JPS62216254A - Jig for heat transfer and heat dissipation method using said jig - Google Patents

Jig for heat transfer and heat dissipation method using said jig

Info

Publication number
JPS62216254A
JPS62216254A JP5715886A JP5715886A JPS62216254A JP S62216254 A JPS62216254 A JP S62216254A JP 5715886 A JP5715886 A JP 5715886A JP 5715886 A JP5715886 A JP 5715886A JP S62216254 A JPS62216254 A JP S62216254A
Authority
JP
Japan
Prior art keywords
heat
heat transfer
contact
heating element
jig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5715886A
Other languages
Japanese (ja)
Other versions
JPH079955B2 (en
Inventor
Yoshimitsu Sakakawa
坂川 義満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP5715886A priority Critical patent/JPH079955B2/en
Publication of JPS62216254A publication Critical patent/JPS62216254A/en
Publication of JPH079955B2 publication Critical patent/JPH079955B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To form and hold a small-sized heat-dissipating path positively by forming the heat-dissipating path in an air gap section in a radiator and a heating element by a tabular contacting member and pushing the contacting member against the wall surface of the air gap by a pressing member. CONSTITUTION:A connecting member 1 consisting of a tabular small piece having high thermal conductivity is used as a heat transfer jig inserted into an air gap section between a heating element 4 and a radiator plate 3 and shaping a heat transfer path, pressing members 2 having compressive elasticity are fixed to the connecting member 1, and the tabular small piece 1 is connected to the heating element 4 and the radiator plate 3 by the compressive elastic action of the pressing members 2. The cross section of the tabular connecting member 1 takes approximately an S-shape, and the connecting member 1 is constituted of flat upper contact section 11 and lower contact section 12 an an oblique section 13 tying these contact sections 11 and 12. One connecting section can be stuck fast to the heating element 4 and the other connecting section to an external heat-dissipating means respectively by the compressive elastic force of the pressing members 2. Accordingly, a contact area with the heating element is increased, the jig is miniaturized, and the deviation of a distance between the heating element and the radiator plate can be absorbed by its own deformation.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は半導体素子の放熱技術に関する・更に詳しくは
、半導体素子と外部放熱板間の寸法が複数の半導体素子
において半導体素子を搭載する基板の変形や個々の半導
体素子固定剤の厚さの不均一性等によシ偏在が生じる場
合であってもこれらの寸法の偏差を吸収し、かつ効率良
く熱を放熱板に伝達せしめる熱伝達治具及びこれを用い
た放熱方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to heat dissipation technology for semiconductor devices.More specifically, the present invention relates to heat dissipation technology for semiconductor devices.More specifically, the present invention relates to heat dissipation technology for semiconductor devices. A heat transfer jig that absorbs deviations in dimensions even when uneven distribution occurs due to deformation or non-uniformity in the thickness of individual semiconductor element fixing agents, and efficiently transfers heat to the heat sink. and a heat dissipation method using the same.

〔従来の技術〕[Conventional technology]

従来、この種の用途に用いられるものとして■放熱用グ
リスを充填する方法、■放熱用弾性シートをはさむ方法
、■ ピストン状放熱片をばねで圧接させ、ピストン側
面に大きな面積の放熱面を対向させる方法等がある。そ
れぞれについて次に示す。
Conventionally, methods used for this type of application include: ■ Filling with heat dissipation grease; ■ Sandwiching an elastic sheet for heat dissipation; and ■ Pressing a piston-shaped heat dissipation piece with a spring so that a large area of heat dissipation surface faces the side of the piston. There are ways to do this. Each is shown below.

■の放熱用グリスを用いる方法は、ゲル状シリコーン樹
脂に熱伝導率の大きい窒化ホウ素、炭化シリコン等の微
粉末を混入したものを熱伝達せんとする空間に充填する
ものでおる。この方法は熱伝達を行なう面の間隔が数1
00ミクロン以下の場合用いられるが、それ以上の間隔
が見込まれる場合、グリスの流出が発生し、使用できな
い。熱伝達係数も/W/m:C程度とらまシ大きくなく
、広い空間を充填する場合には適用できないという欠点
があった。
In the method (2) using heat dissipation grease, a gel-like silicone resin mixed with fine powder of boron nitride, silicon carbide, etc., which has high thermal conductivity, is filled into the space where heat is to be transferred. In this method, the distance between the surfaces that conduct heat transfer is several 1
It is used when the spacing is less than 0.00 microns, but if the spacing is expected to be larger than that, grease will leak out and it cannot be used. The heat transfer coefficient is also not large, about /W/m:C, and there is a drawback that it cannot be applied to fill a large space.

■の放熱用弾性シートを用いる方法は数toミクロン〜
数ミリメートルの間隔を埋める場合に用いられ、流出の
問題はないが、熱伝達係数は数W/ m:C程度であり
、やけシあまシ大きくないという欠点があった。
■The method using an elastic sheet for heat dissipation is several to microns.
It is used to fill gaps of several millimeters, and there is no problem of leakage, but the heat transfer coefficient is only a few W/m:C, and it has the disadvantage that it is not very brittle.

■のピストン状放熱片を圧接する方法の基本概念を第を
図に示す。同図に示すように、この場合には半導体素子
等の発熱素子(4)の熱を熱吸収体1(又は熱放熱体)
(2)へ伝えるためピストン(5)を用いている。ピス
トン(5)はばね(6)によシ発熱素子(4)の熱を受
けとる。ピストン(5)から熱吸収体(8)へはピスト
ンの側面の気体層(7)を通じ放熱される。このような
構造では発熱素子(4)と熱吸収体(8)との空隙部の
寸法偏差を吸収できる。この効果を第6図によシ説明す
る。第を図において、第3図と同一部分には同一符号を
付しであるのでこれらは省略するが、rは冷却媒体の流
れる管路、りははんだ等の素子固着剤、10は複数の素
子(4)を搭載する基板である。同図に示すように、複
数の素子の各固着剤(9)の厚みが偏在している場合で
あっても、この偏差を吸収してすべての素子にピストン
状放熱片を連接せしめて、放熱経路を確実に形成するこ
とができる。又、本構造においては発熱素子の熱歪、即
ち、第1図に示すように熱膨張によシ参人からμBに変
位する場合、これらの受位量が各発熱素子間の偏差を吸
収でき、複数素子であうでも確実に放熱経路を形成する
ことができる。又、第5図の構造においてピストン片の
先端に曲率を与えであるので、第2図に示すように、発
熱素子が傾斜している場合でもほぼ一定の接触面積を確
保できる。このことは第2図に示すように素子の設置状
態が悪く傾斜する場合をはじめとして空隙部(7)があ
るためピストン片(5)自体が傾斜して素子に接する場
合にも接触面積を一定に保てることを示唆するものであ
る。しかしながら、このようなピストン片を用いる構造
は以下に示す重大な欠点があった。即ち、まず第1にピ
ストン片、バネ等の機構部品を必要とする大め、小型化
が困難であり、特に第6図のdで示すように、発熱素子
と冷却媒体の管路の間の距離を小さくできないという欠
点があうた。また・気体層(7)の熱伝達効率を高める
ため、面積を大きくとらなければならず、さらに、ヘリ
ウム密封等による対策も必要となり、保守。
The basic concept of the method of pressing the piston-shaped heat dissipating piece (2) is shown in Figure 3. As shown in the figure, in this case, heat from a heat generating element (4) such as a semiconductor element is transferred to a heat absorber 1 (or a heat radiator).
A piston (5) is used to transmit the signal to (2). The piston (5) receives heat from the heating element (4) through the spring (6). Heat is radiated from the piston (5) to the heat absorber (8) through the gas layer (7) on the side surface of the piston. Such a structure can absorb the dimensional deviation of the gap between the heat generating element (4) and the heat absorber (8). This effect will be explained with reference to FIG. In Figure 3, the same parts as in Figure 3 are given the same reference numerals, so these are omitted. r is a pipe through which the cooling medium flows, 10 is an element fixing agent such as solder, and 10 is a plurality of elements. (4) is mounted on this board. As shown in the figure, even if the thickness of each adhesive (9) of a plurality of elements is unevenly distributed, this deviation is absorbed and the piston-shaped heat dissipation piece is connected to all the elements to dissipate heat. A route can be reliably formed. In addition, in this structure, when the heating element is thermally strained, that is, when the heating element is displaced from 1 to 1 μB due to thermal expansion as shown in Fig. 1, the amount of acceptance can absorb the deviation between each heating element. , it is possible to reliably form a heat dissipation path even if there are multiple elements. Further, in the structure shown in FIG. 5, since the tip of the piston piece is given a curvature, a substantially constant contact area can be ensured even when the heating element is inclined as shown in FIG. This means that the contact area remains constant even when the piston piece (5) itself is tilted and comes into contact with the element because of the gap (7), as shown in Figure 2, as well as when the element is tilted due to poor installation conditions. This suggests that it can be maintained at However, the structure using such a piston piece has the following serious drawbacks. That is, first of all, it is difficult to miniaturize because it requires mechanical parts such as piston pieces and springs, and in particular, as shown in d in Fig. 6, the mechanism parts between the heating element and the cooling medium pipe are The drawback was that the distance could not be made smaller. In addition, in order to increase the heat transfer efficiency of the gas layer (7), a large area must be taken, and measures such as helium sealing are also required, which requires maintenance.

信頼性上の問題も発生する。更に、ピストン片(5)の
先端に曲率を設けているため、ピストン片(5)の全断
面積に比べ限定された一部分のみが接触面積として機能
するため、熱伝導効率が低いという欠点がちうた。
Reliability problems also arise. Furthermore, since the tip of the piston piece (5) has a curvature, only a limited portion of the total cross-sectional area of the piston piece (5) functions as a contact area, which has the disadvantage of low heat transfer efficiency. .

〔発明の目的〕[Purpose of the invention]

本発明の目的はかかる欠点を解決し、発熱素子との接触
面積が大きく、かつ小型であり、更に発熱素子と放熱板
間距離の偏差を自らの変形にょシ吸収し得る、構造簡単
な熱伝達治具及びその治具を用いた放熱方法を提供する
ことにある。
The purpose of the present invention is to solve such drawbacks, and to provide a heat transfer device with a simple structure, which has a large contact area with the heating element, is compact, and can absorb deviations in the distance between the heating element and the heat sink through its own deformation. An object of the present invention is to provide a jig and a heat radiation method using the jig.

〔発明の構成〕[Structure of the invention]

本発明は発熱素子と放熱板間の空隙部に挿入して熱伝達
経路を形成する熱伝達治具として、熱伝導率の高い板状
小片(接続部材)を用い、これに圧縮弾性を有する加圧
部材を固着し、加圧部材の圧縮弾性作用によシ板状小片
が発熱素子と放熱板に連接する治具を用いる点に特徴が
ある。
The present invention uses a small plate-like piece (connection member) with high thermal conductivity as a heat transfer jig that is inserted into the gap between the heating element and the heat sink to form a heat transfer path, and this is compressed with compressive elasticity. The method is characterized by the use of a jig in which the pressure member is fixed and the small plate-like piece is connected to the heating element and the heat sink by the compressive elastic action of the pressure member.

更K、板状の接続部材は断面がほぼS字状形状をなして
いるので、これははtよ平担な上部接触部fil)と下
部接触部(12及びこれらを結ぶ斜辺部(L3とから構
成される。このような板状接続部材の上部接続部の下側
及び下部接続部の上側に圧縮弾性を有する加圧部材(2
)を連接しているので、たとえ・接続部材の材質が熱伝
導率は高いが、弾性変形しにくいような材質があっても
、加圧部材の圧縮弾性力により一方の接続部を発熱体な
る半導体素子に密着させることができ、他方の接続部を
外部放熱手段に密着させることができる。このようにし
て第2図に示すようにNPIからP2に至る放熱経路を
形成できる。
Furthermore, since the plate-shaped connecting member has an approximately S-shaped cross section, it consists of an upper contact part (fil) which is flat as T, a lower contact part (12), and an oblique part (L3 and L3) connecting these. Compressive elastic pressure members (2
) are connected, so even if the connecting member is made of a material that has high thermal conductivity but is difficult to elastically deform, the compressive elastic force of the pressure member will cause one of the connecting parts to become a heating element. It can be brought into close contact with the semiconductor element, and the other connecting portion can be brought into close contact with the external heat dissipation means. In this way, a heat dissipation path from NPI to P2 can be formed as shown in FIG.

更に、複数の接続部材を同一の圧縮弾性加圧部材に多数
段は寿ものを複数組、相互に連結すると、第3図に図示
するごとく、あたかも′屋根瓦1を敷きつめたようにな
るので、接続部材の空間利用効率が高まるので、熱伝達
性能を向上せしめることができる。
Furthermore, when a plurality of connecting members are connected to the same compressive elastic pressure member in multiple sets of multiple stages, as shown in FIG. Since the space utilization efficiency of the connecting member is increased, heat transfer performance can be improved.

更に本発明においては、半導体素子と外部放熱手段との
空隙部に、接続部材と加圧部材とが一体化された熱伝達
用治具を挿入し、空隙部の両側に熱伝達用治具自身が力
を加え得る構造であるので、構成要素のみで自立できる
利点もある。
Furthermore, in the present invention, a heat transfer jig in which a connecting member and a pressure member are integrated is inserted into the gap between the semiconductor element and the external heat dissipation means, and the heat transfer jig itself is placed on both sides of the gap. Since it has a structure that can apply force, it also has the advantage of being able to stand on its own with only its constituent elements.

〔実施例1〕 第1図は本発明の熱伝達用治具の基本概念を説明する図
面であり、lけ高熱伝導率の板状小片を、ほぼS字状に
屈曲形成した接触部材であり、//は上部接触部、12
は下部接触部、/3は斜辺部である。又、2は圧縮弾性
を有する加圧部材である。なお、加圧部材に要求される
条件は、第1図において、少なくとも上下方向に圧縮弾
性を有することである。即ち、このような圧縮弾性特性
を利用し、上部接触sIを上方に、下部接触部Uを下方
に押しつける作用を生ぜしめることが必須である。この
ような条件を満足すれば、横方向にも弾性があってもよ
く、又、長手方向にたわむような変形をするような材質
であってもよい。
[Example 1] Fig. 1 is a diagram illustrating the basic concept of the heat transfer jig of the present invention, which is a contact member formed by bending a small plate-like piece with a high thermal conductivity into an approximately S-shape. , // is the upper contact part, 12
is the lower contact portion, and /3 is the hypotenuse portion. Further, 2 is a pressure member having compressive elasticity. Note that the pressure member is required to have compressive elasticity at least in the vertical direction in FIG. 1. That is, it is essential to utilize such compressive elastic properties to produce an action of pressing the upper contact sI upward and the lower contact portion U downward. As long as these conditions are satisfied, the material may be elastic in the transverse direction, or may be made of a material that is deformed so as to bend in the longitudinal direction.

なお、第1図(b)は、上部接触部及び下部接触部にわ
ずかに凸状の曲率を与えたものである。これは、第1図
(、)の構造において、例えば、治具を挿入すべき空隙
が大きく、治具の変形が大きい場合に、接触部全面が接
触することができず、端部のみが接触する状態が生ずる
危険性がある。その場合には、放熱経路の熱抵抗が増大
する。これに対し、第1図(b)に示すように・接触面
に曲率(6)を与えておけば、接触部が傾斜しても、常
にほぼ一定の接触面積を確保できる。
In addition, in FIG. 1(b), the upper contact portion and the lower contact portion are given a slightly convex curvature. This is because in the structure shown in Figure 1 (,), for example, if the gap into which the jig is to be inserted is large and the jig is deformed greatly, the entire surface of the contact part cannot make contact, and only the ends make contact. There is a risk that a situation may occur. In that case, the thermal resistance of the heat radiation path increases. On the other hand, if the contact surface is given a curvature (6) as shown in FIG. 1(b), a substantially constant contact area can always be ensured even if the contact portion is inclined.

以下、m1図(b)の構造により、実装状態について説
明する。
The mounting state will be described below using the structure shown in FIG. m1 (b).

第2図は、空隙部に本発明の熱伝達用治具を実装した状
態の実施例である。
FIG. 2 shows an embodiment in which the heat transfer jig of the present invention is mounted in a cavity.

同図において、/は高熱伝導率の接触部材、λは少なく
とも、図面において上下方向に圧縮弾性を有する加圧部
材、3線熱吸収体(又は放熱体)、≠は半導体等の発熱
体である。又、PlからP、に向う矢印は、放熱経路を
示す。これらの図において、板状小片(1)の両端は加
圧部材(2)により発熱体(4)および放熱体(8)に
密着して接触し、熱伝達実現できる構造となっている。
In the figure, / is a contact member with high thermal conductivity, λ is a pressure member that has compressive elasticity in the vertical direction at least in the drawing, a three-wire heat absorber (or heat radiator), and ≠ is a heating element such as a semiconductor. . Further, an arrow pointing from Pl to P indicates a heat radiation path. In these figures, both ends of the plate-shaped piece (1) are in close contact with the heat generating element (4) and the heat radiating element (8) by the pressure member (2), so that heat transfer can be achieved.

発熱体(4)および放熱体(8)間の空隙寸法に偏差が
あった場合でも加圧部材の伸縮によシ板状小片の接触は
確保される。また、先にも述べたようにこの伸縮によシ
発熱体(4)あるいは放熱体(8)の面と板状小片(1
)とのなす角が変化しても、板状小片(1)の両端に与
え六曲率によって広範囲な密着状態が維持される。
Even if there is a deviation in the gap size between the heating element (4) and the heat radiating element (8), the contact between the plate-like pieces is ensured by the expansion and contraction of the pressure member. Furthermore, as mentioned earlier, due to this expansion and contraction, the surface of the heating element (4) or the heat radiating element (8) and the plate-shaped small piece (1
) Even if the angle formed with the plate-shaped piece (1) changes, the close contact over a wide range is maintained due to the six curvatures given to both ends of the plate-shaped piece (1).

本発明の熱抵抗は熱伝達用板状小片(1)中の熱抵抗孔
1、板状小片と発熱体(4)との間の熱抵抗孔。
The thermal resistance of the present invention includes a thermal resistance hole 1 in a small plate-like piece for heat transfer (1), and a thermal resistance hole between the small plate-like piece and a heating element (4).

板状小片と放熱体(8)との間の熱抵抗島の和で表わせ
る。
It can be expressed as the sum of the thermal resistance islands between the small plate-shaped piece and the heat sink (8).

R,は次のように表わせる G!熱伝達材料の熱伝達係数[W/m・”C]W:熱伝
達熱伝達材料幅(m) TI熱伝達材料小片の厚さ〔m〕 L:熱伝達材料小片の長さ[m〕 例えば、幅ハ1厚さ0.3 M、長さpwwsの銅片で
はG=316 なので、R,、; 20.I”C/Wと
なる。
R, can be expressed as G! Heat transfer coefficient of heat transfer material [W/m・”C] W: Width of heat transfer material (m) Thickness of TI heat transfer material piece [m] L: Length of heat transfer material piece [m] For example , for a copper piece with width C1 thickness 0.3M and length pwws, G=316, so R,,; 20.I''C/W.

几!、R8は熱伝達材料小片と発熱体おるいは放熱体の
間の空間の熱抵抗である。この部分のみ放熱グリスCG
 = / W/m・°C)で充填し、空間の厚さ5μm
、面積7m角と仮定すると几、=几、=、t”c/Wと
なる。従って上記寸法例では熱伝達用板状小片1個当B
o熱抵抗はR,+ R,+ R,、= 302”C/’
Wと々る。第2図の構造において、上寸法を用いた場合
、発熱体(4)と放熱体(3)の空隙距離は/、0〜2
.0鰭程度の範囲で任意に変化しつる。この距離をJ−
owsとした場合の空隙の等測的な熱伝達係数Gは/ 
A [W/m・℃]となシ、放熱グリスのみを使用した
場合の10倍以上の放熱能力を有する。
几! , R8 is the thermal resistance of the space between the heat transfer material piece and the heating element or heat sink. Heat dissipation grease CG for this part only
= / W/m・°C), and the thickness of the space is 5 μm.
, assuming that the area is 7 m square, 几 = 几 =, t''c/W. Therefore, in the above example of dimensions, one plate-shaped piece for heat transfer B
oThermal resistance is R, + R, + R,, = 302"C/'
W Totoru. In the structure shown in Fig. 2, when using the upper dimensions, the gap distance between the heating element (4) and the heat radiating element (3) is /, 0 to 2
.. It changes arbitrarily within a range of about 0 fins. This distance is J-
The isometric heat transfer coefficient G of the air gap when ows is /
A [W/m・℃] has a heat dissipation capacity that is more than 10 times that of using only heat dissipation grease.

また、空隙の距離は2+w程度と、ピストン構造を用い
る場合に比べ10倍以上小型で偏差吸収能力を有する放
熱構造が実現できる。
Furthermore, the distance between the air gaps is approximately 2+w, which makes it possible to realize a heat dissipation structure that is more than 10 times smaller than when using a piston structure and has a deviation absorbing ability.

なお、加圧部材(2)の材質、断面形状、寸法を任意に
選択でき、極めて広範囲な接触圧力に設定することがで
きる。
Note that the material, cross-sectional shape, and dimensions of the pressure member (2) can be arbitrarily selected, and the contact pressure can be set in an extremely wide range.

〔実施例コ〕[Example]

第3図に本発明の熱伝達治具の第2の実施例を示す。各
部の名称は第1図と同じでおり省略する。
FIG. 3 shows a second embodiment of the heat transfer jig of the present invention. The names of each part are the same as in FIG. 1 and will be omitted.

熱伝達材料は複数の板状小片に分割されておシ、かつ、
それぞれの基本単位が独立して変形できるので、発熱体
めるいは放熱体の接触面(熱伝達面)に凹凸等の偏差が
あシ、従って、空隙部寸法が接触面の全面にわたって均
一でないような場合においても、個々の基本単位が確実
に放熱経路を形成するので全体の有効接触面積が減少し
ないという利点がある。
The heat transfer material is divided into a plurality of plate-like pieces, and
Since each basic unit can be deformed independently, the contact surface (heat transfer surface) of the heating element or heat dissipating element may have irregularities or other deviations, so that the gap size may not be uniform over the entire contact surface. Even in such a case, each basic unit reliably forms a heat dissipation path, so there is an advantage that the overall effective contact area does not decrease.

又、本発明の構造においては、熱伝達用治具自身が加圧
機能を有しているので、発熱体と放熱体間の空隙部に本
発明の熱伝達用治具を挿入することにより、他の支持体
を要せず自己保持できる利点もある。
Furthermore, in the structure of the present invention, since the heat transfer jig itself has a pressurizing function, by inserting the heat transfer jig of the present invention into the gap between the heating element and the heat radiating element, It also has the advantage of being self-supporting without requiring any other support.

〔実施例3〕 Mμ図に本発明の熱伝達用治具の第3の実施例を示す。[Example 3] A third embodiment of the heat transfer jig of the present invention is shown in the Mμ diagram.

第≠図(、)は斜視図、第φ図(b)は断面図である。Figure ≠ (,) is a perspective view, and Figure φ (b) is a sectional view.

各部の名称は第3図と同じであるので省略する。第μ図
は、接触部材(1)及び(1)′を交差指状に配し、第
3図の構造に比べ、更に多数の接触部材で全接触面と連
接させておシ、接触面が平面でない場合にも、有効接触
面積をよシ確実罠大きく保つことができる。
The names of each part are the same as in FIG. 3, so their description will be omitted. In Fig. µ, contact members (1) and (1)' are arranged in an interdigitated manner, and compared to the structure shown in Fig. 3, a larger number of contact members are connected to all the contact surfaces, and the contact surface is Even if the surface is not flat, the effective contact area can be kept large.

また、このような構造にすることにより、横方向のずれ
力が生じても、より安定に放熱経路を維持できる利点も
ある。
Further, by adopting such a structure, even if a lateral displacement force occurs, there is an advantage that the heat dissipation path can be maintained more stably.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は熱伝達経路を形成しよう
とする放熱体と発熱体中の空隙部に、熱伝導性に優れた
材質でなる板状接触部材で放熱経路を形成し、かつ、接
触部が確実に空隙両壁面に接するように、軍縮弾性に優
れに加圧部材によシ接触部材を空隙の壁面に押しつけ、
更に、接触部材の接触面形状をわずかに凸状に曲率を持
たせるように工夫した構造であるので、小型で、かつ、
確実に放熱経路を形成・保持できる利点がある2″j!
!た、上記のように接触部材と加圧部材を組み合わせて
いるので、それぞれの目的とする機能に応じた優れた材
質を独立して選択できる利点がある。
As explained above, the present invention forms a heat radiation path using a plate-shaped contact member made of a material with excellent thermal conductivity in the gap between the heat radiation body and the heating element where the heat transfer path is to be formed, and In order to ensure that the contact portion is in contact with both walls of the cavity, the contact member is pressed against the walls of the cavity using a pressure member with excellent disarmament elasticity.
Furthermore, the contact surface of the contact member is designed to have a slightly convex curvature, so it is small and
2″j has the advantage of reliably forming and maintaining a heat radiation path!
! Furthermore, since the contact member and the pressure member are combined as described above, there is an advantage that excellent materials can be independently selected according to the intended functions of each member.

即ち、接触部材としては、弾性力は大きくなくとも、熱
伝導率が優れ光材質を用いることができるし、加圧部材
としては、逆に熱伝導率は低くとも、圧縮弾性が大きい
材質を用いるこ七ができる。更に、第3図、第μ図に示
すように、上記の基本構造を複数個差べて配置すること
により、空隙部の寸法が場所によシ偏差を有している場
合、即ち、放熱体と発熱体の主面に凹凸があっ*6、主
面どおしが平行でなく、傾いているような場合であって
も、主面全面にわたシ確実に放熱経路を形成・保持でき
るという利点がある。
That is, for the contact member, a light material with excellent thermal conductivity can be used even if the elastic force is not large, and for the pressure member, a material with high compressive elasticity may be used even though the thermal conductivity is low. I can do seven things. Furthermore, as shown in FIG. 3 and FIG. Even if the main surface of the heating element is uneven*6 and the main surfaces are not parallel to each other and are tilted, a heat radiation path can be reliably formed and maintained across the entire main surface. There are advantages.

更に、このような優れた特性を極めて簡単な構成で安価
に実現できるという利点もある。
Another advantage is that such excellent characteristics can be achieved at low cost with an extremely simple configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、 (b)はそれぞれ本発明の熱伝達用治
具の基本構造を示す斜視図。 第一図は、第1図(b)で示す本発明の熱伝達用治具の
実装状態及び放熱経路を説明するための断面図。 第3図は、本発明の基本構造を複数個配した実施例の斜
視図。 第グ図(a)、 (b)は、本発明の基本構造を複数個
、交差指状に配した実施例の斜視図及び断面図。 第5図は従来の熱伝達治具の基本構造を説明する図、第
6図は従来の熱伝達治具の複数実装状態を説明する断面
図、第1図及び第2図は従来の熱伝達治具の機能を説明
する図である。 1’、/・・・高熱伝導率を有する板状の接触部材、コ
・・・圧縮弾性を有する加圧部材、3・・・熱吸収体(
又は、放熱体)、μ・・・発熱素子(又は1発熱体)、
!・・・ピストン小片、6・・・ばね、7・・・空隙部
、r・・・冷却用媒体の流れる管路、り・・・発熱素子
の固着剤、IO・・・発熱素子の搭載基板。
FIGS. 1(a) and 1(b) are perspective views showing the basic structure of the heat transfer jig of the present invention, respectively. FIG. 1 is a sectional view for explaining the mounting state and heat radiation path of the heat transfer jig of the present invention shown in FIG. 1(b). FIG. 3 is a perspective view of an embodiment in which a plurality of basic structures of the present invention are arranged. Figures (a) and (b) are a perspective view and a sectional view of an embodiment in which a plurality of basic structures of the present invention are arranged in an interdigital pattern. Figure 5 is a diagram illustrating the basic structure of a conventional heat transfer jig, Figure 6 is a sectional view illustrating multiple mounting states of the conventional heat transfer jig, and Figures 1 and 2 are conventional heat transfer jigs. It is a figure explaining the function of a jig. 1', /...Plate-shaped contact member with high thermal conductivity, K...Pressure member with compressive elasticity, 3...Heat absorber (
or heat sink), μ... heating element (or 1 heating element),
! ...Piston small piece, 6...Spring, 7...Gap, r...Pipeline through which the cooling medium flows, Ri...Fixing agent for heat generating element, IO...Mounting board for heat generating element .

Claims (5)

【特許請求の範囲】[Claims] (1)熱伝導率の高い板状の第1材質を、ほぼS字状に
屈曲形成し、上部接触部(11)と下部接触部(12)
と斜辺部(13)とからなる接触部材(1)となし、当
該接触部材(1)の上記上部接触部(11)の下部及び
上記下部接触部(12)の上部に連接して、圧縮弾性を
有する第2材質からなる加圧部材(2)をそれぞれ設け
、 上記接触部材(1)と上記加圧部材(2)とから構成さ
れることを特徴とする熱伝達用治具。
(1) A plate-shaped first material with high thermal conductivity is bent into an almost S-shape, and an upper contact portion (11) and a lower contact portion (12) are formed.
A contact member (1) consisting of A heat transfer jig characterized in that the contact member (1) and the pressure member (2) each include a pressure member (2) made of a second material having the following properties.
(2)上部接触部(11)及び下部接触部(12)の接
触面が凸状にわずかに彎曲していることを特徴とする特
許請求の範囲第1記載の熱伝達用治具。
(2) The heat transfer jig according to claim 1, wherein the contact surfaces of the upper contact portion (11) and the lower contact portion (12) are slightly curved in a convex shape.
(3)1の加圧部材(2)に、複数の接触部材(1)を
連接せしめたことを特徴とする特許請求の範囲第1項記
載の熱伝達用治具。
(3) A heat transfer jig according to claim 1, characterized in that a plurality of contact members (1) are connected to one pressure member (2).
(4)複数の加圧部材(2)を長手方向にそろえ、かつ
所定の間隔をあけて配するとともに、隣接する加圧部材
(2)間に、接触部材(1)を連結せしめて配したこと
を特徴とする特許請求の範囲第1項記載の熱伝達用治具
(4) A plurality of pressure members (2) are aligned in the longitudinal direction and arranged at predetermined intervals, and a contact member (1) is connected and arranged between adjacent pressure members (2). A heat transfer jig according to claim 1, characterized in that:
(5)半導体素子と外部放熱手段との空隙部に熱伝導率
の高い材質でなる熱伝達用治具を介在させて、半導体素
子の発生する熱を外部放熱手段に伝達せしめる放熱方法
において、上記熱伝達用治具が、 熱伝導率の高い板状の第1材質をほぼS字状に屈曲形成
し、上部接触部と下部接触部と斜辺部とからなる接触部
材となし、 当該接触部材の上部接触部の下部及び下部接触部の上部
に連接して、圧縮弾性を有する第2材質からなる加圧部
材をそれぞれ設け、上記接触部材と加圧部材とから構成
される治具であり、当該治具の加圧部材の圧縮弾性力に
より、接触部材を半導体素子及び外部放熱手段に圧着せ
しめて放熱経路を形成せしめることを特徴とする放熱方
法。
(5) In the heat dissipation method described above, in which a heat transfer jig made of a material with high thermal conductivity is interposed in the gap between the semiconductor element and the external heat dissipation means, and the heat generated by the semiconductor element is transferred to the external heat dissipation means. The heat transfer jig is formed by bending a plate-shaped first material with high thermal conductivity into a substantially S-shape to form a contact member consisting of an upper contact portion, a lower contact portion, and an oblique side portion, and A pressing member made of a second material having compressive elasticity is provided in connection with the lower part of the upper contact part and the upper part of the lower contact part, and the jig is composed of the contact member and the pressing member, and A heat dissipation method characterized in that a contact member is pressed onto a semiconductor element and an external heat dissipation means by compressive elastic force of a pressing member of a jig to form a heat dissipation path.
JP5715886A 1986-03-17 1986-03-17 Heat transfer jig and heat dissipation method using the same Expired - Lifetime JPH079955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5715886A JPH079955B2 (en) 1986-03-17 1986-03-17 Heat transfer jig and heat dissipation method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5715886A JPH079955B2 (en) 1986-03-17 1986-03-17 Heat transfer jig and heat dissipation method using the same

Publications (2)

Publication Number Publication Date
JPS62216254A true JPS62216254A (en) 1987-09-22
JPH079955B2 JPH079955B2 (en) 1995-02-01

Family

ID=13047758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5715886A Expired - Lifetime JPH079955B2 (en) 1986-03-17 1986-03-17 Heat transfer jig and heat dissipation method using the same

Country Status (1)

Country Link
JP (1) JPH079955B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0792573A1 (en) * 1994-11-18 1997-09-03 Tessera, Inc. Compliant thermal connectors, methods and assemblies
JP2016070408A (en) * 2014-09-30 2016-05-09 日本発條株式会社 Heat transfer spring
JP2016080073A (en) * 2014-10-16 2016-05-16 日本発條株式会社 Spring member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0792573A1 (en) * 1994-11-18 1997-09-03 Tessera, Inc. Compliant thermal connectors, methods and assemblies
EP0792573A4 (en) * 1994-11-18 1998-02-25 Tessera Inc Compliant thermal connectors, methods and assemblies
JP2016070408A (en) * 2014-09-30 2016-05-09 日本発條株式会社 Heat transfer spring
JP2016080073A (en) * 2014-10-16 2016-05-16 日本発條株式会社 Spring member

Also Published As

Publication number Publication date
JPH079955B2 (en) 1995-02-01

Similar Documents

Publication Publication Date Title
US11439042B2 (en) Heat exchange assembly for a communication system
US7532475B2 (en) Semiconductor chip assembly with flexible metal cantilevers
US6538308B1 (en) Semiconductor apparatus with heat radiation structure for removing heat from semiconductor element
US7990717B2 (en) Heat sink and electronic device using same
JPS60126853A (en) Cooling device for semiconductor chip
JPWO2008099554A1 (en) Semiconductor package mounting structure
EP1263040A3 (en) High performance heat sink for electronics cooling
JPH02398A (en) Cooling structure of integrated circuit
US20200118906A1 (en) Gap fillers with independently tunable mechanical and thermal properties
CN105611804B (en) Heat conductive pad, radiator and electronic product
US6014314A (en) Package structure of a multi-chip module
US12052847B2 (en) Aligned multi-rail high-power cooling module
CN109887894B (en) Heat sink, circuit board and computing device
JP2002064168A (en) Cooling device, manufacturing method of cooling device, and semiconductor device
JPS62216254A (en) Jig for heat transfer and heat dissipation method using said jig
TW201020404A (en) Fastener for heat sinker and an elastic frame of the fastener
US11435148B2 (en) Composite spring heat spreader
CN217740516U (en) Radiator, heat dissipation unit and server
JP6178981B2 (en) Cooling system
US20050006055A1 (en) Method and apparatus for mounting a heat transfer apparatus upon an electronic component
JPS62154654A (en) Heat transfer jig and heat dissipation using the same
JPH04294570A (en) Heat sink
US20130250522A1 (en) Heat sink profile for interface to thermally conductive material
JPH10117077A (en) Heat sink
CN116583945A (en) Radiator device using graphite sheet as fin

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term