JPS6221856B2 - - Google Patents
Info
- Publication number
- JPS6221856B2 JPS6221856B2 JP19259184A JP19259184A JPS6221856B2 JP S6221856 B2 JPS6221856 B2 JP S6221856B2 JP 19259184 A JP19259184 A JP 19259184A JP 19259184 A JP19259184 A JP 19259184A JP S6221856 B2 JPS6221856 B2 JP S6221856B2
- Authority
- JP
- Japan
- Prior art keywords
- amount
- alloy
- superplastic
- extrusion processing
- exceeds
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000001125 extrusion Methods 0.000 claims description 42
- 229910045601 alloy Inorganic materials 0.000 claims description 33
- 239000000956 alloy Substances 0.000 claims description 33
- 238000005242 forging Methods 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 239000000843 powder Substances 0.000 claims description 8
- 238000005245 sintering Methods 0.000 claims 1
- 239000013078 crystal Substances 0.000 description 14
- 230000000694 effects Effects 0.000 description 11
- 238000000034 method Methods 0.000 description 7
- 238000005336 cracking Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 5
- 238000007670 refining Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000004927 clay Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Description
産業上の利用分野
本発明は超塑性鍛造を行う際の変形抵抗が特に
小さいNi基合金に関するものである。Ni基超合
金を用いてガスタービンデイスクなどの大型で複
雑な形状の製品を成形する方法として超塑性鍛造
法が知られている。これは金属材料があたかも粘
土のように小さい力で数百%以上も塑性変形する
現象すなわち超塑性現象を利用するものである。
従来技術
従来の超塑性鍛造用Ni基合金としては、例え
ばRene95(G.E社製)、Merl76(プラツトアンド
ホイツトニ社製)のNi基合金が知られている。
しかしながら、これらの合金は実施例において比
較合金として示すように、結晶粒径も大きく、特
に超塑性鍛造時の変形抵抗が大きすぎる問題点が
あつた。変形抵抗が大きすぎると大型製品や複雑
形状製品の成形が困難となり、たとえ成形が可能
であつたとしても、そのためには大型のプレスが
必要となり、生産性の点で好ましくない。
この超塑性変形抵抗を小さくするには、押出加
工によつて結晶粒を微細化することが効果的であ
ることは知られているが、前記既存のNi基合金
では、結晶粒を小さくするのも限度があつた。
発明の目的
本発明は既存の超塑性鍛造用Ni基合金の問題
点を解消すべくなされたもので、その目的は結晶
粒の微細化が容易で、かつ超塑性変形抵抗の小さ
いNi基合金を提供するにある。
発明の構成
本発明者は前記目的を達成すべく、まず結晶粒
を微細化するのに最適な合金組成を見出すべく検
討を行つた。ここで重要なことは、結晶粒を微細
化するための押出加工時に割れが生じないことで
ある。もし割れが生ずると、結晶粒が微細で変形
抵抗が小さくなつても、ガスタービンデイスクな
どに成形することは不可能である。
本発明者はこの観点から検討を加えた結果、以
下に述べる組成の合金が押出加工に際し割れが生
せずに結晶粒を微細化できる最適の合金であるこ
とを見出した。また、結晶粒の微細化法の最適法
を見出し本発明を完成した。
本発明のNi基合金は、
重量%で、C0.02〜0.12%、Co5〜12%、Cr7〜
9%、W10〜14%、Al4.5〜5.5%、Ti0.1〜1.5
%、Ta3〜5%、Hf0.3〜1.3%、B0.005〜0.018
%、Zr0.01〜0.15%を含み、残部は実質的にNiよ
りなる超塑性鍛造用Ni基合金にある。
その合金の製造法は、
(1) 重量%で、C0.02〜0.12%、Co5〜12%、Cr7
〜9%、W10〜14%、Al4.5〜5.5%、Ti0.1〜
1.5%、Ta3〜5%、Hf0.3〜1.3%、0.005〜
0.018%、Zr0.01〜0.15%を含み、残部は実質的
にNiよりなるNi基合金粉末を、容器に入れ、
これを1050〜1225℃、押出し比4〜15で押出す
ことを特徴とする超塑性鍛造用Ni基合金の製
造方法。
(2) 重量%で、C0.02〜0.12%、Co5〜12%、Cr7
〜9%、W10〜14%、Al4.5〜5.5%、Ti0.1〜
1.5%、Ta3〜5%、Hf0.3〜1.3%、B0.005〜
0.018%、Zr0.01〜0.15%を含み、残部は実質的
にNiよりなるNi基合金粉末を容器に入れ、
1025〜1250℃、800〜2000気圧下で30〜200分高
温高圧処理して固化させた後、1050〜1225℃、
押出し比4〜15で押出すことを特徴とする超塑
性鍛造用Ni基合金の製造方法にある。
本発明のNi基合金の組成元素の作用ならびに
その含有量の限定理由は次の通りである。
Cは粒界を強化する作用をし、押出加工時の粒
界での割れを抑制する作用をする。この効果を得
るにはC量が0.02重量%(以下単に%と記載す
る)以上必要である。しかし、その量が0.12%を
超えると合金全体が脆化し、押出加工時に割れを
発生し易くなつて、微細粒組織が得られなくなる
ので、C量は0.02〜0.12%であることが必要であ
る。
Coは合金の延性を増加させ、押出加工時の割
れを抑制する作用をする。この効果を得るには5
%以上必要である。しかしその量が12%を超える
と有害析出物を生じて押出加工時に割れを発生し
易くなるので、Co量は5〜12%であることが必
要である。
Crは合金を軟化させ、押出加工を容易にする
作用をする。その量が7%より少いとその効果が
十分でなく、9%を超えると合金中にシグマ相な
どの有害相が生じ、押出加工時に割れが生ずる原
因となるので、Cr量は7〜9%であることが必
要である。
Wは結晶粒の微細化に極めて有効である。その
量が10%より少いとその効果が十分でなく、14%
を超えるとアルフアW相やミユー相などの有害相
が生成し、押出加工時に割れが生じ易くなるの
で、W量は10〜14%であることが必要である。
Alはガンマプライム相を生成する作用をす
る。押出加工により結晶粒を微細にするには、十
分な量のガンマプライム相が生成していることが
必要である。そのためには4.5%以上のAl量が必
要である。しかし、その量が5.5%を超えるとガ
ンマプライム相の量が加剰となつて押出加工に必
要な圧力が高くなりすぎるので、Al量は4.5〜5.5
%であることが必要である。
TiはAlと共にガンマプライム相を生成し、押
出加工時の結晶粒微細化を促進する作用をする。
その量が0.1%より少いと十分な効果が得られな
く、1.5%を超えるとイータ相を生成して押出加
工時に割れを生じ易くなるので、Ti量は0.1〜1.5
%であることが必要である。
TaはWと同様に押出加工時結晶粒を微細化す
る作用をする。その量が3%より少いとその効果
が十分でなく、5%を超えるとガンマプライム相
が多量に生じて押出加工に必要な圧力が高くなり
すぎるので、Ta量は3〜5%であることが必要
である。
Hfは押出加工時の粒界での割れを抑制する作
用をする。その量が0.3%より少いとその効果が
十分でなく、1.3%を超えると有害相を生成して
押出加工時の割れの原因となるので、Hf量は0.3
〜1.3%であることが必要である。
BはCと同様に押出加工時の粒界での割れを抑
制する作用をする。その量が0.005%より少いと
その効果が十分でなく、0.018%を超えると合金
の融点が低下して押出加工時に部分溶融を生じ割
れを発生するので、B量は0.005〜0.018%である
ことが必要である。
ZrはCとBと同様に粒界強化元素として作用
し、押出加工時の割れを防止する。その量が0.01
%より少いとその効果が十分でなく、0.15%を超
えると有害相を生じ、押出加工時の割れを助長す
るので、Zr量は0.01〜0.15%であることが必要で
ある。
次に本発明の合金の製造方法について述べる。
その製造方法は前記したように2種の方法によつ
て行うことができる。
第1の方法は、本発明の合金粉末を容器に入れ
て押出す方法である。この際の押出温度と押出し
比が特に重要である。押出温度は1050〜1225℃、
押出し比は4〜15の範囲が最も好ましい。押出温
度が1050℃より低いと押出しによつて割れが生
じ、実用的な超塑性鍛造用Ni基合金が得られな
い。その温度が1225℃を超えると結晶粒の微細化
が不十分となり、超塑性変形抵抗が小さくならな
い。押出し比が4より小さいと結晶粒の微細化が
不十分で超塑性変形抵抗が小さくならなく、15よ
り大きいと押出しができなくなる。
第2の方法は押出処理に先立つて高温高圧処理
(HIP処理)を行う方法である。このHIP処理は
超塑性変形抵抗の低下には直接結びつかないが、
粉末が焼結するため、その後の押出加工の操作が
容易となる利点がある。
例えば、押出用の容器に挿入する際減圧処理や
封入処理が必要となくなり、作業性が向上する。
HIP処理の条件は、温度1025−1250℃、圧力800
〜2000気圧、時間30〜200分であることが適当で
ある。処理温度が1025℃末満であること粉末が十
分焼結せず、1250℃を超えると合金が一部溶融し
て有害組織を生成し押出加工時に割れを生ずる原
因となる。処理圧力が800気圧未満では粉末が十
分焼結せず、2000気圧を超えるとそれに相当する
高圧装置を必要とし、実質的に不利である。ま
た、処理時間が30分未満では、粉末が十分焼結せ
ず、200分を超えると生産能率を下げる結果とな
る。押出温度は1050〜1225℃、押出し比は4〜15
の範囲とする。それらの理由は前記と同様であ
る。
実施例
本発明の合金と既存のRene95及びMerl76を表
1に示す条件で製造した。その結果は表1に示す
通りであつた。なお、表1中の超塑性変形抵抗値
は、引張試験片(平行部直径3.5mm、平行部長さ
20mm)を用いて、1050℃にて、1.25mm/分の速度
で引張変形させたときの値である。
INDUSTRIAL APPLICATION FIELD The present invention relates to a Ni-based alloy that has particularly low deformation resistance during superplastic forging. Superplastic forging is a known method for forming large, complex-shaped products such as gas turbine disks using Ni-based superalloys. This utilizes the phenomenon of superplasticity, in which a metal material undergoes plastic deformation of several hundred percent or more with a small force, just like clay. Prior Art As conventional Ni-based alloys for superplastic forging, for example, Rene 95 (manufactured by GE) and Merl 76 (manufactured by Pratt & Whittney) are known.
However, as shown as comparative alloys in the Examples, these alloys also had a problem in that their crystal grain sizes were large and their deformation resistance was particularly large during superplastic forging. If the deformation resistance is too large, it will be difficult to mold large products or complex-shaped products, and even if molding is possible, a large press will be required, which is unfavorable from the viewpoint of productivity. It is known that making the crystal grains finer by extrusion is effective in reducing this superplastic deformation resistance, but in the existing Ni-based alloys, making the crystal grains smaller is effective. There was also a limit. Purpose of the Invention The present invention was made to solve the problems of existing Ni-based alloys for superplastic forging, and its purpose is to create a Ni-based alloy that has easy grain refinement and low superplastic deformation resistance. It is on offer. Structure of the Invention In order to achieve the above object, the present inventor first conducted studies to find the optimum alloy composition for refining crystal grains. What is important here is that no cracks occur during extrusion processing to refine the crystal grains. If cracks occur, it is impossible to form the material into a gas turbine disk or the like, even though the crystal grains are fine and the deformation resistance is low. As a result of studies from this viewpoint, the present inventors have found that an alloy having the composition described below is an optimal alloy that can refine crystal grains without causing cracks during extrusion processing. Furthermore, the present invention was completed by discovering an optimal method for refining crystal grains. The Ni-based alloy of the present invention has, in weight%, C0.02~0.12%, Co5~12%, Cr7~
9%, W10~14%, Al4.5~5.5%, Ti0.1~1.5
%, Ta3~5%, Hf0.3~1.3%, B0.005~0.018
%, Zr0.01-0.15%, and the balance is in a superplastic forging Ni-based alloy consisting essentially of Ni. The manufacturing method of the alloy is as follows: (1) In weight%, C0.02~0.12%, Co5~12%, Cr7
~9%, W10~14%, Al4.5~5.5%, Ti0.1~
1.5%, Ta3~5%, Hf0.3~1.3%, 0.005~
Put a Ni-based alloy powder containing 0.018% and 0.01 to 0.15% of Zr and the remainder substantially of Ni into a container,
A method for producing a Ni-based alloy for superplastic forging, characterized by extruding this at 1050-1225°C and an extrusion ratio of 4-15. (2) In weight%, C0.02~0.12%, Co5~12%, Cr7
~9%, W10~14%, Al4.5~5.5%, Ti0.1~
1.5%, Ta3~5%, Hf0.3~1.3%, B0.005~
Put a Ni-based alloy powder containing 0.018% and 0.01 to 0.15% of Zr and the remainder essentially of Ni into a container,
After solidifying by high temperature and high pressure treatment for 30 to 200 minutes at 1025 to 1250℃ and 800 to 2000 atm, 1050 to 1225℃,
A method for producing a Ni-based alloy for superplastic forging, characterized by extruding at an extrusion ratio of 4 to 15. The effects of the constituent elements of the Ni-based alloy of the present invention and the reasons for limiting their contents are as follows. C acts to strengthen grain boundaries and suppress cracks at grain boundaries during extrusion processing. To obtain this effect, the amount of C must be 0.02% by weight or more (hereinafter simply referred to as %). However, if the amount exceeds 0.12%, the entire alloy becomes brittle and cracks are likely to occur during extrusion processing, making it impossible to obtain a fine grain structure, so the amount of C must be between 0.02 and 0.12%. . Co increases the ductility of the alloy and suppresses cracking during extrusion processing. To get this effect 5
% or more is required. However, if the amount exceeds 12%, harmful precipitates are generated and cracks are likely to occur during extrusion processing, so the amount of Co must be 5 to 12%. Cr acts to soften the alloy and facilitate extrusion processing. If the amount is less than 7%, the effect will not be sufficient, and if it exceeds 9%, harmful phases such as sigma phase will occur in the alloy, which will cause cracks during extrusion processing, so the amount of Cr should be 7 to 9%. It is necessary that W is extremely effective in refining crystal grains. If the amount is less than 10%, the effect is not sufficient, and 14%
If it exceeds 10%, harmful phases such as alpha W phase and miu phase will be generated, and cracks will easily occur during extrusion processing, so the amount of W needs to be 10 to 14%. Al acts to generate a gamma prime phase. In order to make the crystal grains fine by extrusion processing, it is necessary that a sufficient amount of gamma prime phase be generated. For this purpose, an Al content of 4.5% or more is required. However, if the amount exceeds 5.5%, the amount of gamma prime phase becomes excessive and the pressure required for extrusion processing becomes too high.
%. Ti forms a gamma prime phase together with Al, and acts to promote grain refinement during extrusion processing.
If the amount is less than 0.1%, a sufficient effect will not be obtained, and if it exceeds 1.5%, eta phase will be generated and cracks will easily occur during extrusion processing, so the amount of Ti should be 0.1 to 1.5%.
%. Like W, Ta functions to refine crystal grains during extrusion processing. If the amount is less than 3%, the effect will not be sufficient, and if it exceeds 5%, a large amount of gamma prime phase will occur and the pressure required for extrusion will become too high, so the amount of Ta should be 3 to 5%. is necessary. Hf acts to suppress cracking at grain boundaries during extrusion processing. If the amount is less than 0.3%, the effect will not be sufficient, and if it exceeds 1.3%, harmful phases will be generated and cause cracks during extrusion processing, so the amount of Hf should be 0.3%.
~1.3% is required. Like C, B acts to suppress cracking at grain boundaries during extrusion processing. If the amount is less than 0.005%, the effect will not be sufficient, and if it exceeds 0.018%, the melting point of the alloy will decrease, causing partial melting and cracking during extrusion processing, so the amount of B should be between 0.005 and 0.018%. is necessary. Like C and B, Zr acts as a grain boundary strengthening element and prevents cracking during extrusion processing. The amount is 0.01
If the Zr content is less than 0.1%, the effect will not be sufficient, and if it exceeds 0.15%, a harmful phase will be produced and cracking during extrusion will be promoted. Next, a method for manufacturing the alloy of the present invention will be described.
The manufacturing method thereof can be carried out by two methods as described above. The first method is to place the alloy powder of the present invention in a container and extrude it. The extrusion temperature and extrusion ratio at this time are particularly important. Extrusion temperature is 1050~1225℃,
Most preferably, the extrusion ratio is in the range of 4 to 15. If the extrusion temperature is lower than 1050°C, cracks will occur during extrusion, making it impossible to obtain a practical superplastic Ni-based alloy for forging. If the temperature exceeds 1225°C, the crystal grains will not be refined enough, and the superplastic deformation resistance will not become small. If the extrusion ratio is smaller than 4, the crystal grains will not be refined enough to reduce the superplastic deformation resistance, and if the extrusion ratio is larger than 15, extrusion will not be possible. The second method is to perform high temperature and high pressure treatment (HIP treatment) prior to extrusion treatment. Although this HIP treatment does not directly lead to a reduction in superplastic deformation resistance,
Since the powder is sintered, there is an advantage that the subsequent extrusion processing operation is easy. For example, when inserting into an extrusion container, there is no need for depressurization treatment or encapsulation treatment, which improves work efficiency.
The conditions for HIP treatment are temperature 1025-1250℃ and pressure 800℃.
It is appropriate that the pressure is ~2000 atm and the time is 30~200 minutes. If the processing temperature is below 1025°C, the powder will not be sufficiently sintered, and if it exceeds 1250°C, the alloy will partially melt and form a harmful structure, which may cause cracks during extrusion processing. If the processing pressure is less than 800 atm, the powder will not be sufficiently sintered, and if it exceeds 2000 atm, a corresponding high-pressure device will be required, which is a substantial disadvantage. Furthermore, if the processing time is less than 30 minutes, the powder will not be sufficiently sintered, and if it exceeds 200 minutes, the production efficiency will be reduced. Extrusion temperature is 1050~1225℃, extrusion ratio is 4~15
The range shall be . The reasons are the same as above. Example The alloy of the present invention and existing Rene95 and Merl76 were manufactured under the conditions shown in Table 1. The results were as shown in Table 1. In addition, the superplastic deformation resistance values in Table 1 are for tensile test pieces (parallel part diameter 3.5 mm, parallel part length
20mm) and tensile deformation at 1050°C at a rate of 1.25mm/min.
【表】【table】
【表】
この結果が示すように、本発明合金を本発明の
方法で作つたものは、結晶粒径が2〜3ミクロン
で、既存Rene95あるいはMerl76の結晶粒径に比
べて半分以下と小さくなつている。その結果、超
塑性変形抵抗が大巾に低下している。
発明の効果
本発明のNi基合金は押出加工に際して割れを
生ずることなく、結晶粒径を極めて微細なものと
なし得、また超塑性変形抵抗が小さく、大型製品
や複雑形状品を鍛造し得られる優れた特性を有す
る。[Table] As shown in the results, the alloy of the present invention made by the method of the present invention has a crystal grain size of 2 to 3 microns, which is less than half the grain size of existing Rene95 or Merl76. ing. As a result, the superplastic deformation resistance is significantly reduced. Effects of the Invention The Ni-based alloy of the present invention does not cause cracks during extrusion processing, has extremely fine grain size, has low superplastic deformation resistance, and can be forged into large products and complex-shaped products. Has excellent properties.
Claims (1)
〜9%、W10〜14%、Al4.5〜5.5%、Ti0.1〜1.5
%、Ta3〜5%、Hf0.3〜1.3%、B0.005〜0.018
%、Zr0.01〜0.15%を含み、残部は実質的にNiよ
りなる超塑性鍛造用Ni基合金。 2 重量%で、C0.02〜0.12%、Co5〜12%、Cr7
〜9%、W10〜14%、Al4.5〜5.5%、Ti0.1〜1.5
%、Ta3〜5%、Hf0.3〜1.3%、B0.005〜0.018
%、Zr0.01〜0.15%を含み、残部は実質的にNiよ
りなるNi基合金粉末を、容器に入れ、これを
1050〜1225℃、押出し比4〜15で押出すことを特
徴とする超塑性鍛造用Ni基合金の製造方法。 3 重量%で、C0.02〜0.12%、Co5〜12%、Cr7
〜9%、W10〜14%、Al4.5〜5.5%、Ti0.1〜1.5
%、Ta3〜5%、Hf0.3〜1.3%、B0.005〜0.018
%、Zr0.01〜0.15%を含み、残部は実質的にNiよ
りなるNi基合金粉末を容器に入れ、1025〜1250
℃、800〜2000気圧下で30〜200分高温高圧処理し
て焼結させた後、1050〜1225℃押出し比4〜15で
押出すことを特徴とする超塑性鍛造用Ni基合金
の製造方法。[Claims] 1% by weight: C0.02~0.12%, Co5~12%, Cr7
~9%, W10~14%, Al4.5~5.5%, Ti0.1~1.5
%, Ta3~5%, Hf0.3~1.3%, B0.005~0.018
%, Zr0.01-0.15%, and the remainder is substantially Ni-based alloy for superplastic forging. 2 Weight%: C0.02-0.12%, Co5-12%, Cr7
~9%, W10~14%, Al4.5~5.5%, Ti0.1~1.5
%, Ta3~5%, Hf0.3~1.3%, B0.005~0.018
%, Zr0.01 to 0.15%, and the balance is essentially Ni, is placed in a container, and the powder is poured into a container.
A method for producing a Ni-based alloy for superplastic forging, characterized by extruding at 1050-1225°C and an extrusion ratio of 4-15. 3 Weight%: C0.02~0.12%, Co5~12%, Cr7
~9%, W10~14%, Al4.5~5.5%, Ti0.1~1.5
%, Ta3~5%, Hf0.3~1.3%, B0.005~0.018
%, Zr0.01~0.15%, and the balance is essentially Ni.
A method for producing a superplastic Ni-based alloy for forging, characterized by sintering by high temperature and high pressure treatment for 30 to 200 minutes at 800 to 2000 atm and extruding at 1050 to 1225°C at an extrusion ratio of 4 to 15. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19259184A JPS6173851A (en) | 1984-09-17 | 1984-09-17 | Superplastic ni alloy for forging and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19259184A JPS6173851A (en) | 1984-09-17 | 1984-09-17 | Superplastic ni alloy for forging and its manufacture |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6173851A JPS6173851A (en) | 1986-04-16 |
JPS6221856B2 true JPS6221856B2 (en) | 1987-05-14 |
Family
ID=16293820
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19259184A Granted JPS6173851A (en) | 1984-09-17 | 1984-09-17 | Superplastic ni alloy for forging and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6173851A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0617486B2 (en) * | 1986-03-10 | 1994-03-09 | 株式会社神戸製鋼所 | Method for forging powder-made Ni-base superalloy |
JP3729190B2 (en) | 2002-08-23 | 2005-12-21 | セイコーエプソン株式会社 | Liquid jet head and manufacturing method thereof |
-
1984
- 1984-09-17 JP JP19259184A patent/JPS6173851A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6173851A (en) | 1986-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6252704B2 (en) | Method for producing Ni-base superalloy | |
JP6150192B2 (en) | Method for producing Ni-base superalloy | |
US4579602A (en) | Forging process for superalloys | |
JPS60228659A (en) | Malleable improvement for nickel base superalloy | |
JP6826879B2 (en) | Manufacturing method of Ni-based super heat-resistant alloy | |
US3765958A (en) | Method of heat treating a formed powder product material | |
US3702791A (en) | Method of forming superalloys | |
JPS6221856B2 (en) | ||
CN107931599B (en) | Sintering process of titanium-aluminum alloy | |
US3775101A (en) | Method of forming articles of manufacture from superalloy powders | |
EP3520916A1 (en) | HOT EXTRUSION-MOLDING METHOD FOR Ni-BASED SUPER HEAT-RESISTANT ALLOY AND PRODUCTION METHOD FOR Ni-BASED SUPER HEAT-RESISTANT ALLOY EXTRUSION MATERIAL | |
WO1990015164A1 (en) | Improved nickel aluminide alloy for high temperature structural use | |
US2883284A (en) | Molybdenum base alloys | |
RU2694098C1 (en) | Method of producing semi-finished products from high-strength nickel alloys | |
JP2822643B2 (en) | Hot forging of sintered titanium alloy | |
JPH03193851A (en) | Production of tial-base alloy having extremely superfine structure | |
JPS6362577B2 (en) | ||
JPH04235262A (en) | Manufacture of ti-al intermetallic compound-series ti alloy excellent in strength and ductility | |
JPS63171847A (en) | Molybdenum crucible and its production | |
JPH0432137B2 (en) | ||
JPH0338330B2 (en) | ||
JP2001152208A (en) | OXIDE DISPERSION STRENGTHENED TYPE Ni BASE ALLOY WIRE AND PRODUCING METHOD THEREFOR | |
US3005698A (en) | Producing brittle titanium metal | |
CN1283821C (en) | AI-Mo-Si ternary alloy and its preparation method | |
JPH0381042A (en) | Constant-temperature plastic working method for nial -based intermetallic compound |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |