JPS62222670A - Organic thin-film element - Google Patents

Organic thin-film element

Info

Publication number
JPS62222670A
JPS62222670A JP61066289A JP6628986A JPS62222670A JP S62222670 A JPS62222670 A JP S62222670A JP 61066289 A JP61066289 A JP 61066289A JP 6628986 A JP6628986 A JP 6628986A JP S62222670 A JPS62222670 A JP S62222670A
Authority
JP
Japan
Prior art keywords
organic thin
electrode
thin film
film
molecules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61066289A
Other languages
Japanese (ja)
Inventor
Koichi Mizushima
公一 水島
Akira Miura
明 三浦
Nobuhiro Motoma
信弘 源間
Toshio Nakayama
中山 俊夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61066289A priority Critical patent/JPS62222670A/en
Publication of JPS62222670A publication Critical patent/JPS62222670A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To output a threshold by forming an electrode outputting potential fluctuation generated as the result of charge transfer besides two electrodes applying voltage in an organic thin-film element in which an organic thin-film is used and charge transfer among donor molecules and acceptor molecules by applying voltage is utilized. CONSTITUTION:A first organic thin-film (a donor molecular film) 13 containing donor molecules and a second organic thin-film (an acceptor molecular film) 4 containing acceptor molecules are laminated onto an Al electrode 1 (a third electrode) in succession through an organic thin-film (an insulating molecular film) 2 containing insulating molecules, and an insulating molecular film 5 is laminated onto the organic thin-film 4. A first Au electrode (a first electrode) 6 and a second Au electrode (a second electrode) 7 are shaped onto the insulating molecular film 5 at a regular interval. Accordingly, potential fluctuation in the organic thin-films at a time when charges transfer among donor molecules and acceptor molecules is outputted from the third electrode 1, and a threshold element, which uses only the organic thin-films and has novel three terminals, is acquired.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、有機薄膜を用いた素子に係り、特にドナー性
分子とアクセプタ性分子間の電荷移動現象を利用した新
しい機能素子に関する。
[Detailed Description of the Invention] [Purpose of the Invention (Industrial Field of Application) The present invention relates to an element using an organic thin film, and particularly relates to a new function utilizing a charge transfer phenomenon between a donor molecule and an acceptor molecule. Regarding elements.

(従来の技術) 近年、ラングミーア・ブロジェット法(以下、LB法と
いう)に代表される有機分子の超薄膜形成技術の進展に
より、有機薄膜各種素子への応用技術開発が活発化して
いる。ダーラム(Du h r am)大学のロバーツ
(G、G、Roberts )の、有機薄膜を用いたM
IS素子の研究を代表として、この釉の研究が各所で行
われている。しかし現状では、有機薄膜の性質を有効に
利用した新しい機能の素子は未だ実現されていない。
(Prior Art) In recent years, with the progress of ultra-thin film formation technology of organic molecules represented by the Langmeer-Blodgett method (hereinafter referred to as LB method), the development of applied technology to various organic thin film devices has become active. Roberts (G, G, Roberts) of Durham University, using organic thin films.
Research on this glaze is being conducted in various places, with research on IS elements being a representative example. However, at present, no element with new functions that effectively utilizes the properties of organic thin films has yet been realized.

素子応用の面から見て有機材料の特性の中で特に注目さ
れるのは、分子間の電荷移動の現象である。有機材料に
は、イオン化ポテンシャルが小さく他の分子に電子を供
給して自らは正のイオン状態になシ易いドナー性分子と
、電子親和力が大きく他の分子から電子を受取り自らは
負のイオン状態にな夛易いアクセプタ性分子とがある。
Among the characteristics of organic materials from the perspective of device applications, the phenomenon of intermolecular charge transfer is particularly noteworthy. Organic materials have donor molecules that have a small ionization potential and easily become positive ions by supplying electrons to other molecules, and donor molecules that have a high electron affinity and receive electrons from other molecules and become negative ions themselves. There are many acceptor molecules.

これら二種の分子間には電荷移動錯体と総称される化合
物が形成されることはよく知られている。例えば、ペレ
リンとテトラシアノキノジメタン(TCNQ)  との
間の化合物は電荷の移動しない中性分子からなる化合物
であるが、テトラメチルフェニレンジアミン(TMPD
)とTCNQではそれぞれ分子が正、負となったイオン
性の化合物となる。また、テトラチアフルバレン(TT
F)とクロラニルの場合のように、温度や圧力によって
中性からイオン性への転移が観測されることも知られて
いる。
It is well known that a compound collectively called a charge transfer complex is formed between these two types of molecules. For example, the compound between pererin and tetracyanoquinodimethane (TCNQ) is a compound consisting of neutral molecules that do not transfer charge, but tetramethylphenylenediamine (TMPD)
) and TCNQ are ionic compounds with positive and negative molecules, respectively. In addition, tetrathiafulvalene (TT
It is also known that a transition from neutrality to ionicity is observed depending on temperature and pressure, as in the case of F) and chloranil.

この様な有機材料の電荷移動の現象を素子の動作原理と
して応用する場合、電荷移動の効率、応答速度、制御性
等の電荷移動の特性そのものが優れていること、及び電
荷移動を起こすような材料、素子が容易に形成できるこ
と、等が要求される。
When applying the phenomenon of charge transfer in organic materials as the operating principle of an element, it is important that the charge transfer characteristics themselves, such as charge transfer efficiency, response speed, and controllability, are excellent, and that the charge transfer phenomenon that causes charge transfer is excellent. Materials and elements that can be easily formed are required.

電荷移動錯体結晶については、結晶作成が極めて難しい
こと、および電荷移動を外部で制御することが難しいこ
と、等の問題がある。また、金属と有機分子膜の間の電
荷移動を光や電界によ多制御してスイッチング素子ある
いはメ七り素子に利用する試みもなされているが、これ
らの電荷移動の効率、応答速度、寿命等に大きな問題を
抱えている。この様に電荷移動の現象は、素子応用の可
能性が期待されつつも、現状では未だ実用に供されてい
ない。
There are problems with charge transfer complex crystals, such as that it is extremely difficult to create the crystal and that it is difficult to control charge transfer externally. In addition, attempts have been made to control the charge transfer between metals and organic molecular films using light or electric fields and use them in switching devices or switching devices, but the efficiency of charge transfer, response speed, and lifespan of these devices are difficult to achieve. etc. have big problems. Although the phenomenon of charge transfer is expected to have potential for device applications, it has not yet been put to practical use.

(発明が解決しようとする問題点) 以上のように有機薄膜は、新しい機能の素子への応用が
期待されながら、未だその様な素子は実現されていない
(Problems to be Solved by the Invention) As described above, although organic thin films are expected to be applied to devices with new functions, such devices have not yet been realized.

本発明は上記の点に鑑みなされたもので、有機薄膜の電
荷移動現象ff:動作原理とした、新しい機能の有機薄
膜素子を提供することを目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide an organic thin film element with a new function based on the charge transfer phenomenon ff of an organic thin film as an operating principle.

[発明の構成] (問題点を解決するための手段) 本発明にかかる有機薄膜素子は、ドナー性分子とアクセ
プタ性分子を含む有機薄膜の有機分子間の電荷移動現象
を利用する多端子素子であり、具体的には、有機薄膜に
電圧を印加するための第1 、@2の電極と、電圧印加
によるドナー性分子とアクセプタ性分子間の電荷移動現
象に伴う電位変化を出力する第3の電極の少なくとも3
つ電極を設けたことを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) The organic thin film device according to the present invention is a multi-terminal device that utilizes a charge transfer phenomenon between organic molecules of an organic thin film containing donor molecules and acceptor molecules. Specifically, there are first and second electrodes for applying voltage to the organic thin film, and a third electrode for outputting potential changes due to charge transfer phenomenon between donor molecules and acceptor molecules due to voltage application. at least 3 of the electrodes
It is characterized by having two electrodes.

ここで有機薄膜は、ドナー性分子を含む第1の有機薄膜
とアクセプタ性分子を含む第2の有機薄膜の積層構造と
してもよいし、ドナー性分子とアクセプタ性分子を共に
含む混合薄膜としてもよい。
Here, the organic thin film may have a laminated structure of a first organic thin film containing donor molecules and a second organic thin film containing acceptor molecules, or may be a mixed thin film containing both donor molecules and acceptor molecules. .

また、本発明において好ましくは、有機薄膜としてLB
法によ膜形成された単分子膜あるいはこれを複数層累積
した超薄膜を用いる。有機物質中を動く電子あるいはホ
ールの速度は一般に無機半導体中のそれより遅いが、数
又〜数10Xという超薄膜を用いることにより、十分高
速度の電荷移動が可能であシ、ま九実際にLB法により
その様な膜形成が可能である。
Further, in the present invention, preferably LB is used as the organic thin film.
A monomolecular film formed by a method or an ultra-thin film formed by stacking multiple layers thereof is used. The speed of electrons or holes moving in organic materials is generally slower than that in inorganic semiconductors, but by using ultra-thin films of several to several tens of times, it is possible to transfer charges at a sufficiently high speed. Such a film can be formed by the LB method.

(作用) 本発明の構成によれば、第1.第2の電極によって有機
薄膜に電圧を印加することによりドナー性分子とアクセ
プタ性分子間で電荷移動が生じ、これによる有機薄膜内
の電位変化を第3の電極から出力することで、有機薄膜
のみを用いた新しい3端子のしきい値素子が得られる。
(Function) According to the configuration of the present invention, first. By applying a voltage to the organic thin film with the second electrode, charge transfer occurs between donor molecules and acceptor molecules, and the resulting change in potential within the organic thin film is output from the third electrode, allowing only the organic thin film to move. A new three-terminal threshold device using this method can be obtained.

(実施例) 以下本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は一実施例の有機薄膜素子である。図において、
1はAt電極(第3の電極)であシ、この上に絶縁性分
子を含む有機薄膜(絶縁性分子膜)2を介してドナー性
分子を含む第1の有機薄膜(ドナー性分子膜)3、アク
セプタ性分子を含む第2の有機簿膜(アクセプタ性分子
膜)4が順次積層され、更にこの上に絶縁性分子膜5が
積層されている。この絶縁性分子膜5上には、所定間隔
をおいて第1のAu電極(第1の電極)6および第2の
Au電極(第2の電極)7が形成されている。
FIG. 1 shows an example of an organic thin film device. In the figure,
Reference numeral 1 denotes an At electrode (third electrode), and a first organic thin film (donor molecular film) containing donor molecules is formed on the At electrode (third electrode) through an organic thin film (insulating molecular film) 2 containing insulating molecules. 3. A second organic film (acceptor molecular film) 4 containing acceptor molecules is sequentially laminated, and an insulating molecular film 5 is further laminated thereon. A first Au electrode (first electrode) 6 and a second Au electrode (second electrode) 7 are formed on this insulating molecular film 5 at a predetermined interval.

このように構成された素子の動作を次に説明する。第1
のAu電極6と第2のAu電極2間に、例えば第2のA
u電極7を接地して第1のAu電極6側が正となる電圧
を印加すると、あるしきい値以上でドナー性分子(D)
膜3からアクセプタ性分子(ト)膜4へ電子が遷移し、
それぞれD” 、 A−のイオン状態となり、有機薄膜
の伝導度が増大する。但しこの現象は、第1のAu電極
6とA/、電極1に挾まれた部分でのみ生じる。即ちA
t電極1と第2のAu電極7間については、At電、匝
1と第1のAu電極6の間とは逆方向の電界がかかるた
め、電子の遷移は生じない。そこでAt電極1を出力電
極としてその電位変化を見ると、第1のAu電極6の電
位があるしきい値に達することにより急激に上昇する。
The operation of the element configured in this way will be described next. 1st
For example, between the Au electrode 6 and the second Au electrode 2,
When the u electrode 7 is grounded and a voltage is applied such that the first Au electrode 6 side is positive, donor molecules (D)
Electrons transfer from the membrane 3 to the acceptor molecule (g) membrane 4,
They become D" and A- ion states, respectively, and the conductivity of the organic thin film increases. However, this phenomenon occurs only in the portions sandwiched between the first Au electrode 6 and A/, and electrode 1. That is, A
Since an electric field is applied between the t-electrode 1 and the second Au electrode 7 in the opposite direction to that between the t-electrode 1 and the first Au electrode 6, no electron transition occurs. Therefore, when the At electrode 1 is used as an output electrode and its potential changes are observed, the potential of the first Au electrode 6 suddenly increases when it reaches a certain threshold value.

つまりこの素子はしきい値素子として機能することにな
る。
In other words, this element functions as a threshold element.

この有機薄膜素子の具体的な製造工程例は次の通シであ
る。ポリーL−フェニルアラニンを1=5の体積比のジ
クロル酢酸−クロロホルム溶液に約11n9/−の濃度
となるように溶解してLB膜展開溶液を形成した。この
製膜分子は13 dyne/crn社の表面圧で凝縮膜
となることが表面圧−分子占有面積曲線から知られた。
A specific example of the manufacturing process for this organic thin film element is as follows. An LB membrane developing solution was prepared by dissolving poly-L-phenylalanine in a dichloroacetic acid-chloroform solution having a volume ratio of 1=5 to a concentration of about 11n9/-. It was known from the surface pressure-molecule occupied area curve that this film-forming molecule forms a condensed film at a surface pressure of 13 dyne/crn.

LBB形成装置は市販の垂直引上げ方式のものを用い、
展開、累積に先だって水相をm=6.0に設定し、共存
塩として2価カドミウム塩を約0.05mM添加し、水
温を20℃に保った。At電極1となるAt膜を形成し
たガラス基板をとの水相に設置し、上記製膜分子を60
0μtトラニツト法により展開して、表面圧t−20d
yna /αに設定して単分子膜を安定させた。そして
引上げ速度70μm 7m i nでこの基板を引上げ
、単分子からなるLB膜を累積した。累積数は10層と
した。これが絶縁性分子膜2である。
The LBB forming device uses a commercially available vertical pulling type device.
Prior to development and accumulation, the aqueous phase was set at m=6.0, about 0.05 mM of divalent cadmium salt was added as a coexisting salt, and the water temperature was maintained at 20°C. A glass substrate on which an At film was formed to become At electrode 1 was placed in an aqueous phase of
Developed by 0μt tranit method, surface pressure t-20d
The monolayer was stabilized by setting yna /α. Then, this substrate was pulled up at a pulling speed of 70 μm and 7 min to accumulate an LB film consisting of a single molecule. The cumulative number was 10 layers. This is the insulating molecular film 2.

ドナー性分子膜3としては、パラフェニレンジアミンと
ポリーL−フェニルアラニンtl:IK混合したものを
上記と同様の方法で単層形成した。
As the donor molecular film 3, a single layer of a mixture of paraphenylene diamine and poly L-phenylalanine tl:IK was formed in the same manner as above.

アクセプタ性分子膜4としては、テトラシアノキノジメ
タンをポリーL−フェニルアラニンと1:1に混合した
ものをやはり同様の方法で単層形成した。以上のドナー
性分子膜とアクセプタ性分子膜の累積を10回繰返して
LB膜超超格子形成した。
As the acceptor molecular film 4, a single layer of tetracyanoquinodimethane mixed with poly L-phenylalanine at a ratio of 1:1 was formed in the same manner. The above-described accumulation of the donor molecular film and acceptor molecular film was repeated 10 times to form an LB film super-superlattice.

この超格子上に、先の絶縁性分子膜2と同様の絶縁性分
子膜5を形成し、その上に直径0.3 waxのAu電
極6.7を1ffi11間隔で形成した。
An insulating molecular film 5 similar to the above-mentioned insulating molecular film 2 was formed on this superlattice, and Au electrodes 6.7 each having a diameter of 0.3 wax were formed thereon at intervals of 1ffi11.

第2図はこのように構成された素子に、第1のAu電極
6と第2のAu電極2間に電圧を印加した時の、At電
極1と第2のAu電極7間の′電圧変化を測定した結果
である。図から明らかなようにこの実施例の素子では、
第1のAu電極6と第2のAu  電極7間の電圧が3
v近傍でAt電極lと第2のAu電極7間の電圧が急激
に立上がる特性を示す。
FIG. 2 shows the voltage change between the At electrode 1 and the second Au electrode 7 when a voltage is applied between the first Au electrode 6 and the second Au electrode 2 in the element configured in this way. This is the result of measuring. As is clear from the figure, in the device of this example,
The voltage between the first Au electrode 6 and the second Au electrode 7 is 3
The voltage between the At electrode 1 and the second Au electrode 7 rises rapidly in the vicinity of v.

第3図は別の実施例の有機薄膜素子である。この素子で
は有機薄膜中に第3の電極が埋め込まれた構造としてい
る。即ちAt電極(第1の電極)11上に絶縁性分子膜
12、アクセプタ性分子膜13、ドナー性分子膜14、
絶縁性分子膜15を順次積層形成し、この上にAt電極
(第3の電極)16を形成した後、更にこの上に絶縁性
分子膜17、ト°ナー性分子膜18、アクセプタ性分♀
膜19、絶縁性分子膜20を積層し、その上にAt電極
(第2の電極)2ノを形成している。At電極1ノと1
6間のドナー性分子膜とアクセプタ性分子膜の積層j@
序と、At′I!l極16と2極間6ドナー性分子膜と
アクセプタ性分子膜の積層順序とは異なっている。
FIG. 3 shows another example of an organic thin film device. This element has a structure in which a third electrode is embedded in an organic thin film. That is, on the At electrode (first electrode) 11, an insulating molecular film 12, an acceptor molecular film 13, a donor molecular film 14,
After sequentially forming an insulating molecular film 15 and forming an At electrode (third electrode) 16 thereon, an insulating molecular film 17, a toner molecular film 18, and an acceptor component are formed on top of this.
A film 19 and an insulating molecular film 20 are laminated, and an At electrode (second electrode) 2 is formed thereon. At electrode 1 and 1
Lamination of donor molecular film and acceptor molecular film between 6@
Introduction and At'I! The stacking order of the donor molecular film and the acceptor molecular film between the l pole 16 and the two poles is different.

このように構成された素子もしきい値素子として機能す
る。即ちAt電極11を接地してAt電極21に電圧を
印加すると、これが所定値以上でAt電極16上のドナ
ー性分子膜18とアクセプタ性分子膜19間で電子遷移
が生じる。At電極16下の部分ではこの様な電子遷移
は生じない。従ってAt電極16には、先の実施例と同
様にある点で急激に立上がる電位変化が現れる。
The element configured in this manner also functions as a threshold element. That is, when the At electrode 11 is grounded and a voltage is applied to the At electrode 21, when the voltage exceeds a predetermined value, an electron transition occurs between the donor molecular film 18 and the acceptor molecular film 19 on the At electrode 16. Such electronic transition does not occur in the portion below the At electrode 16. Therefore, a potential change appears on the At electrode 16, which suddenly rises at a certain point, as in the previous embodiment.

第4図はその素子特性を示したものである。これは、第
3図の各有機薄膜を先の実施例と同様の材料、方法でL
B法により形成した素子について測定した結果である。
FIG. 4 shows the device characteristics. Each organic thin film in FIG. 3 was made using the same materials and method as in the previous example
These are the results of measurements on elements formed by Method B.

図から明らかなように先の実施例の素子と同様の特性が
得られている。
As is clear from the figure, characteristics similar to those of the device of the previous example are obtained.

本発明は上記実施例に限られるものではない。The present invention is not limited to the above embodiments.

例えば用いる有機薄膜はドナー性分子とアクセプタ性分
子間電荷移動現象を利用できるものであればよく、ドナ
ー性分子膜とアクセプタ性分子膜の積層構造の他、ドナ
ー性分子とアクセプタ性分子の混合膜を用いることがで
きる。また本発明は有機薄膜の伝導度特性の他、例えば
吸光率等の変化を利用する素子であって、二つの信号電
圧入力用′社標と制御電極を設けた多端子素子等に利用
することができる。
For example, the organic thin film to be used may be one that utilizes the charge transfer phenomenon between donor molecules and acceptor molecules, and may have a laminated structure of donor molecules and acceptor molecules, or a mixed film of donor molecules and acceptor molecules. can be used. In addition to the conductivity characteristics of organic thin films, the present invention also relates to elements that utilize changes in absorbance, etc., and can be applied to multi-terminal elements equipped with two signal voltage input marks and a control electrode. I can do it.

本発明において用いられるドナー性分子とじては、以下
に示すようなものが挙げられる。
Examples of donor molecules used in the present invention include those shown below.

(1)  以下のような構造式をもつフルバレン型ドナ
ー(2)  以下のような構造式をもつ含S複素環型ド
ナーe−8e To−T。
(1) Fullvalene type donor having the following structural formula (2) S-containing heterocyclic donor e-8e To-T having the following structural formula.

S ここでφはフェニル基を表わす。S Here, φ represents a phenyl group.

(3)以下のような構造式をもつアミン型ドナーH2 テトラメチルベンジジン (4)以下のような構造式をもつ金属化合物型ドナFe
         フエロセン 0・・・H・・・0 0・・・H・・・0 (5)以下のような構造式をもつシアニン色素ドナーR
R RR RR RR Me               Me(6)以下の
ような構造式をもつ含N複素猿型ドナー−−−イ2ゝづ
、□ゝゝ−−−  ポリアセチレン(1)から(7)に
示したドナー性分子はその構造式のままでも、おるいは
それを骨格として、CH,(CH2+F1. CH辻C
H2量CH2=CH’、堂CH2す(n及びp 十q 
+tは8以上)からなる疎水基を有した誘導体でも、あ
るいは−〇〇〇H、−OH。
(3) Amine type donor H2 having the following structural formula Tetramethylbenzidine (4) Metal compound type donor Fe having the following structural formula
Ferrocene 0...H...0 0...H...0 (5) Cyanine dye donor R having the following structural formula
R RR RR RR Me Me (6) N-containing complex type donor with the following structural formula---I2ゝゝゝゝゝゝゝ--- Donor properties shown in polyacetylenes (1) to (7) The molecule can retain its structural formula, or use it as a skeleton to form CH, (CH2+F1. CH Tsuji C
H2 amount CH2 = CH', do CH2 (n and p 10q
+t is 8 or more), or -〇〇〇H, -OH.

−8o、H、−COOR’ 、−NH3,−1#(R’
) Y” (Yは八〇グン)からなる親水基を有する誘
導体でも、あるいはこれら疎水基と親水基を共に有する
誘導体でもよい。
-8o, H, -COOR', -NH3, -1#(R'
) Y" (Y is 80 g), or a derivative having both a hydrophobic group and a hydrophilic group.

アクセプタ性分子としては、以下に示すような分子を用
いることができる。
As the acceptor molecule, the following molecules can be used.

(8)  以下のような構造式をもつシアン化合物凰ア
クセグタ NCCN (9)以下のような構造式をもつキノン型アクセグタe 00 以下のような構造式をもっニトロ化合物型アクセ
ゾタ (8)からα0に示したアクセプタ性分子はその構造式
のままでも、あるいはそれを骨格として、CH5(CH
2垢、 CH3(−C)I2祐4CH2=CH2ヤCH
2九(n及びp 十q +tは8以上)からなる疎水基
を有した誘導体でも、あるいは−COOH、−OH。
(8) Cyanide compound accessor NCCN with the following structural formula (9) Quinone type accessor e 00 with the following structural formula e 00 From nitro compound type accessor (8) with the following structural formula to α0 The acceptor molecule shown can be used as its structural formula or as a backbone of CH5 (CH
2 marks, CH3 (-C) I2 Yu 4 CH2 = CH2 Ya CH
29 (n and p 10q + t are 8 or more), or -COOH, -OH.

−8O5Hl −COOR’ 、−NH2,−N”(R
’)、Y−(Yはハロゲン)からなる親水基を有する誘
導体でも、あるいはこれら疎水基と親水基を共に有する
誘導体でもよい。
-8O5Hl -COOR', -NH2, -N''(R
'), Y- (Y is a halogen), or a derivative having both these hydrophobic and hydrophilic groups.

本発明でのドナー性分子膜やアクセプタ性分子膜におい
て、ドナー性分子やアクセプタ性分子と混合して用いら
れる絶縁性分子、あるいは絶縁性分子膜に用いられる絶
縁性分子としては、以下のような分子が用いられる。
In the donor molecule film and acceptor molecule film in the present invention, the insulating molecules used in combination with the donor molecule and acceptor molecule, or the insulating molecules used in the insulating molecule film, are as follows. molecules are used.

αυ 下記一般式で表わされる置換可能々飽和炭化水素
誘導体 −X ここで、Rは置換可能なCH3(CHz)n−あるいは
CH,−fCH29CH2=CH2屋CH21(但し、
n及びp+q+tは8以上)からなる疎水基でおる。ま
たXは親水基を表わし、−Coo)I 、 −OH、−
8o3H。
αυ Substitutable saturated hydrocarbon derivative -X represented by the following general formula, where R is substitutable CH3(CHz)n- or CH, -fCH29CH2=CH2yaCH21 (however,
n and p+q+t are 8 or more). Moreover, X represents a hydrophilic group, -Coo)I, -OH, -
8o3H.

−COOR’ 、 −NH、−N”(R’)3Y″″(
YはハO)f 7 )などが挙げられる。
-COOR', -NH, -N"(R')3Y""(
Y is HaO)f7), and the like.

αり 種々の重合性分子 例えば、置換可能なアクリレート、メタクリレート、ビ
ニルエーテル、スチレン、ビニルアルコール、アクリル
アミド、アクリルなどのビニル重、合体。あるいは、ア
ラニン、グルタメート、アスパルテート、などのα−ア
ミノ酸、ε−アミノカプロン酸等のα−アミノ酸以外の
アミノ酸。ヘキサメチレンジアミン等のジアミンと、ヘ
キサメチレンジカルノン酸等のジカルデン酸1:1混合
物よシなるポリアミド重合体。
Various polymerizable molecules such as vinyl polymers and polymers such as substitutable acrylates, methacrylates, vinyl ethers, styrene, vinyl alcohols, acrylamides, and acrylics. Alternatively, α-amino acids such as alanine, glutamate, aspartate, etc., and amino acids other than α-amino acids such as ε-aminocaproic acid. A polyamide polymer consisting of a 1:1 mixture of a diamine such as hexamethylene diamine and a dicardic acid such as hexamethylene dicarnoic acid.

これらの分子はそれ自身累積が可能な場合は単独で用い
ることができる。単独で製膜できないよ(+4+ うな分子はへで示したような単独で製膜できる絶縁性分
子と混合して用いる。
These molecules can be used alone if they themselves can be accumulated. It is not possible to form a film by itself (+4+) Such molecules are used in combination with insulating molecules that can be formed into films by themselves, as shown in section 3.

[発明の効果コ 以上述べたように本発明によれば、ドナー性分子とアク
セプタ性分子を含む有機薄膜を用い、電圧印加によシド
ナー性分子とアクセプタ性分子間の電荷移動を利用する
有機薄膜素子であって、電圧を印加する二つの電極の他
に電荷移動の結果化じる電位変化を出力する電極を設け
て、新しいしきい値素子を提供することができる。
[Effects of the Invention] As described above, according to the present invention, an organic thin film that uses an organic thin film containing donor molecules and acceptor molecules and utilizes charge transfer between donor molecules and acceptor molecules upon application of a voltage can be obtained. A new threshold element can be provided by providing, in addition to the two electrodes for applying a voltage, an electrode for outputting a potential change resulting from charge transfer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の有機薄膜素子を示す図、第
2図はその特性を示す図、第3図は他の実施例の有機薄
膜素子を示す図、第4図はその特性を示す図である。 1・−At電極(第3の電極)、2,5・・・絶縁性分
子膜、3・・・ドナー性分子膜、4・・・アクセプタ性
分子膜、6・・・Au電極(第1の電極)、2・・・A
u ’dl極(第2の電極)、11・・・At電極(第
1の電極)、12.15.17.20・・・絶縁性分子
膜、13゜19・・・アクセプタ性分子膜、14.Il
l・・・ドナー性分子膜、16・・・At電極(第3の
電極)、21・・・At電極(第2の電極)。 出願人代理人  弁理士 鈴 江 武 彦M 1   
       Mt 第 1 図 M+ −M2  no電Fiff) 第2r3 −一一一一〜 −〜か ■■ 0
FIG. 1 is a diagram showing an organic thin film device according to an embodiment of the present invention, FIG. 2 is a diagram showing its characteristics, FIG. 3 is a diagram showing an organic thin film device according to another embodiment, and FIG. 4 is a diagram showing its characteristics. FIG. 1.-At electrode (third electrode), 2, 5... Insulating molecular film, 3... Donor molecular film, 4... Acceptor molecular film, 6... Au electrode (first electrode), 2...A
u'dl pole (second electrode), 11... At electrode (first electrode), 12.15.17.20... insulating molecular film, 13°19... acceptor molecular film, 14. Il
1... Donor molecular film, 16... At electrode (third electrode), 21... At electrode (second electrode). Applicant's agent Patent attorney Takehiko Suzue M 1
Mt 1st Figure M+ -M2 no electric Fiff) 2nd r3 -1111~ -~? ■■ 0

Claims (7)

【特許請求の範囲】[Claims] (1)ドナー性分子とアクセプタ性分子を含む有機薄膜
を有し、この有機薄膜に電圧を印加するための第1、第
2の電極と、電圧印加による前記ドナー性分子とアクセ
プタ性分子間の電荷移動現象による電位変化を出力する
第3の電極の少なくとも3個の電極を有することを特徴
とする有機薄膜素子。
(1) It has an organic thin film containing a donor molecule and an acceptor molecule, first and second electrodes for applying voltage to the organic thin film, and a connection between the donor molecule and the acceptor molecule by applying a voltage. An organic thin film element comprising at least three electrodes, a third electrode outputting a potential change due to a charge transfer phenomenon.
(2)前記第1、第2の電極間に入力電圧を印加し、第
3の電極を出力電極として、入力電圧が所定値で出力電
極の電位が急激に変化するしきい値素子を構成した特許
請求の範囲第1項記載の有機薄膜素子。
(2) An input voltage is applied between the first and second electrodes, and the third electrode is used as an output electrode to constitute a threshold element in which the potential of the output electrode changes rapidly when the input voltage is a predetermined value. An organic thin film device according to claim 1.
(3)前記有機薄膜の一方の面に所定間隔をおいて第1
および第2の電極が形成され、他方の面に第3の電極が
形成されている特許請求の範囲第1項記載の有機薄膜素
子。
(3) A first layer on one surface of the organic thin film at a predetermined interval.
2. The organic thin film element according to claim 1, wherein a second electrode is formed on the other surface, and a third electrode is formed on the other surface.
(4)前記有機薄膜の一方の面に第1の電極、他方の面
に第2の電極が形成され、有機薄膜内部に第3の電極が
埋設されている特許請求の範囲第1項記載の有機薄膜素
子。
(4) A first electrode is formed on one surface of the organic thin film, a second electrode is formed on the other surface, and a third electrode is embedded inside the organic thin film. Organic thin film device.
(5)前記有機薄膜は、ドナー性分子を含む第1の有機
薄膜とアクセプタ性分子を含む第2の有機薄膜の積層構
造からなる特許請求の範囲第1項記載の有機薄膜素子。
(5) The organic thin film element according to claim 1, wherein the organic thin film has a laminated structure of a first organic thin film containing donor molecules and a second organic thin film containing acceptor molecules.
(6)前記有機薄膜は、ドナー性分子とアクセプタ性分
子を共に含む混合薄膜からなる特許請求の範囲第1項記
載の有機薄膜素子。
(6) The organic thin film element according to claim 1, wherein the organic thin film is a mixed thin film containing both donor molecules and acceptor molecules.
(7)前記有機薄膜は、ラングミュア・プロジェット法
により形成された膜である特許請求の範囲第1項記載の
有機薄膜素子。
(7) The organic thin film device according to claim 1, wherein the organic thin film is a film formed by the Langmuir-Prodgett method.
JP61066289A 1986-03-25 1986-03-25 Organic thin-film element Pending JPS62222670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61066289A JPS62222670A (en) 1986-03-25 1986-03-25 Organic thin-film element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61066289A JPS62222670A (en) 1986-03-25 1986-03-25 Organic thin-film element

Publications (1)

Publication Number Publication Date
JPS62222670A true JPS62222670A (en) 1987-09-30

Family

ID=13311516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61066289A Pending JPS62222670A (en) 1986-03-25 1986-03-25 Organic thin-film element

Country Status (1)

Country Link
JP (1) JPS62222670A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5500537A (en) * 1989-08-17 1996-03-19 Mitsubishi Denki Kabushiki Kaisha Field-effect transistor with at least two different semiconductive organic channel compounds
US6559473B1 (en) * 1994-08-05 2003-05-06 Hoechst Japan Limited Light-emitting diodes with hetero-PN-junction
JP2006240991A (en) * 2005-02-28 2006-09-14 Momoya Co Ltd Antioxidant using extract of green algae belonging to the genus monostroma as active ingredient

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5500537A (en) * 1989-08-17 1996-03-19 Mitsubishi Denki Kabushiki Kaisha Field-effect transistor with at least two different semiconductive organic channel compounds
US6559473B1 (en) * 1994-08-05 2003-05-06 Hoechst Japan Limited Light-emitting diodes with hetero-PN-junction
JP2006240991A (en) * 2005-02-28 2006-09-14 Momoya Co Ltd Antioxidant using extract of green algae belonging to the genus monostroma as active ingredient

Similar Documents

Publication Publication Date Title
US5206525A (en) Electric element capable of controlling the electric conductivity of π-conjugated macromolecular materials
KR102489823B1 (en) Electronic parts
JPS62222668A (en) Organic thin-film element
EP2111654B1 (en) Organic transistor using thiazolothiazole derivatives and method for fabricating the same
EP0239368B1 (en) Field-effect transistor
Dashitsyrenova et al. Molecular structure–electrical performance relationship for OFET-based memory elements comprising unsymmetrical photochromic diarylethenes
US7876596B2 (en) Memory element and method for manufacturing same
JPS62222670A (en) Organic thin-film element
Kamo et al. Transport phenomena in a model membrane accompanying a conformational change: transient processes in response to external stimuli
US10581003B2 (en) Method for lithograghic patterning of sensitive materials
JPH02239664A (en) Electric memory
JP3592226B2 (en) Method for producing functional organic thin film
US20020190759A1 (en) Electrochemically accelerated self-assembly of molecular devices
Potje‐Kamloth et al. Photochemical Tuning of Field‐Effect Transistor with Polyaniline Gate Conductor
Lim et al. Electrochemical Properties of Dopants and the D‐C Dynamic Scattering of a Nematic Liquid Crystal
JPS63161433A (en) Display device
JP2022107072A (en) Variable resistance device and manufacturing method for the same
JPS63140576A (en) Field-effect transistor
JPS6276551A (en) Organic thin-film many-valued element
JPS6370543A (en) Processing for organic conductive layer
Samuel et al. Diketopyrrolopyrrole based polymers for n-type organic electrochemical transistors
KR20130022742A (en) Non-volatile memory comprising conductive polymer and fabrication method thereof
Homs Pons et al. Effect of the interfacial dipole layer based on glycine on the electrical characteristics of organic Thin-Film Transistors
JP2005332977A (en) Switching element
WO2023141449A1 (en) Voltage controlled organic inverse photo transistor and applications thereof