of quartz etc.
Place a and 2b on top of each other and leave them as they are. Then, the methyl alcohol solution N of SPCD penetrates between the groups Fi2a and 2b by capillary action (at the same time, only the methyl alcohol in the methyl alcohol solution N of SPCD gradually evaporates as shown in tc+ in the same figure. I'm doing it (.

このメチルアルコールの蒸発に伴い、SPCDのメチル
アルコール溶液N中のSPCDの濃度が飽和状態に達す
ると、同図(dlおよび(p、lに示すように、基1反
2a、2b間に5PCD薄膜結晶(単結晶)Mが成長す
る。本実施例によれば、たとえば面積21■×101−
程度で、厚さ1〜10μm程度の5pcD薄膜結品Mが
得られる。
With the evaporation of this methyl alcohol, when the concentration of SPCD in the methyl alcohol solution N of SPCD reaches a saturated state, as shown in (dl and (p, l) in the same figure, a 5PCD thin film is formed between groups 1 and 2a and 2b. A crystal (single crystal) M grows.According to this embodiment, for example, the area is 21×101−
A 5pcD thin film concretion M having a thickness of about 1 to 10 μm can be obtained.

なお、ここでは2枚の基板2a、 2bを用いたが、3
枚以上の基板を正ね合わせるようにしてもよい。また、
5PCDを熔かすための溶媒も、メチルアルコール以外
のものであってもよい。
Note that although two substrates 2a and 2b were used here, three
It is also possible to align more than one substrate. Also,
The solvent for melting 5PCD may also be other than methyl alcohol.

次に、上記のようにして(7られた5PCD薄膜結晶M
の光学的性質について述べる。
Next, the 5PCD thin film crystal M
We will discuss the optical properties of

まず、5PCD薄膜結品Mを偏光顕微鏡で観察してみた
。概略的には第3図(a)に示すように、偏光子(Po
larizer )  11を介して得られた直線偏光
を5PCD薄膜結品Mに入射させ、その透過光を偏光子
11の方向と直角に配置した検光子(Analyzer
)  12を介して観察した。すると、第3図(b)に
示すように、5PCD薄膜結品Mに対する偏光子11の
偏光方向をdl、dz+  da。
First, 5PCD thin film concretion M was observed using a polarizing microscope. Schematically, as shown in FIG. 3(a), a polarizer (Po
The linearly polarized light obtained through the polarizer 11 is incident on the 5PCD thin film crystal M, and the transmitted light is passed through an analyzer (Analyzer) arranged at right angles to the direction of the polarizer 11.
) observed through 12. Then, as shown in FIG. 3(b), the polarization direction of the polarizer 11 for the 5PCD thin film condensate M is dl, dz+da.

d4と変化させた場合、d、、daの方向で最も暗く、
d2.daの方向で最も明るく観察された。
When changing to d4, it is darkest in the direction of d, , da,
d2. The brightest light was observed in the da direction.

これからdl、daが結晶の光軸であることがわかる。From this it can be seen that dl and da are the optical axes of the crystal.

また、結晶は2色性を有しており、d1方向の偏光に対
して強い光吸収を示す。ここで、ST’CD薄膜結品M
につい°ζ、光吸収の大きな光軸方向(d+方向)をZ
軸、光吸収の小さな光軸方向(d3方向)をy軸とする
Further, the crystal has dichroism and exhibits strong light absorption for polarized light in the d1 direction. Here, ST'CD thin membrane conjunctiva M
For °ζ, the optical axis direction (d+ direction) with large light absorption is Z
The optical axis direction (d3 direction) with low light absorption is defined as the y-axis.

5PCD薄膜結品Mの光吸収スペクトルを測定してみる
と、第4図に示すように、Z軸方向の偏光に対する光吸
収係数α、(破線)がy軸方向の偏光に対する光吸収係
数α−(一点鎖線)よりも著しく大きくなっている。す
なわち、5PCD薄膜結品Mは非常に強い2色性を示す
ことがわかった。なお第4図において、参考までに、偏
光のない光に対する光吸収係数α0を実線で示した。
When measuring the light absorption spectrum of the 5PCD thin film compact M, as shown in Fig. 4, the light absorption coefficient α for polarized light in the Z-axis direction is the light absorption coefficient α, and the (dashed line) is the light absorption coefficient α- for light polarized in the y-axis direction. It is significantly larger than (dotted chain line). That is, it was found that 5PCD thin film conjunctiva M exhibited very strong dichroism. In FIG. 4, for reference, the light absorption coefficient α0 for unpolarized light is shown by a solid line.

また、5PCD薄膜結品Mは、波長6328人の光に対
して、Z軸方向の偏光に対する屈折率nよ が1.55
、Y軸方向の偏光に対する屈折率n#が1.31であっ
た。更に、5PCD薄膜結品Mはフォトルミネッセンス
を有しく励起光: 3250人)、約2e■にピークを
示した。
In addition, the 5PCD thin film condensate M has a refractive index n of 1.55 for polarized light in the Z-axis direction for light with a wavelength of 6328 people.
, the refractive index n# for polarized light in the Y-axis direction was 1.31. Furthermore, the 5PCD thin film condensate M had photoluminescence and exhibited a peak at about 2e■ with excitation light: 3,250 people.

以上のようにして測定された5PCD薄膜結晶Mの光学
的性質を、以下の第1表にまとめて示す。
The optical properties of the 5PCD thin film crystal M measured as described above are summarized in Table 1 below.

5PCD薄膜結晶の光学的性質 第1表 5PCDi膜結品Mは、上記のような性質を有する他に
、前述したように2次の非線形光学効果に屈するSHG
効率が非常に大きく、例えば1.1Nb03の3(5の
電気光学効果が見出されているMNΔ(メチル ニトロ
 アニリン)と比しても、更にその1−桁程度も大きい
。このように5IIG効率が大きければ電気光学効果も
大きなものが得られることが予想されるので、このよう
な特徴を持つ5PCD薄膜結品Mを新たに電気光学素子
として用い、特には光変調器、位相変調器もしくは全反
射型光スイッチを構成することができる。
5 Optical Properties of PCD Thin Film Crystal Table 1 In addition to having the above-mentioned properties, the 5PCDi film crystal M has SHG that succumbs to the second-order nonlinear optical effect as described above.
The efficiency is very high, and even compared to MNΔ (methyl nitro aniline), for which the electro-optic effect of 3(5) has been found, for example, it is about one order of magnitude higher.In this way, the 5IIG efficiency is It is expected that a large electro-optic effect will be obtained if the A reflective optical switch can be constructed.

第5図に、5PCD薄膜結品Mを用いて構成した光変調
器を示す。同図では、まず、例えばギャップ5μm1幅
100μmのスリット型の電極213.21bを形成し
た透明な基板(例えば石英基板等)22aを、もう一枚
の基板22bの中央部に形成された5PCD薄膜結晶M
に対して押し付けている。そして、上記基1&22a、
22bを挾んで対向する位置に、偏光子23及び検光子
24を配置した構成である。その光変調は、ファンクシ
ョンジェネレータ25により、例えば8K11zのΔC
電圧を電極21;]、21b間に印加するこ上よって行
う。なお、電極21a、21bの構成及び5PCD薄膜
結晶Mの取f1け構成は、上述した構成に限定されるも
のではない。
FIG. 5 shows an optical modulator constructed using 5PCD thin film condensate M. In the same figure, first, a transparent substrate (such as a quartz substrate) 22a on which a slit-type electrode 213.21b with a gap of 5 μm and a width of 100 μm is formed is attached to a 5PCD thin film crystal formed in the center of another substrate 22b. M
is pressing against. and the above groups 1 & 22a,
In this configuration, a polarizer 23 and an analyzer 24 are arranged at opposing positions with the polarizer 22b in between. The light modulation is performed by the function generator 25, for example, ΔC of 8K11z.
This is done by applying a voltage between the electrodes 21;], 21b. Note that the configurations of the electrodes 21a and 21b and the configuration of the 5PCD thin film crystal M are not limited to the configurations described above.

上記光変調器による光変調例を第6図に示す。FIG. 6 shows an example of light modulation by the above optical modulator.

この測定は、例えばヘリウム−ネオン(lle−Nc)
L□−ザ光(6328人)を偏光子(1’olariz
cr )23でず方向に偏光させた直線偏光を5PCD
薄膜結品Mに入射させ、その透過光のθ成分を検光子(
^nalyzer) 24で取出し、光検知器(例えば
太陽電池、フォトダイオード、)Aトマル等)26で検
出して、オシロスコープ27で観測することにより行っ
た。なおこの時、θ=ず=45°とし、印加電圧V [
=へsin  (2πνt) 、v=8  K11z)
の振幅へを10(V]とした時を第6図(,11に、振
幅へを50(V)とした時を同図(b)に示した。同図
より、印加電圧の振幅へに従って、透過光量が良好に変
調されるのがわかる。
This measurement can be performed using, for example, helium-neon (lle-Nc).
L□-The light (6328 people) with a polarizer (1'olariz
cr) 5PCD of linearly polarized light polarized in the direction of 23
The θ component of the transmitted light is detected by an analyzer (
The sample was taken out with a photodetector (eg, solar cell, photodiode, etc.) 26, and observed with an oscilloscope 27. At this time, θ=Z=45°, and the applied voltage V [
=he sin (2πνt), v=8 K11z)
The case where the amplitude is set to 10 (V) is shown in Figure 6 (, 11), and the case where the amplitude is set to 50 (V) is shown in the same figure (b). From the figure, it can be seen that as the amplitude of the applied voltage , it can be seen that the amount of transmitted light is modulated well.

また、第5図の光変調器は、5PCD薄膜結晶Mへの入
射光の偏光方向をZ軸方向にしておくことにより、位相
変調器としても作用する。
The optical modulator shown in FIG. 5 also functions as a phase modulator by setting the polarization direction of the light incident on the 5PCD thin film crystal M in the Z-axis direction.

そこで、第5図の構成を用いて、5PCDi膜結品Mに
おける、電気光学効果による位相遅れ(1’hase 
Retardation )Δδと、印加電圧との関係
を測定すると、第7図(黒丸)のようになった。
Therefore, using the configuration shown in FIG. 5, the phase delay (1' hase
When the relationship between (Retardation) Δδ and the applied voltage was measured, it was as shown in FIG. 7 (black circles).

これは、LiNbO3単結晶のZ軸方向に電界をかけた
場合のΔδ(第7図の白丸)と比較して、著しく大きい
ことがわかる。
It can be seen that this is significantly larger than Δδ (white circle in FIG. 7) when an electric field is applied in the Z-axis direction of the LiNbO3 single crystal.

更に、第7図の結果に基づいて、電気光学効果による位
相遅れの示性数(Figure of Merit )
 Fを求め、その結果を第8図に示した。このFの値は
、電気光学効果の大きさの目安となり、Fが大きいほど
電気光学効果が大きい。同図から、5pCDは、LiN
bO3と比して5倍以上大きな値を持つことがわかる。
Furthermore, based on the results shown in Fig. 7, the figure of merit of the phase delay due to the electro-optic effect is
F was determined and the results are shown in FIG. This value of F serves as a measure of the magnitude of the electro-optic effect, and the larger F is, the greater the electro-optic effect is. From the same figure, 5pCD is LiN
It can be seen that the value is more than 5 times larger than bO3.

更にまた、5PCD結晶は斜方晶系であることが知られ
ている。この場合、電気光学係数行列は、となる。この
中で、Z軸方向の電気光学係数ri3を上記Fの値に基
づいて計算すると、r 33 =3.3 X 10  
m/ Vとなる。この値は、LiNbO3のr 33 
=0.32X IQ  m/ Vと比して1桁大きく、
MNAのr + + =0.67X 10  m/Vと
比しても5倍大きい。
Furthermore, 5PCD crystals are known to be orthorhombic. In this case, the electro-optic coefficient matrix becomes. Among these, when the electro-optic coefficient ri3 in the Z-axis direction is calculated based on the value of F above, r 33 = 3.3 X 10
m/V. This value is r 33 of LiNbO3
= 0.32X IQ m/One order of magnitude larger than V,
It is also five times larger than MNA's r + + =0.67X 10 m/V.

次に第9図に、5PCD薄膜結品Mを用いて構成した全
反射型光スイッチを示す。同図では、光導波路31中の
スイッチ部32となる箇所にのみ5PCD薄膜結晶Mを
形成し、その両開にスリット型の電極33a、33bを
設けζいる。なお、光導波路31の全体を5PCDV4
v膜結品Mで作製し、スイッチ部32となる箇所にだけ
間柱な電極33a、33bを形成するようにしてもよい
。同図において、電極33a、33b間にACC電圧を
印加すると、その間の5PCD薄膜結晶Mの屈折率が電
圧無印加時よりも小さくなる。そのため、電圧無印加時
にはスイッチ部32をそのまま通過していた光(破線)
が、電圧印加による屈折率変化によって全反射される(
実線)。この場合、光路変更角θは約5°となる(ただ
し、第9図では角度を誇張して描いである)。この値は
、従来のLiNb03等では1°程度しか得られないの
と比べて、非常に大きなものである。よって、光スィッ
チのマトリクス化や集積化が非常に容易になる。
Next, FIG. 9 shows a total reflection type optical switch constructed using 5PCD thin film condensate M. In the figure, a 5PCD thin film crystal M is formed only at a portion of the optical waveguide 31 that will become the switch section 32, and slit-shaped electrodes 33a and 33b are provided on both sides of the crystal. Note that the entire optical waveguide 31 is 5PCDV4.
It is also possible to fabricate the V-membrane conjunctive material M and form stud electrodes 33a and 33b only at the portions that will become the switch portion 32. In the figure, when an ACC voltage is applied between the electrodes 33a and 33b, the refractive index of the 5PCD thin film crystal M between them becomes smaller than when no voltage is applied. Therefore, when no voltage is applied, the light that passes through the switch section 32 as it is (dashed line)
is totally reflected due to the change in refractive index caused by voltage application (
solid line). In this case, the optical path change angle θ is approximately 5° (however, the angle is exaggerated in FIG. 9). This value is much larger than that obtained with conventional LiNb03 etc., which is only about 1°. Therefore, matrix formation and integration of optical switches becomes very easy.

以上のように、5PCD薄膜結晶Mを用いて構成した光
変調器、位相変S器および全反射型光スイッチでは、こ
れまでにない大きな電気光学効果によって、非常に良好
な特性が得られることがわかった。
As described above, the optical modulator, phase shifter S, and total internal reflection type optical switch constructed using 5PCD thin film crystal M can obtain very good characteristics due to the unprecedented large electro-optic effect. Understood.

なお、5PCD薄膜結品Mは、上述した光素子以外にも
、電気光学効果を利用した各種の光素子に適用すること
ができる。また、SPCDの薄膜結晶を作製する方法も
、第1図に示した方法に限定されることはない。
In addition to the above-mentioned optical elements, the 5PCD thin film condensate M can be applied to various optical elements that utilize electro-optic effects. Further, the method for producing a thin film crystal of SPCD is not limited to the method shown in FIG. 1.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、有機材料であるSPCDの薄膜結晶を
新たに電気光学素子として用いたことにより、これまで
になかった非常に大きな電気光学効果が得られるように
なった。しかも、このことにより、非常に良好な特性を
持つ種々の光素子の実用化が可能になった。
According to the present invention, by newly using a thin film crystal of SPCD, which is an organic material, as an electro-optical element, it has become possible to obtain a very large electro-optic effect that has never been seen before. Moreover, this has made it possible to put into practical use various optical devices with very good characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(eiは本発明の一実施例に係るsr’
cD薄膜結晶の作製方法を示す製造工程図であり、同図
(0)は同図fd)の平面図、 第2図はSPCDの分子式を示す図、 第3図(al及び(blは偏光顕微鏡による5PCD薄
膜結品Mの観察方法を示す概略図、 第4図は5PCD薄膜結晶Mの光吸収スペクトル(光吸
収係数αとフォトンエネルギ(eV)との関係)を示す
図、 第5図は5PCD薄膜結品Mを用いた光変調器の構成図
、 第6図(a)及び[b>は第5図に示した光変調器の光
変調例を示す波型図、 第7図は5PCD薄膜結品M及びLiNbO3単結品に
おける、電気光学効果による位相遅れΔδと印加電圧と
の関係を示す図、 第8図は第7図の関係に基づいて得られた、電気光学効
果による位相遅れの示性数Fを示す図、第9図は5PC
D薄膜結品Mを用いた全反射型光スイッチの構成図であ
る。 2 a、 2 b ・ ・ ・ 基1反21a、21b
・・・電穫、 23・・・偏光子、 24・・・検光子、 25・・・ファンクションジェネレータ、31・・・光
導波路、 32・・・スイ・7チ部、 33a、33b・・・電穫、 M・・・5PCD薄膜結晶、 N・・・5PCDメチルアルコール溶液。
FIG. 1(a) to (ei are sr' according to an embodiment of the present invention)
These are manufacturing process diagrams showing the method for producing cD thin film crystals, in which figure (0) is a plan view of figure fd), figure 2 is a figure showing the molecular formula of SPCD, and figure 3 (al and (bl are polarizing microscope images). Figure 4 is a diagram showing the optical absorption spectrum (relationship between optical absorption coefficient α and photon energy (eV)) of 5PCD thin film crystal M, and Figure 5 is a diagram showing the observation method of 5PCD thin film crystal M. A configuration diagram of an optical modulator using thin film condensate M, Fig. 6 (a) and [b> are waveform diagrams showing an example of optical modulation of the optical modulator shown in Fig. 5, Fig. 7 is a 5PCD thin film Figure 8 shows the relationship between the phase delay Δδ due to the electro-optic effect and the applied voltage in single crystal M and LiNbO3 single crystal products. A diagram showing the characteristic number F, Figure 9 is 5PC
It is a block diagram of the total internal reflection type optical switch using D thin film condensation material M. 2 a, 2 b ・ ・ ・ Group 1 anti 21a, 21b
...Electrical device, 23...Polarizer, 24...Analyzer, 25...Function generator, 31...Optical waveguide, 32...Switch 7 section, 33a, 33b... Electric harvest, M...5PCD thin film crystal, N...5PCD methyl alcohol solution.

Claims (1)

【特許請求の範囲】 1)SPCDの薄膜結晶(M)により構成した電気光学
素子。 2)前記SPCDの薄膜結晶(M)を用いて光変調器を
構成することを特徴とする特許請求の範囲第1項記載の
電気光学素子。 3)前記光変調器は、前記SPCDの薄膜結晶(M)に
対して電圧印加用の一対の電極(21a、21b)を設
けると共に、該薄膜結晶(M)を挾んで対向する位置に
それぞれ偏光子(23)と検光子(24)を配置した構
成であることを特徴とする特許請求の範囲第2項記載の
電気光学素子。 4)前記SPCDの薄膜結晶(M)を用いて位相変調器
を構成することを特徴とする特許請求の範囲第1項記載
の電気光学素子。 5)前記位相変調器は、前記SPCDの薄膜結晶(M)
に対して電圧印加用の一対の電極(21a、21b)を
設けると共に、該薄膜結晶(M)を挾んで対向する位置
にそれぞれ偏光子(23)と検光子(24)を配置し、
該薄膜結晶(M)への入射光の偏光方向を光吸収係数の
大きな光軸方向に合わせた構成であることを特徴とする
特許請求の範囲第4項記載の電気光学素子。 6)前記SPCDの薄膜結晶(M)を用いて全反射型光
スイッチを構成することを特徴とする特許請求の範囲第
1項記載の電気光学素子。 7)前記全反射型光スイッチは、光導波路(31)のう
ち少なくともスイッチ部(32)となる領域を前記SP
CDの薄膜結晶(M)で形成すると共に、前記スイッチ
部(32)となる領域に対して電圧印加用の一対の電極
(33a、33b)を設けた構成であることを特徴とす
る特許請求の範囲第6項記載の電気光学素子。 8)SPCDを溶媒に溶かし、その溶液(N)中に少な
くとも2枚の基板(2a、2b)を重ね合わせて配置し
、該基板間に前記溶液(N)を侵入させ、その後に前記
溶媒を蒸発させて前記基板間に前記SPCD(7)薄膜
結晶(M)を形成する工程を有することを特徴とする電
気光学素子の製造方法。 9)前記溶媒がメチルアルコールであることを特徴とす
る特許請求の範囲第8項記載の電気光学素子の製造方法
[Claims] 1) An electro-optical element constructed from a thin film crystal (M) of SPCD. 2) The electro-optical device according to claim 1, wherein an optical modulator is constructed using the thin film crystal (M) of the SPCD. 3) The optical modulator is provided with a pair of electrodes (21a, 21b) for applying voltage to the thin film crystal (M) of the SPCD, and at opposing positions sandwiching the thin film crystal (M), respectively. The electro-optical element according to claim 2, characterized in that the electro-optical element has a configuration in which a detector (23) and an analyzer (24) are arranged. 4) The electro-optical device according to claim 1, wherein a phase modulator is constructed using the thin film crystal (M) of the SPCD. 5) The phase modulator is a thin film crystal (M) of the SPCD.
A pair of electrodes (21a, 21b) for applying a voltage is provided to the electrode, and a polarizer (23) and an analyzer (24) are respectively arranged at opposite positions sandwiching the thin film crystal (M),
5. The electro-optical device according to claim 4, wherein the polarization direction of light incident on the thin film crystal (M) is aligned with an optical axis direction having a large light absorption coefficient. 6) The electro-optical device according to claim 1, wherein a total reflection type optical switch is constructed using the thin film crystal (M) of the SPCD. 7) The total internal reflection type optical switch includes at least a region of the optical waveguide (31) that will become the switch section (32) at the SP.
The present invention is characterized in that it is formed of a thin film crystal (M) of CD and has a configuration in which a pair of electrodes (33a, 33b) for voltage application is provided to the region that becomes the switch section (32). The electro-optical element according to range 6. 8) Dissolve SPCD in a solvent, place at least two substrates (2a, 2b) on top of each other in the solution (N), allow the solution (N) to enter between the substrates, and then remove the solvent. A method for manufacturing an electro-optical element, comprising the step of forming the SPCD (7) thin film crystal (M) between the substrates by evaporation. 9) The method for manufacturing an electro-optical element according to claim 8, wherein the solvent is methyl alcohol.
JP5315587A 1987-03-10 1987-03-10 Electrooptic element and its production Pending JPS63220219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5315587A JPS63220219A (en) 1987-03-10 1987-03-10 Electrooptic element and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5315587A JPS63220219A (en) 1987-03-10 1987-03-10 Electrooptic element and its production

Publications (1)

Publication Number Publication Date
JPS63220219A true JPS63220219A (en) 1988-09-13

Family

ID=12934954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5315587A Pending JPS63220219A (en) 1987-03-10 1987-03-10 Electrooptic element and its production

Country Status (1)

Country Link
JP (1) JPS63220219A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0431973A2 (en) * 1989-12-08 1991-06-12 International Business Machines Corporation Nonlinear optical device and method of manufacturing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0431973A2 (en) * 1989-12-08 1991-06-12 International Business Machines Corporation Nonlinear optical device and method of manufacturing

Similar Documents

Publication Publication Date Title
JP3881706B2 (en) Optical elements
Burns et al. Interferometric waveguide modulator with polarization‐independent operation
US4767169A (en) Thin film waveguide electrooptic modulator
US5132824A (en) Liquid-crystal modulator array
US5719650A (en) High-fidelity spatial light modulator
JP2888947B2 (en) Guided electro-optic light modulator with low optical loss
US20060274321A1 (en) Common-path point-diffraction phase-shifting interferometer
US4877298A (en) Thin film waveguide electrooptic modulator
JPH0348812A (en) Polarization blind interferometry wave- guide electro-optic modulator
JPH0350521A (en) Polarization blind interferometry type waveguide electro-optic modulator
US7006234B1 (en) Common-path point-diffraction phase-shifting interferometer incorporating a birefringent polymer membrane
Heflin et al. Second-order nonlinear optical thin films fabricated from ionically self-assembled monolayers
JPS63220219A (en) Electrooptic element and its production
US5220451A (en) Second-order nonlinear optical device
Rezig et al. Feasibility of optically controlled integrated Mach–Zehnder device based on Azo dye-doped PMMA thin films
US3957340A (en) Electrooptical amplitude modulator
NL8304435A (en) OPTICAL FREQUENCY CONVERTER, ALSO GIROMETER EQUIPPED WITH SUCH A DEVICE.
Johnson Optical modulators for fiber optic sensors
Yu et al. EO functional waveguide using the electric-field-poled polymeric material for integrated-optic devices
Ma et al. Simple transmission technique for measuring the electro-optic coefficients of poled polymer films.
KR100749871B1 (en) Wavelength conversion tunable device with optical waveguide and optical modulated electrode
JPS6038689B2 (en) Method for manufacturing waveguide electro-optic light modulator
Quilty et al. Tunable Bragg gratings in polymer thin films
JPH11288011A (en) Wavelength variable pseudo phase matching element
JPH03105310A (en) Optical delay device