JPS62219570A - Manufacture of lateral hetero-junction bipolar transistor - Google Patents

Manufacture of lateral hetero-junction bipolar transistor

Info

Publication number
JPS62219570A
JPS62219570A JP6332886A JP6332886A JPS62219570A JP S62219570 A JPS62219570 A JP S62219570A JP 6332886 A JP6332886 A JP 6332886A JP 6332886 A JP6332886 A JP 6332886A JP S62219570 A JPS62219570 A JP S62219570A
Authority
JP
Japan
Prior art keywords
region
bipolar transistor
implant
ions
dosage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6332886A
Other languages
Japanese (ja)
Inventor
Kazuhiko Honjo
和彦 本城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6332886A priority Critical patent/JPS62219570A/en
Publication of JPS62219570A publication Critical patent/JPS62219570A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize a transverse hetero-junction bipolar transistor having a thickness of 0.1-0.2mum that has been impossible according to prior arts, by utilizing convergent ion beams for implanting N- and P-type dopants and for forming a mixed crystal compound semiconductor. CONSTITUTION:Be convergent ion beans 5 are applied to a region 2 on the surface of a semi-insulating GaAs substrate 1 with an accelerating energy of 100keV and in a dosage of 5X10<14>cm<-2>, for example, so as to implant Be ions therein. Then Si convergent ion beams 6 are applied to a region 4 adjacent to the region 2 with an accelerating energy of 200keV and in a dosage of 1X10<13>cm<-2>, for example, so as to implant Si ions therein. Further, Si convergent ion beams 8 are applied to a region 2 adjacent top the region 2 with an accelerating energy of 200keV and in a dosage of 5X10<12>cm<-2>, for example, so as to implant Si ions therein. Further, Al convergent ion beams 7 are applied to the region 4 with an accelerating energy of 200keV and in a dosage of 1X10<22>cm<-2>, for example, so as to implant A ions therein. The structure is then heat treated at a temperature of 850 deg.C for forming ohmic electrodes in the regions 4, 2 and 3 separately. Thus, a transverse hetero-junction bipolar transistor is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はヘテロ接合バイポーラトランジスタの製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a heterojunction bipolar transistor.

(従来の技術) ヘテロ接合バイポーラトランジスタはベース層を高濃度
にしてもエミッタ注入効率を大きくすることができるた
め、超高速集積回路用半導体素子およびマイクロ波ミリ
波用素子として期待されており各所で研究開発が行なわ
れている。通常ヘテロ接合バイポーラトランジスタは、
エミッタ、ベース、コレクタの各層が基板垂直方向に形
成される縦型構造であるが、エミッタ電極幅を微細化で
きる横型構造も提案されている。
(Prior art) Heterojunction bipolar transistors are expected to be used as semiconductor devices for ultra-high-speed integrated circuits and devices for microwave and millimeter waves because they can increase the emitter injection efficiency even if the base layer is highly doped. Research and development is underway. Typically, a heterojunction bipolar transistor is
Although this is a vertical structure in which the emitter, base, and collector layers are formed in a direction perpendicular to the substrate, a horizontal structure in which the width of the emitter electrode can be made finer has also been proposed.

横型ヘテロ接合バイポーラトランジスタを実現する方法
として従来は、選択エピタキシャル成長を用いていた。
Conventionally, selective epitaxial growth has been used as a method for realizing lateral heterojunction bipolar transistors.

第2図(1)〜(4)は従来例の横型ヘテロ接合バイポ
ーラトランジスタの製造方法を示す素子断面図である。
FIGS. 2(1) to 2(4) are device cross-sectional views showing a method of manufacturing a conventional lateral heterojunction bipolar transistor.

第2図(1)において5i0212をマスクとして半絶
縁性GaAs基板11をエツチングした後MOCVD法
によりN型AlGaAs層13を選択成長させる。次に
第2図(2)において5i0217をマスクとして半絶
縁性GaAs基板11をエツチングした後MOCVD法
によりP型GaAs層14を選択成長させる。さらに第
2図(3)ニおいて5i0218をマスクとして半絶縁
性GaAs1板11をエツチングした後N型GaAs層
15を選択成長させる。次に第2図(4)において5i
02を除去すると、N型AlGaAs層3からなるエミ
ツタ層、P型GaAs層14からなるベース層ならびに
N型GaAs層15からなるコレクタ層が形成される。
In FIG. 2(1), after etching the semi-insulating GaAs substrate 11 using 5i0212 as a mask, an N-type AlGaAs layer 13 is selectively grown by MOCVD. Next, in FIG. 2(2), the semi-insulating GaAs substrate 11 is etched using 5i0217 as a mask, and then a P-type GaAs layer 14 is selectively grown by MOCVD. Further, in FIG. 2(3), the semi-insulating GaAs1 plate 11 is etched using 5i0218 as a mask, and then an N-type GaAs layer 15 is selectively grown. Next, in Figure 2 (4), 5i
When 02 is removed, an emitter layer made of the N-type AlGaAs layer 3, a base layer made of the P-type GaAs layer 14, and a collector layer made of the N-type GaAs layer 15 are formed.

この後各層にホーム性電極を独立に形成さればヘテロ接
合バイポーラトランジスタが形成される。
Thereafter, if home electrodes are independently formed in each layer, a heterojunction bipolar transistor is formed.

(発明が解決しようとする問題点) 上記従来技術においては選択エピタキシャル成長技術を
用いているが、この方法には2つの大きな欠点がある。
(Problems to be Solved by the Invention) The above-mentioned prior art uses selective epitaxial growth technology, but this method has two major drawbacks.

その1つはlpmより細い領域には選択エピタキシャル
成長層ができにくいという点である。十分なデバイス特
性を得るためには、第2図(2)に示されたベース層厚
みWは0.2pm以下であることが必要であるが、選択
エピタキシャル法では実現できなかった。さらに第2の
欠点として、選択エピタキシャル成長層の接合界面の特
性が十分でなく界面再結合が大きいという問題もあった
One of them is that it is difficult to form a selective epitaxial growth layer in a region thinner than lpm. In order to obtain sufficient device characteristics, the base layer thickness W shown in FIG. 2(2) needs to be 0.2 pm or less, but this cannot be achieved by selective epitaxial method. Furthermore, a second drawback is that the properties of the junction interface of the selective epitaxially grown layer are insufficient, resulting in large interfacial recombination.

本発明の目的は前記欠点を除去し、0.2pm程度以下
のベース層厚を実現しさらに界面再結合の少い接合を有
する横型ヘテロ接合バイポーラトランジスタの製造方法
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a lateral heterojunction bipolar transistor that eliminates the above drawbacks, realizes a base layer thickness of about 0.2 pm or less, and has a junction with little interfacial recombination.

(問題点を解決するための手段) 半絶縁性半導体基板表面の第1の領域に集束イオンビー
ムによりP型(またはN型)ドーパントを選択イオン注
入する工程と、第1の領域に接した両横にN型(または
P型)ドーパントを集束イオンビームにより選択イオン
注入して第2.第3の領域を形成する工程と、前記第2
および第3の領域の両方またはどちらか一方に半導体基
板と格子定数がほぼ等しい2元系以上の混晶化合物半導
体を構成する元素を、ストイキオメトリ−を満足させる
ドース量で、集束イオンビームにより選択イオン注入す
る工程と、熱処理を行い第1.第2.第3の領域を活性
化する工程とを含むことを特徴とする横型ヘテロ接合バ
イポーラトランジスタの製造方法により前記問題点を解
決できる。
(Means for solving the problem) A step of selectively ion-implanting a P-type (or N-type) dopant into a first region of the surface of a semi-insulating semiconductor substrate using a focused ion beam; Laterally, N type (or P type) dopants are selectively implanted using a focused ion beam. a step of forming a third region;
Elements constituting a binary or higher mixed crystal compound semiconductor having approximately the same lattice constant as the semiconductor substrate are applied to both or one of the third regions at a dose that satisfies the stoichiometry using a focused ion beam. The first step is to perform selective ion implantation and heat treatment. Second. The above-mentioned problem can be solved by a method for manufacturing a lateral heterojunction bipolar transistor characterized by including a step of activating the third region.

(作用) このような本発明の製造方法によると、集束イオンビー
ムのビーム径が0.2pm程度以下にしぼれることから
、0.2pm幅以下の領域にP型またはN型ドーパント
を注入できるのと同時に、基板と格子定数がほぼ等しい
混晶化合物半導体用元素をイオン注入することができる
ため、0.2pm以下のベース層厚さを有する横型ヘテ
ロ接合バイポーラトランジスタが実現できる。また選択
エピタキシャル法と異なり接合界面を露出させない工程
なので、界面再結合の原因となる界面準位のレベルを下
げることも可能となる。
(Function) According to the manufacturing method of the present invention, since the beam diameter of the focused ion beam is reduced to about 0.2 pm or less, P-type or N-type dopant can be implanted into a region with a width of 0.2 pm or less. At the same time, it is possible to ion-implant an element for a mixed crystal compound semiconductor whose lattice constant is approximately the same as that of the substrate, so that a lateral heterojunction bipolar transistor having a base layer thickness of 0.2 pm or less can be realized. Furthermore, unlike the selective epitaxial method, this process does not expose the bonding interface, so it is also possible to lower the level of interface states that cause interfacial recombination.

(実施例) 第1図(1)〜(4)は本発明の一実施例の横型ヘテロ
接合バイポーラトランジスタの製造方法を示し素子断面
図である。第1図(1)において半絶縁性GaAs基板
1の表面の領域2に加速エネルギー100keVドース
量5 X 10’cm−2の条件でBe集東イオンビー
ム5を照射しBeイオン注入する。次に第1図(2)に
おいて前記領域2に接した領域4に、加速エネルギー2
00keVドース量I X 1013cm−2の条件で
Si集束イオンビーム6を照射しSiイオンを注入する
。さらに前記領域2に接した領域3に、加速エネルギー
200keV、ドース量5 X 1012cm−2の条
件でSi集束イオンビーム8を照射しSiイオンを注入
する。さらに第1図(3)において前記領域4に加速エ
ネルギー200keVドース量I X 1022cm−
2の条件でAI集束イオンビーム6を照射しAIイオン
を注入する。次に第1図(4)において850°Cで熱
処理すると領域4はエミツタ層となるドーピング量3X
1017cm−3のN型Alo25Ga(1,75AS
層となり、領域2はベース層となるドーピング量1×1
019cm−3のP型GaAs層となり、領域3はコレ
クタ層となるドーピング量6 X 1016cm−3の
N型GaAs層となる、領域4.2.3に個別にオーム
性電極を形成すると横型ヘテロ接合バイポーラトランジ
スタが形成される。第1図(4)においてベース層厚W
は0゜2pm、エミッタ電極幅tは0.1pmと極めて
微細な構造を有するデバイスが実現され、エミッタ接地
電流利得遮断周波数らが150GHzの特性が実現され
る。
(Embodiment) FIGS. 1(1) to 1(4) are device cross-sectional views showing a method for manufacturing a lateral heterojunction bipolar transistor according to an embodiment of the present invention. In FIG. 1(1), a region 2 on the surface of a semi-insulating GaAs substrate 1 is irradiated with a concentrated Be ion beam 5 at an acceleration energy of 100 keV and a dose of 5.times.10' cm@-2 to implant Be ions. Next, in FIG. 1 (2), an acceleration energy of 2
Si focused ion beam 6 is irradiated to implant Si ions under the condition of 00 keV dose I.times.10.sup.13 cm.sup.-2. Furthermore, a Si focused ion beam 8 is irradiated to a region 3 in contact with the region 2 under conditions of an acceleration energy of 200 keV and a dose of 5×10 12 cm −2 to implant Si ions. Further, in FIG. 1(3), the region 4 is given an acceleration energy of 200 keV dose I x 1022 cm-
AI focused ion beam 6 is irradiated under the conditions of 2 to implant AI ions. Next, in FIG. 1 (4), when heat treated at 850°C, region 4 becomes an emitter layer with a doping amount of 3X.
N-type Alo25Ga (1,75AS
region 2 becomes a base layer with a doping amount of 1×1
019cm-3 becomes a P-type GaAs layer, and region 3 becomes a collector layer.It becomes an N-type GaAs layer with a doping amount of 6 x 1016cm-3.If an ohmic electrode is formed individually in region 4.2.3, a lateral heterojunction is formed. A bipolar transistor is formed. In Fig. 1 (4), the base layer thickness W
A device having an extremely fine structure with a width of 0.2 pm and an emitter electrode width t of 0.1 pm was realized, and characteristics such as an emitter ground current gain cutoff frequency of 150 GHz were realized.

(発明の効果) このような本発明の製造方法においてはN型およびP型
用ドーパントの注入および、混晶化合物半導体の形成に
集束イオンビームを用いるため、従来不可能であった0
、1〜0.2pm級横型ヘテロ接合バイポーラトランジ
スタの実現が可能になった。この結果う=150GH2
級のデバイス実現が可能になり集積回路の高速化および
ミリ波帯の高効率発振増幅が達成され半導体光学上の意
義は大きい。
(Effects of the Invention) In the manufacturing method of the present invention, a focused ion beam is used for implanting N-type and P-type dopants and forming a mixed crystal compound semiconductor.
, it has become possible to realize a 1-0.2 pm class lateral heterojunction bipolar transistor. This result = 150GH2
It has become possible to realize high-speed integrated circuit devices, achieved high-speed integrated circuits, and achieved highly efficient oscillation amplification in the millimeter wave band, which is of great significance in semiconductor optics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は各々本発明一実施例および従来例の横
型ヘテロ接合バイポーラトランジスタの製造方法を示す
素子断面図で、5.6.7.8は集束イオンビーム、1
,11は半絶縁性GaAs基板、4.2.3.は各々エ
ミッタ、ベース、コレクタ層である。13.14.15
は各々選択エピタキシャル成長されたエミッタ、ベー亭
  1  図
1 and 2 are device cross-sectional views showing a manufacturing method of a lateral heterojunction bipolar transistor according to an embodiment of the present invention and a conventional example, respectively, in which 5.6.7.8 is a focused ion beam;
, 11 is a semi-insulating GaAs substrate, 4.2.3. are the emitter, base, and collector layers, respectively. 13.14.15
are selectively epitaxially grown emitters, respectively.

Claims (1)

【特許請求の範囲】[Claims] 半絶縁性半導体基板表面の第1の領域に、集束イオンビ
ームによりP型(またはN型)ドーパントを選択イオン
注入する工程と、第1の領域に接した両横にN型(また
はP型)ドーパントを集束イオンビームにより選択イオ
ン注入して第2、第3の領域を形成する工程と、前記第
2および第3の領域の両方またはどちらか一方に半導体
基板と格子定数がほぼ等しい2元系以上の混晶化合物半
導体を構成する元素を、ストイキオメトリーを満足させ
るドース量で、集束イオンビームにより選択イオン注入
する工程と、熱処理を行い第1、第2、第3の領域を活
性化する工程とを含むことを特徴とする横型ヘテロ接合
バイポーラトランジスタの製造方法。
A process of selectively ion-implanting a P-type (or N-type) dopant into a first region of the surface of a semi-insulating semiconductor substrate using a focused ion beam; forming second and third regions by selectively ion-implanting dopants using a focused ion beam; A step of selectively implanting the elements constituting the above-mentioned mixed crystal compound semiconductor using a focused ion beam at a dose that satisfies stoichiometry, and heat treatment to activate the first, second, and third regions. A method for manufacturing a lateral heterojunction bipolar transistor, comprising the steps of:
JP6332886A 1986-03-19 1986-03-19 Manufacture of lateral hetero-junction bipolar transistor Pending JPS62219570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6332886A JPS62219570A (en) 1986-03-19 1986-03-19 Manufacture of lateral hetero-junction bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6332886A JPS62219570A (en) 1986-03-19 1986-03-19 Manufacture of lateral hetero-junction bipolar transistor

Publications (1)

Publication Number Publication Date
JPS62219570A true JPS62219570A (en) 1987-09-26

Family

ID=13226073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6332886A Pending JPS62219570A (en) 1986-03-19 1986-03-19 Manufacture of lateral hetero-junction bipolar transistor

Country Status (1)

Country Link
JP (1) JPS62219570A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60192365A (en) * 1984-03-13 1985-09-30 Mitsubishi Electric Corp Manufacture of thin film transistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60192365A (en) * 1984-03-13 1985-09-30 Mitsubishi Electric Corp Manufacture of thin film transistor

Similar Documents

Publication Publication Date Title
JPH0147014B2 (en)
US4924283A (en) Heterojunction bipolar transistor and process for fabricating same
JPH07201883A (en) Lateral bipolar transistor
US4862238A (en) Transistors
EP0301762B1 (en) Ion implantation into In-based group III-V compound semiconductors
US4611388A (en) Method of forming an indium phosphide-boron phosphide heterojunction bipolar transistor
US5838027A (en) Semiconductor device and a method for manufacturing the same
EP0168325B1 (en) Ion implantation to increase emitter energy gap in bipolar transistors
EP0125943B1 (en) An indium phosphide-boron phosphide heterojunction bipolar transistor
US5700701A (en) Method for reducing junction capacitance and increasing current gain in collector-up bipolar transistors
EP0197424A2 (en) Process of fabricating a heterojunction bipolar transistor
JPS62219570A (en) Manufacture of lateral hetero-junction bipolar transistor
JPS6325508B2 (en)
GB2056165A (en) Hot-electron or hot-hole transistor
JPS63314866A (en) Bipolar transistor
KR100299912B1 (en) Method for fabricating insulating gate bipolar transistor
JPS61276261A (en) Manufacture of high-speed bipolar transistor
JPS63248168A (en) Hetero-junction bipolar transistor and manufacture thereof
Lee et al. Ion-implanted profiles for high-frequency (> 100 GHz) IMPATT diodes
JPS60164358A (en) Manufacture of semiconductor device
JPS6348859A (en) Heterojunction bipolar transistor
EP0762489A2 (en) Method for fabricating a heterojunction bipolar transistor
KR950001148B1 (en) Hetero-junction bipolar transistor and manufacturing method thereof
JPH06101450B2 (en) Method for manufacturing semiconductor device
JPH021128A (en) Semiconductor device and its manufacture