JPS62216275A - High-performance solar cell - Google Patents

High-performance solar cell

Info

Publication number
JPS62216275A
JPS62216275A JP61057129A JP5712986A JPS62216275A JP S62216275 A JPS62216275 A JP S62216275A JP 61057129 A JP61057129 A JP 61057129A JP 5712986 A JP5712986 A JP 5712986A JP S62216275 A JPS62216275 A JP S62216275A
Authority
JP
Japan
Prior art keywords
outermost layer
layer
solar cell
refractive index
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61057129A
Other languages
Japanese (ja)
Inventor
Masao Umezawa
正夫 梅澤
Masayuki Hatada
畑田 昌幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP61057129A priority Critical patent/JPS62216275A/en
Publication of JPS62216275A publication Critical patent/JPS62216275A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To improve photoelectric conversion efficiency by constituting a cover material for a light-receiving surface in a solar cell of at least two kinds of materials, making the refractive index of a material for an outermost layer lower than that of a second layer and specifying the thickness of the material for the outermost layer. CONSTITUTION:A cover material for a solar cell is formed by at least two kinds, and the refractive index of a component for an outermost layer is made lower than that of a component for a second layer. A fluorine group organic compound such as polyvinylidene fluoride, an inorganic compound containing fluorine such as calcium fluoride, glass containing fluorine, quartz glass, etc. are cited as the particularly preferable representative example of a constituent for the outermost layer, and a material having a refractive index relatively higher than the outermost layer is used as the component for the second layer. There is no air gap between the outermost layer and the second layer, and both layers are joined. The relationship of formula holds between the materials for the outermost layer and the second layer. Accordingly, photoelectric conversion efficiency can be improved, and an increase in cost to occur together with the changeover of a new product can largely be reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高性能太陽電池に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to high performance solar cells.

[従来の技術] 近年、太陽電池は各種型中等の民生用を始め、離島等、
従来の発電が困難であった地域の動力源、照明用等、極
めて多方面に使用され始めた。
[Conventional technology] In recent years, solar cells have been used for various types of consumer use, as well as for remote islands, etc.
It began to be used in a wide variety of applications, including as a source of power and for lighting in areas where conventional power generation was difficult.

しかし、今後更に大きく伸びるにはその電力変換効率を
高く上げることが最も急務である。
However, for further growth in the future, it is most urgent to increase the power conversion efficiency.

従来においては、素材の改質、または素材の出発物質を
改善することにより、改善しようとしたが、光から電力
への変換効率が低いのが現状である。
In the past, attempts have been made to improve this by modifying the material or improving the starting material of the material, but the current situation is that the conversion efficiency from light to electricity is low.

[発明が解決しようとする問題点] 本発明の目的は、現状の太陽電池の光から電力への変換
効率(以下、光電変換効率と称する)を高める太陽電池
を提供することにある。
[Problems to be Solved by the Invention] An object of the present invention is to provide a solar cell that increases the light-to-power conversion efficiency (hereinafter referred to as photoelectric conversion efficiency) of the current solar cell.

[問題点を解決するための手段] かかる現状に鑑み、本発明者らは従来の研究方向にとら
れれることなく、多方向から鋭意検討を重ねた結果、本
発明に到達したものである。
[Means for Solving the Problems] In view of the current situation, the present inventors have arrived at the present invention as a result of intensive studies from multiple directions without being limited to conventional research directions.

すなわち、本発明はかかる問題点を解決するため、以下
の構成を有する。
That is, in order to solve this problem, the present invention has the following configuration.

(1)太陽電池の受光面のカバー材お1が少なくとも2
種の材料からなり、最表層の材Hの屈折率が第2層(最
表層の内側の材料)の屈折率J、り低いことを特徴とす
る高性能太陽電池。
(1) At least 2 pieces of cover material on the light-receiving surface of the solar cell
A high-performance solar cell characterized in that the refractive index of the outermost layer material H is lower than the refractive index J of the second layer (material inside the outermost layer).

(2)  最表層の月利の厚さが、波長と以下の関係が
ある特許請求の範囲第(1)項記載の高性能太陽電池。
(2) The high-performance solar cell according to claim (1), wherein the thickness of the outermost layer has the following relationship with the wavelength.

d; (’l/4)X (λ/n1 ) X (2n+
1 >ただし、d:最表層材料の厚さ λ:波長 nl:18表層材お1の屈折率 n:0以上の整数 以下、本発明をさらに詳細に説明する 本発明は上述のJ:うに極めて簡単な手段により光電交
換効率を極めて高くできることは全く驚くべきことであ
る。
d; ('l/4)X (λ/n1)X (2n+
1 > However, d: thickness of the outermost layer material λ: wavelength nl: 18 refractive index of the surface layer material 1 n: an integer greater than or equal to 0. It is quite surprising that the photovoltaic exchange efficiency can be made extremely high by simple means.

本発明の太陽電池のカバー材料は少イTくとも2種より
形成される。
The cover material of the solar cell of the present invention is formed from at least two types.

そして、最表層構成材料の屈折率は第2層構成かかる条
件を満たすものであれば、該部分を構成するvJ¥4は
特に限定されるものではなく、従来公知の高透明性固体
月利が適用できる。
The refractive index of the material constituting the outermost layer is not particularly limited as long as it satisfies the conditions for the second layer. Applicable.

最表層構成物質の特に好ましい代表例としては、ポリフ
ッ化ビニリデン等のフッ素系有機化合物、またフッ化カ
ルシウム等の含フツ素無機化合物、含フツ素ガラス、石
英ガラス等が挙げられる。
Particularly preferable representative examples of the material constituting the outermost layer include fluorine-based organic compounds such as polyvinylidene fluoride, fluorine-containing inorganic compounds such as calcium fluoride, fluorine-containing glass, and quartz glass.

そして第2層構成 い屈折率を有するものとする。And the second layer configuration It shall have a high refractive index.

第2層構成材料は特に限定されるものではなく、従来公
知の高透明性固体材おIが適用できる。なお、本月利も
できるだけ低屈折率であることが好ましい。そして、最
表層と第2層の間には空隙は存在せず、接合されている
ものとする。
The material constituting the second layer is not particularly limited, and conventionally known highly transparent solid materials can be used. Note that it is also preferable that the monthly interest rate has a refractive index as low as possible. Further, it is assumed that no void exists between the outermost layer and the second layer, and they are bonded to each other.

そして、本発明の特に好ましい実施太陽の一つは最表層
と第2層の月利の間に次の関係を有することである。
One of the particularly preferred implementations of the present invention is to have the following relationship between the monthly interest rates of the outermost layer and the second layer.

すなわら、 d≒(1/4)x(λ/n1)x (2n+1 )ただ
し、d:最表層材料の厚さ λ:波長 nl:最表層材料の屈折率 n:0以上の整数 なお、本発明の屈折率とは、ナi〜リウムD線(波長5
89.3μm)での値を用いるものとする。
In other words, d≒(1/4) x (λ/n1) x (2n+1) However, d: Thickness of the outermost layer material λ: Wavelength nl: Refractive index of the outermost layer material n: An integer of 0 or more. The refractive index of the present invention refers to the N-D line (wavelength 5
89.3 μm) shall be used.

次に本発明の太陽電池は例えば次のような方法によって
作られる。
Next, the solar cell of the present invention is produced, for example, by the following method.

例えば、まず第2層まで太陽電池を作り、しかる後第2
層の表面に低屈折効率物質をコーi・する方法、あるい
は先に第2層の材料を複合化しておき、それを太陽電池
のカバー材料とする方法等が代表的なものである。
For example, first make a solar cell up to the second layer, and then
Typical methods include coating the surface of the layer with a material with low refractive efficiency, or first compounding the second layer material and using it as a cover material for the solar cell.

カバー材料の複合化は従来公知の手段が適用できる。Conventionally known means can be applied to compose the cover material.

[発明の作用] 本発明はかかる構成をとることにより、何故効果を発現
するかの詳細は不明であるが、本発明の構成をとること
により、カバ一部での反射が少なくなったことがその主
因子であると思われる。
[Action of the Invention] Although the details of why the present invention achieves such an effect by adopting such a configuration are unknown, it is clear that by adopting the configuration of the present invention, reflections at a portion of the cover are reduced. This seems to be the main factor.

[実施例] 以下実施例により更に詳しく説明する。[Example] This will be explained in more detail below with reference to Examples.

なお、本発明で使用する光源はすトリウムD線(λ−5
89.3n…)を用いて測定した。
Note that the light source used in the present invention is thorium D line (λ-5
89.3n...).

実施例1 太陽電池のカバー面の屈折率が1.59であるガラスで
太陽電池を作った。該ガラスの表面に屈折率1.40の
ポリフッ化ビニリデン(DMF溶液)をコーティングし
て乾燥し、厚さ約0.1μの膜を形成した。
Example 1 A solar cell was made of glass whose cover surface had a refractive index of 1.59. Polyvinylidene fluoride (DMF solution) having a refractive index of 1.40 was coated on the surface of the glass and dried to form a film with a thickness of about 0.1 μm.

本太陽電池の出力を測定したところ、その出力はポリフ
ッ化ビニリデンの未口−ト品に比較して8%向上してい
た。
When the output of this solar cell was measured, the output was 8% higher than that of an unopened polyvinylidene fluoride product.

実施例2 実施例1の表面非コート太陽電池に、実施例1のポリフ
ッ化ビニリデンをコートして乾燥し、厚さ約1μの膜を
形成した。
Example 2 The surface-uncoated solar cell of Example 1 was coated with polyvinylidene fluoride of Example 1 and dried to form a film with a thickness of about 1 μm.

本太陽電池の出力を測定したところ、その出力はポリフ
ッ化ビニリデンの未口−ト品に比較して、5%向上して
いた。
When the output of this solar cell was measured, the output was 5% higher than that of an unopened polyvinylidene fluoride product.

[発明の効果] 本発明はかかる構成をとることにより、下記す= 6 
− るような極めて大きな効果を発揮する。
[Effects of the Invention] By adopting such a configuration, the present invention achieves the following = 6
− Demonstrates extremely large effects such as:

(1)  光電変換効率が向上する。(1) Photoelectric conversion efficiency is improved.

(2)極めて容易に本発明の太陽電池を作れる。(2) The solar cell of the present invention can be made extremely easily.

このためコストダウンが出来る。Therefore, costs can be reduced.

(3)特に太陽電池の表面に低屈折物質をコートする場
合、従来の太陽電池の光電変換効率を向上でき、新品切
替に伴うコストアップを大幅に低減できる。
(3) In particular, when the surface of the solar cell is coated with a low refractive material, the photoelectric conversion efficiency of conventional solar cells can be improved, and the cost increase associated with replacing new solar cells can be significantly reduced.

Claims (2)

【特許請求の範囲】[Claims] (1)太陽電池の受光面のカバー材料が少なくとも2種
の材料からなり、最表層の材料の屈折率が第2層(最表
層の内側の材料)の屈折率より低いことを特徴とする高
性能太陽電池。
(1) The cover material of the light-receiving surface of the solar cell is made of at least two types of materials, and the refractive index of the outermost layer material is lower than the refractive index of the second layer (the material inside the outermost layer). Performance solar cells.
(2)最表層の材料の厚さが、波長と以下の関係がある
特許請求の範囲第(1)項記載の高性能太陽電池。 d≒(1/4)×(λ/n_1)×(2n+1)ただし
、d:最表層材料の厚さ λ:波長 n_1:最表層材料の屈折率 n:0以上の整数
(2) The high-performance solar cell according to claim (1), in which the thickness of the outermost layer material has the following relationship with the wavelength. d≒(1/4)×(λ/n_1)×(2n+1) However, d: Thickness of the outermost layer material λ: Wavelength n_1: Refractive index of the outermost layer material n: An integer of 0 or more
JP61057129A 1986-03-17 1986-03-17 High-performance solar cell Pending JPS62216275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61057129A JPS62216275A (en) 1986-03-17 1986-03-17 High-performance solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61057129A JPS62216275A (en) 1986-03-17 1986-03-17 High-performance solar cell

Publications (1)

Publication Number Publication Date
JPS62216275A true JPS62216275A (en) 1987-09-22

Family

ID=13046949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61057129A Pending JPS62216275A (en) 1986-03-17 1986-03-17 High-performance solar cell

Country Status (1)

Country Link
JP (1) JPS62216275A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05129644A (en) * 1991-10-31 1993-05-25 Sharp Corp Cover glass for solar cell
JP2011206747A (en) * 2010-03-30 2011-10-20 Asahi Kasei E-Materials Corp Functional coating film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05129644A (en) * 1991-10-31 1993-05-25 Sharp Corp Cover glass for solar cell
JP2011206747A (en) * 2010-03-30 2011-10-20 Asahi Kasei E-Materials Corp Functional coating film

Similar Documents

Publication Publication Date Title
Chen et al. Multinary metal chalcogenides with tetrahedral structures for second-order nonlinear optical, photocatalytic, and photovoltaic applications
US7482532B2 (en) Light trapping in thin film solar cells using textured photonic crystal
EP1969639B1 (en) Notch filter for triple junction solar cells
DE69734529D1 (en) P-TYPE SEMICONDUCTOR, METHOD FOR THE PRODUCTION THEREOF, SEMICONDUCTOR ASSEMBLY, PHOTOVOLTAIC COMPONENT, AND METHOD FOR PRODUCING A SEMICONDUCTOR ASSEMBLY
JPH05504235A (en) Photodegradation-stable semiconductor material based on amorphous germanium and its manufacturing method
JPS62216275A (en) High-performance solar cell
CN210628330U (en) Photovoltaic cover plate glass for copper indium gallium selenide battery
CN210607294U (en) Copper indium gallium selenide solar cell for BIPV
JPS57187975A (en) Photoelectric converter
JPS58171869A (en) Photovoltaic device
Bernal-Correa et al. Estimating the performance of solar cells with luminescent down-shifting layers
JPS61251084A (en) Fabrication of layer-built solar cell
JPS6154276B2 (en)
Zhong et al. Quasi-omnidirectional crystalline silicon solar cells
JPS61120480A (en) Photoelectric converter
CN114447229A (en) Wide-angle incident color-invariant solar cell
JP2001015787A (en) Substrate with transparent conductive film, manufacturing method therefor, and solar battery
JPS58116779A (en) Photovoltaic device
JPS61222215A (en) Superlattice device
JPS629239B2 (en)
Kumar et al. Optimization of charge transport layer thickness for efficient perovskite solar cell
JPH098339A (en) Solar cell
JPS6167967A (en) Bsr electrode structure of solar cell
Matsuki The Next Frontier of Solar Energy: Transparent Photovoltaics
JPH1126790A (en) Semiconductor thin film, method for manufacturing the same and thin film solar cell