JP2016070408A - Heat transfer spring - Google Patents

Heat transfer spring Download PDF

Info

Publication number
JP2016070408A
JP2016070408A JP2014201452A JP2014201452A JP2016070408A JP 2016070408 A JP2016070408 A JP 2016070408A JP 2014201452 A JP2014201452 A JP 2014201452A JP 2014201452 A JP2014201452 A JP 2014201452A JP 2016070408 A JP2016070408 A JP 2016070408A
Authority
JP
Japan
Prior art keywords
contact
heat transfer
transfer spring
curvature
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014201452A
Other languages
Japanese (ja)
Other versions
JP6419513B2 (en
Inventor
秀雅 伊藤
Hidemasa Ito
秀雅 伊藤
潤 冨永
Jun Tominaga
潤 冨永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP2014201452A priority Critical patent/JP6419513B2/en
Priority to PCT/JP2015/077820 priority patent/WO2016052654A1/en
Publication of JP2016070408A publication Critical patent/JP2016070408A/en
Application granted granted Critical
Publication of JP6419513B2 publication Critical patent/JP6419513B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a heat transfer spring excellent in heat conductivity and vibration followability.SOLUTION: A transfer spring is formed with a substantially belt-like member; has one end that is a base end part curved at a first curvature radius, and the other end that is a tip part being a curvature form reverse to the one end and curved at a second curvature radius; and includes a contact part contacting with a contact object respectively at the base end part and the tip part, and a flat plate-like holding part holding the base end part. The first and second curvature radii have a value defined on the basis of each contact heat resistance with respect to the contact object.SELECTED DRAWING: Figure 2

Description

本発明は、発熱対象と放熱部材との間に介在し、発熱対象が発した熱を放熱部材に伝える伝熱ばねに関する。   The present invention relates to a heat transfer spring that is interposed between a heat generation target and a heat dissipation member and transmits heat generated by the heat generation target to the heat dissipation member.

従来、自動車分野や精密機器産業分野において、構成部品には、高い放熱性や、高温環境下における耐久性、振動に対する追従性が求められている。構成部品が高い放熱性を有するためには、発熱部材と冷却部材との間に高い熱伝導性を有する伝熱ばねを使用する必要があった。他方、発熱部材で発生する振動を放熱部材などの部材に伝えないようにするためには、発生した振動に伝熱ばねが追従する必要があった。   Conventionally, in the automotive field and the precision equipment industry field, component parts are required to have high heat dissipation, durability in a high temperature environment, and vibration followability. In order for the component parts to have high heat dissipation properties, it is necessary to use a heat transfer spring having high heat conductivity between the heat generating member and the cooling member. On the other hand, in order not to transmit the vibration generated in the heat generating member to a member such as a heat radiating member, the heat transfer spring needs to follow the generated vibration.

上述した要求を満たす伝熱ばねとして、熱伝導性を有する金属を用いて形成され、突起体を有する金属板が開示されている(例えば、特許文献1を参照)。特許文献1によれば、金属板を半導体チップと外装キャップとの間に配置することで、半導体チップが発した熱を外装キャップに伝えて、外装キャップにより外部に熱を放出する。また、熱により発生した応力や、発熱部材と冷却部材との間で生じた振動が加わった場合であっても突起体の弾性変形により吸収することができる。   As a heat transfer spring that satisfies the above-described requirements, a metal plate that is formed using a metal having thermal conductivity and has a protrusion is disclosed (for example, see Patent Document 1). According to Patent Document 1, by disposing a metal plate between a semiconductor chip and an exterior cap, heat generated by the semiconductor chip is transmitted to the exterior cap, and heat is released to the outside by the exterior cap. Further, even when stress generated by heat or vibration generated between the heat generating member and the cooling member is applied, it can be absorbed by elastic deformation of the protrusion.

特開平10−303340号公報JP-A-10-303340

しかしながら、熱伝導性を高めるために接触対象に対する突起体の接触面を大きくすると弾性変形して作用する部位が小さくなる。一方で、振動追従性を高めるために弾性変形して作用する部位を大きくすると接触面が小さくなって接触熱抵抗が大きくなる。このように、伝熱ばねにおいて熱伝導性と振動追従性とを両立させることは難しかった。   However, when the contact surface of the protrusion with respect to the contact target is increased in order to increase the thermal conductivity, the portion acting by elastic deformation is reduced. On the other hand, if the part which acts by elastic deformation is increased in order to improve the vibration followability, the contact surface is reduced and the contact thermal resistance is increased. Thus, it has been difficult to achieve both thermal conductivity and vibration followability in the heat transfer spring.

本発明は、上記に鑑みてなされたものであって、熱伝導性および振動追従性に優れた伝熱ばねを提供することを目的とする。   This invention is made | formed in view of the above, Comprising: It aims at providing the heat-transfer spring excellent in thermal conductivity and vibration followability.

上述した課題を解決し、目的を達成するために、本発明にかかる伝熱ばねは、略帯状の部材を用いて形成され、一端が第1の曲率半径で湾曲してなる基端部と、他端が前記一端に対して逆の湾曲態様、かつ第2の曲率半径で湾曲してなる先端部とを有し、該基端部および該先端部で接触対象とそれぞれ接触する接触部と、前記基端部を保持する平板状の保持部と、を備え、前記第1および第2の曲率半径は、各々の接触対象に対する接触熱抵抗に応じて定まる値を有することを特徴とする。   In order to solve the above-described problems and achieve the object, a heat transfer spring according to the present invention is formed using a substantially band-shaped member, and a base end portion having one end curved with a first radius of curvature; A distal end portion whose other end is curved in a reverse bending manner with respect to the one end, and a second curvature radius, and a contact portion that makes contact with a contact object at the proximal end portion and the distal end portion, A flat plate-like holding portion that holds the base end portion, and the first and second curvature radii have values determined according to contact thermal resistance with respect to each contact object.

また、本発明にかかる伝熱ばねは、上記の発明において、前記第1および第2の曲率半径は、曲率半径と接触熱抵抗との関係を示す曲線の極値または該極値の近傍領域の値に応じてそれぞれ定まることを特徴とする。   In the heat transfer spring according to the present invention as set forth in the invention described above, the first and second curvature radii are extreme values of a curve indicating a relationship between the curvature radius and the contact thermal resistance, or a region in the vicinity of the extreme value. It is characterized by being determined according to the value.

また、本発明にかかる伝熱ばねは、上記の発明において、前記接触部は、前記連結部の主面と直交する方向からみて矩形をなすことを特徴とする。   In the heat transfer spring according to the present invention as set forth in the invention described above, the contact portion has a rectangular shape when viewed from a direction orthogonal to the main surface of the connecting portion.

また、本発明にかかる伝熱ばねは、上記の発明において、前記第1および第2の曲率半径は、同一であることを特徴とする。   The heat transfer spring according to the present invention is characterized in that, in the above-mentioned invention, the first and second radii of curvature are the same.

また、本発明にかかる伝熱ばねは、上記の発明において、複数の前記接触部を備え、前記保持部は、マトリックス状に設けられた複数の開口部を有し、前記開口部は、複数の前記接触部の各基端部を保持することを特徴とする。   The heat transfer spring according to the present invention includes a plurality of the contact portions in the above invention, the holding portion includes a plurality of openings provided in a matrix shape, and the openings include a plurality of openings. Each base end portion of the contact portion is held.

本発明によれば、優れた熱伝導性および振動追従性を有する伝熱ばねを実現することができるという効果を奏する。   According to the present invention, there is an effect that a heat transfer spring having excellent thermal conductivity and vibration followability can be realized.

図1は、本発明の実施の形態にかかる伝熱ばねの構成を模式的に示す側面図である。FIG. 1 is a side view schematically showing the configuration of the heat transfer spring according to the embodiment of the present invention. 図2は、本発明の実施の形態にかかる伝熱ばねの要部の構成を示す平面図である。FIG. 2 is a plan view showing a configuration of a main part of the heat transfer spring according to the embodiment of the present invention. 図3は、本発明の実施の形態にかかる伝熱ばねの要部の構成を示す側面図である。FIG. 3 is a side view showing the configuration of the main part of the heat transfer spring according to the embodiment of the present invention. 図4は、本発明の実施の形態にかかる伝熱ばねの要部の構成を模式的に示す部分断面図であって、外部から荷重が加わった場合を説明する図である。FIG. 4 is a partial cross-sectional view schematically showing a configuration of a main part of the heat transfer spring according to the embodiment of the present invention, and is a diagram for explaining a case where a load is applied from the outside. 図5は、本発明の実施の形態にかかる伝熱ばねにおける接触部の湾曲形状に対する接触面圧および接触面積をそれぞれ示すグラフである。FIG. 5 is a graph showing the contact surface pressure and the contact area with respect to the curved shape of the contact portion in the heat transfer spring according to the embodiment of the present invention. 図6は、本発明の実施の形態にかかる伝熱ばねにおける接触部の湾曲形状に対する接触熱抵抗および接触面積をそれぞれ示すグラフである。FIG. 6 is a graph showing the contact thermal resistance and the contact area with respect to the curved shape of the contact portion in the heat transfer spring according to the embodiment of the present invention. 図7は、本発明の実施の形態にかかる伝熱ばねの製造方法の一例を説明する図である。Drawing 7 is a figure explaining an example of the manufacturing method of the heat-transfer spring concerning an embodiment of the invention. 図8は、本発明の実施の形態にかかる伝熱ばねの製造方法の一例を説明する図である。Drawing 8 is a figure explaining an example of the manufacturing method of the heat-transfer spring concerning an embodiment of the invention. 図9は、本発明の実施の形態の変形例1にかかる伝熱ばねの構成を示す平面図である。FIG. 9 is a plan view showing the configuration of the heat transfer spring according to the first modification of the embodiment of the present invention. 図10は、本発明の実施の形態の変形例2にかかる伝熱ばねの構成を示す斜視図である。FIG. 10: is a perspective view which shows the structure of the heat-transfer spring concerning the modification 2 of embodiment of this invention.

以下の説明では、本発明を実施するための形態(以下、「実施の形態」という)として、伝熱ばねについて説明する。また、この実施の形態により、この発明が限定されるものではない。さらに、図面の記載において、同一部分には同一の符号を付している。さらにまた、図面は、模式的なものであり、各部材の厚みと幅との関係、各部材の比率等は、現実と異なることに留意する必要がある。また、図面の相互間においても、互いの寸法や比率が異なる部分が含まれている。   In the following description, a heat transfer spring will be described as a mode for carrying out the present invention (hereinafter referred to as “embodiment”). Moreover, this invention is not limited by this embodiment. Furthermore, the same code | symbol is attached | subjected to the same part in description of drawing. Furthermore, the drawings are schematic, and it should be noted that the relationship between the thickness and width of each member, the ratio of each member, and the like are different from the actual ones. Moreover, the part from which a mutual dimension and ratio differ also in between drawings.

(実施の形態)
図1は、本発明の実施の形態にかかる伝熱ばねの構成を模式的に示す側面図である。本発明の実施の形態1にかかる伝熱ばね1は、対向する発熱部材と放熱部材との間に配置される。伝熱ばね1は、弾性力により、発熱部材と放熱部材との双方に対して圧力を加えるとともに、発熱部材が発した熱を放熱部材に伝達する。伝熱ばね1は、弾性特性を有する材料、例えば銅系の合金(例えばコルソン系銅合金)などからなる平板状の部材を用いて形成される。
(Embodiment)
FIG. 1 is a side view schematically showing the configuration of the heat transfer spring according to the embodiment of the present invention. The heat transfer spring 1 according to the first embodiment of the present invention is disposed between the opposing heat generating member and heat radiating member. The heat transfer spring 1 applies pressure to both the heat generating member and the heat radiating member by elastic force, and transmits heat generated by the heat generating member to the heat radiating member. The heat transfer spring 1 is formed using a flat member made of a material having elastic characteristics, for example, a copper-based alloy (for example, a Corson-based copper alloy).

伝熱ばね1は、マトリックス状に設けられた開口部10aを有する平板状の枠部10と、枠部10の開口部10aの内周面から枠部10に対して立ち上がる方向に帯状をなして延在し、接触対象と接触する接触部11とを備える。枠部10は、複数の接触部11を所定の配列で保持する保持部としての機能を有する。   The heat transfer spring 1 has a plate-like frame portion 10 having openings 10a provided in a matrix shape, and a belt shape in a direction rising from the inner peripheral surface of the opening portion 10a of the frame portion 10 with respect to the frame portion 10. The contact part 11 which extends and contacts a contact object is provided. The frame portion 10 has a function as a holding portion that holds the plurality of contact portions 11 in a predetermined arrangement.

図2は、本実施の形態にかかる伝熱ばねの要部の構成を示す平面図である。図3は、本実施の形態にかかる伝熱ばねの要部の構成を示す側面図であって、伝熱ばねを放熱部材上に載置した状態を示す図である。接触部11が枠部10に対して延在する側を枠部10の上方とするとき、接触部11は枠部10の表面に対して下に凸な曲面をなす基端部11aと、枠部10の表面に対して上に凸な曲面をなし、接触対象と接触する先端部11bとを有する。接触部11は、上方からみた投影形状が矩形をなす。基端部11aおよび先端部11bは、それぞれ所定の曲率半径(第1および第2の曲率半径)で互いに逆向きの湾曲態様に湾曲した形状をなしている。なお、本実施の形態1における基端部11aおよび先端部11bの曲率半径とは、曲率半径が最も小さくなる部位(例えば凸の頭頂部や凹の底部)における曲率半径のことをさす。   FIG. 2 is a plan view showing a configuration of a main part of the heat transfer spring according to the present embodiment. FIG. 3 is a side view illustrating a configuration of a main part of the heat transfer spring according to the present embodiment, and is a diagram illustrating a state in which the heat transfer spring is placed on the heat radiating member. When the side where the contact part 11 extends with respect to the frame part 10 is located above the frame part 10, the contact part 11 has a base end part 11 a that has a curved surface convex downward with respect to the surface of the frame part 10, and a frame It has a curved surface that is convex upward with respect to the surface of the portion 10, and has a tip portion 11b that comes into contact with the contact target. The contact portion 11 has a rectangular projection shape viewed from above. The proximal end portion 11a and the distal end portion 11b have shapes that are curved in a curved manner opposite to each other with predetermined curvature radii (first and second curvature radii), respectively. In addition, the curvature radius of the base end part 11a and the front-end | tip part 11b in this Embodiment 1 means the curvature radius in the site | part (for example, a convex top part and a concave bottom part) where a curvature radius becomes the smallest.

伝熱ばね1は、図3に示すように、枠部10を放熱部材100上に配置し、反対側から発熱部材101を配置する。この際、接触部11の両端が、放熱部材100および発熱部材101とそれぞれ接触する。具体的には、基端部11aが放熱部材100と接触し、先端部11bが発熱部材101と接触する。   As shown in FIG. 3, the heat transfer spring 1 has the frame portion 10 disposed on the heat radiating member 100 and the heat generating member 101 disposed from the opposite side. At this time, both ends of the contact portion 11 are in contact with the heat radiating member 100 and the heat generating member 101, respectively. Specifically, the base end portion 11 a contacts the heat radiating member 100, and the tip end portion 11 b contacts the heat generating member 101.

図4は、本発明の実施の形態にかかる伝熱ばねの要部の構成を模式的に示す部分断面図であって、外部から荷重が加わった場合を説明する図である。なお、図4では、先端部11bに荷重が加わっていない状態の接触部11の形状を破線Qで示している。伝熱部ばね1は、放熱部材100と発熱部材101との間に配置されると、基端部11aが放熱部材100と接触し、先端部11bが発熱部材101と接触する。放熱部材100と発熱部材101との間の距離を小さくしていくと、伝熱ばね1に荷重が加わり始める。伝熱ばね1に荷重が加わり始めると、接触部11は枠部10に対して徐々に寝ていく一方、枠部10のうち基端部11aに連なる部分が放熱部材100の表面から離間してせり上がっていく。   FIG. 4 is a partial cross-sectional view schematically showing a configuration of a main part of the heat transfer spring according to the embodiment of the present invention, and is a diagram for explaining a case where a load is applied from the outside. In addition, in FIG. 4, the shape of the contact part 11 in the state where the load is not applied to the front-end | tip part 11b is shown with the broken line Q. When the heat transfer section spring 1 is disposed between the heat radiating member 100 and the heat generating member 101, the base end portion 11 a contacts the heat radiating member 100 and the tip end portion 11 b contacts the heat generating member 101. As the distance between the heat radiating member 100 and the heat generating member 101 is reduced, a load is applied to the heat transfer spring 1. When a load starts to be applied to the heat transfer spring 1, the contact portion 11 gradually lies down with respect to the frame portion 10, while a portion of the frame portion 10 that is connected to the base end portion 11 a is separated from the surface of the heat radiating member 100. It rises.

続いて、伝熱ばね1と、放熱部材100または発熱部材101との間に生じる接触熱抵抗について説明する。伝熱ばね1と放熱部材100または発熱部材101との間の熱伝導を高効率とするためには、両者の間に生じる接触熱抵抗を小さくすることが好ましい。   Subsequently, the contact thermal resistance generated between the heat transfer spring 1 and the heat radiating member 100 or the heat generating member 101 will be described. In order to make the heat conduction between the heat transfer spring 1 and the heat radiating member 100 or the heat generating member 101 highly efficient, it is preferable to reduce the contact thermal resistance generated between them.

接触面積を一定とした場合の接触熱抵抗R(mK/W)は、下式(1)、(2)により得ることができる(日本機械学会論文集(A集)、76巻、763号(2010−3)、論文No.09−0569(p.344−350)参照)。
接触熱抵抗Rは、下式(1)に基づいて求めることができる。

Figure 2016070408
ここで、h:接触熱伝達率(W/mK)であり、下式(2)に基づいて求めることができる。
Figure 2016070408
ここで、P:接触面圧(MPa)、λ:材料の熱伝導率(W/mK)、Hv:材料のビッカース硬度、Ra:接触面の中心線平均粗さ(μm)、c,c,c:定数。
式(2)において、右辺の第1項は高温側部材(例えば発熱部材)に関する項であり、第2項は低温側部材(例えば伝熱ばね)に関する項である。 The contact thermal resistance R c (m 2 K / W) when the contact area is constant can be obtained by the following formulas (1) and (2) (The Japan Society of Mechanical Engineers Proceedings (A), Volume 76, 763 (2010-3), paper No. 09-0569 (p.344-350)).
The thermal contact resistance R c is can be determined based on the following equation (1).
Figure 2016070408
Here, h c : contact heat transfer coefficient (W / m 2 K), which can be obtained based on the following equation (2).
Figure 2016070408
Here, P: contact surface pressure (MPa), λ: thermal conductivity of material (W / mK), Hv: Vickers hardness of material, Ra: center line average roughness (μm) of contact surface, c 1 , c 2 , c 3 : Constant.
In Expression (2), the first term on the right side is a term related to a high temperature side member (for example, a heat generating member), and the second term is a term related to a low temperature side member (for example, a heat transfer spring).

式(1)および式(2)により求まる接触熱抵抗Rを求めることで、単位面積あたりの接触熱抵抗Rcuは、下式(3)に基づいて得ることができる。

Figure 2016070408
ここで、A:接触面積、Asp:接触面と直交する方向からみた伝熱ばねの投影面積。 By obtaining the contact thermal resistance R c obtained from the equations (1) and (2), the contact thermal resistance R cu per unit area can be obtained based on the following equation (3).
Figure 2016070408
Here, A c : contact area, A sp : projected area of the heat transfer spring viewed from the direction orthogonal to the contact surface.

図5は、本実施の形態にかかる伝熱ばねにおける接触部の湾曲形状に対する接触面圧および接触面積をそれぞれ示すグラフである。図5に示すグラフは、接触部11に対して同一の荷重を加えた場合の接触熱抵抗および接触面積をそれぞれ示し、具体的には接触部11一つ当たりの板幅が4.0mm、ばね長(基端部11aから先端部11bまでの板面に沿った長さ)が2.5mm、加えた荷重が1.4Nである場合を一例として示している。上述したように、接触対象の接触面が平面をなす場合は、接触部11の曲率半径(r)が大きくなると、接触部11と接触対象との接触面積は大きくなる。これに対し、接触部11の曲率半径(r)が大きくなると、接触部11が接触対象に加える接触面圧は小さくなる。   FIG. 5 is a graph showing the contact surface pressure and the contact area with respect to the curved shape of the contact portion in the heat transfer spring according to the present embodiment. The graph shown in FIG. 5 shows the contact thermal resistance and the contact area when the same load is applied to the contact portion 11, specifically, the plate width per contact portion 11 is 4.0 mm, the spring The case where the length (the length along the plate surface from the base end portion 11a to the tip end portion 11b) is 2.5 mm and the applied load is 1.4 N is shown as an example. As described above, when the contact surface of the contact target is a flat surface, the contact area between the contact portion 11 and the contact target increases as the radius of curvature (r) of the contact portion 11 increases. On the other hand, when the curvature radius (r) of the contact portion 11 increases, the contact surface pressure applied to the contact object by the contact portion 11 decreases.

図6は、本実施の形態にかかる伝熱ばねにおける接触部の湾曲形状に対する単位面積あたりの接触熱抵抗および接触面積をそれぞれ示すグラフである。図6に示すグラフは、接触部11に対して同一の荷重を加えた場合の接触熱抵抗および接触面積をそれぞれ示す。接触部11の寸法や加えた荷重は、図5のグラフと同一である。例えば、接触対象の接触面が平面をなす場合、接触部11(基端部11aまたは先端部11b)の曲率半径(r)が大きくなると、接触部11と接触対象との接触面積は大きくなる。これに対し、接触部11と接触対象との間の単位面積あたりの接触熱抵抗は、接触部11(基端部11aまたは先端部11b)の曲率半径(r)に対する曲線が放物線をなす。   FIG. 6 is a graph showing the contact thermal resistance and the contact area per unit area with respect to the curved shape of the contact portion in the heat transfer spring according to the present embodiment. The graph shown in FIG. 6 shows the contact thermal resistance and the contact area when the same load is applied to the contact portion 11. The dimensions of the contact portion 11 and the applied load are the same as those in the graph of FIG. For example, when the contact surface of the contact target is a flat surface, when the radius of curvature (r) of the contact portion 11 (the base end portion 11a or the tip end portion 11b) increases, the contact area between the contact portion 11 and the contact target increases. On the other hand, in the contact thermal resistance per unit area between the contact portion 11 and the contact target, a curve with respect to the curvature radius (r) of the contact portion 11 (base end portion 11a or tip end portion 11b) forms a parabola.

接触部11(基端部11aまたは先端部11b)の曲率半径(r)に対する単位面積あたりの接触熱抵抗は、極値を有する。図6に示すグラフでは、r(mm)が1.5mm前後で極値を有する。このようにして求まる極値や極値近傍のrの値を接触部11(基端部11aまたは先端部11b)の曲率半径に設定することで、接触熱抵抗を低減した接触部11を形成することができる。   The contact thermal resistance per unit area with respect to the radius of curvature (r) of the contact portion 11 (base end portion 11a or tip end portion 11b) has an extreme value. In the graph shown in FIG. 6, r (mm) has an extreme value around 1.5 mm. The contact portion 11 with reduced contact thermal resistance is formed by setting the extreme value thus obtained and the value of r near the extreme value to the radius of curvature of the contact portion 11 (base end portion 11a or tip end portion 11b). be able to.

例えば、接触部11の曲率半径は、極値に対応するrであってもよいし、極値を含み、該極値の5%以内の範囲を許容範囲とし、基端部11aおよび先端部11bの湾曲形状の形成における設計上の公差(例えば、極値に対応するrを曲率半径とした際の公差)により生じる曲率半径(r)の範囲(ばらつき)を含むものであってもよい。なお、基端部11aおよび先端部11bの湾曲形状(第1および第2の曲率半径)は、同じであってもよいし、異なるものであってもよい。基端部11aおよび先端部11bの湾曲形状は、接触対象に応じて任意に設計することができる。   For example, the radius of curvature of the contact portion 11 may be r corresponding to the extreme value, may include the extreme value, and may be within a range within 5% of the extreme value, and the proximal end portion 11a and the distal end portion 11b. It may include a range (variation) of the radius of curvature (r) caused by a design tolerance in the formation of the curved shape (for example, a tolerance when r corresponding to an extreme value is a radius of curvature). Note that the curved shapes (first and second radii of curvature) of the proximal end portion 11a and the distal end portion 11b may be the same or different. The curved shapes of the base end portion 11a and the tip end portion 11b can be arbitrarily designed according to the contact target.

次に、本実施の形態にかかる伝熱ばねの製造方法の一例を、図面を参照して説明する。図7は、本実施の形態にかかる伝熱ばねの製造方法の一例を説明する図である。例えば、コルソン系銅合金からなる帯状の母材200に対し、複数のスリット201を形成する(図7参照)。スリット201は、平面視で略M字状をなす中空空間を形成する。スリット201により、枠部202が形成されるとともに、該枠部202から矩形をなして延びる第1舌片部203および第2舌片部204が形成される。   Next, an example of the manufacturing method of the heat-transfer spring concerning this Embodiment is demonstrated with reference to drawings. FIG. 7 is a diagram for explaining an example of a method for manufacturing the heat transfer spring according to the present embodiment. For example, a plurality of slits 201 are formed in a band-shaped base material 200 made of a Corson copper alloy (see FIG. 7). The slit 201 forms a hollow space having a substantially M shape in plan view. The slit 201 forms a frame portion 202, and a first tongue piece portion 203 and a second tongue piece portion 204 that extend from the frame portion 202 in a rectangular shape.

第1舌片部203および第2舌片部204の形成後、該第1舌片部203および第2舌片部204対して、枠部に連なる側の端部と、枠部202に連なる側と異なる側の端部と、をそれぞれ所定の曲率半径となるように湾曲させることにより、上述した接触部11を形成する。この曲率半径は、上述した接触熱抵抗や、接触面圧に基づいて設定される。   After the first tongue piece 203 and the second tongue piece 204 are formed, with respect to the first tongue piece 203 and the second tongue piece 204, the end on the side connected to the frame and the side connected to the frame 202 The contact portion 11 described above is formed by bending the end portions on the different sides from each other so as to have a predetermined radius of curvature. This radius of curvature is set based on the contact thermal resistance and contact surface pressure described above.

このように、スリット201を形成し、スリット201の形成によって生成された第1舌片部203および第2舌片部204を湾曲させることにより、上述した枠部10と接触部11とを有する伝熱ばね1を作製することができる。なお、スリット201は、平面視で略M字状をなし、開口部が二つの舌片部を有するものとして説明したが、開口部が一つの舌片部を有するものであってもよいし、三つ以上の舌片部を有するものであってもよい。   In this way, the slit 201 is formed, and the first tongue piece 203 and the second tongue piece 204 generated by the formation of the slit 201 are curved, whereby the transmission having the frame portion 10 and the contact portion 11 described above. The heat spring 1 can be produced. The slit 201 is substantially M-shaped in plan view, and the opening has been described as having two tongue pieces, but the opening may have one tongue piece, It may have three or more tongue pieces.

図8は、本実施の形態にかかる伝熱ばねの製造方法の一例を説明する図である。スリット201の形成幅(d1〜d4)は、設計上可能な範囲で小さいことが枠部202の剛性の観点から好ましい。また、スリット201の形成間隔は、第1舌片部203および第2舌片部204を湾曲させた際に、枠部202が変形しない程度に小さいことが、伝熱ばね1の小型化の観点で好ましい。上述したように、M字状をなすスリット201により二つの接触部11(第1舌片部203および第2舌片部204)を形成できるため、一つ一つの接触部11が枠部10に囲まれる場合と比して伝熱ばね1を小型化することができる。   FIG. 8 is a diagram for explaining an example of a manufacturing method of the heat transfer spring according to the present embodiment. The formation width (d1 to d4) of the slit 201 is preferably as small as possible in terms of design from the viewpoint of the rigidity of the frame portion 202. In addition, the formation interval of the slits 201 is so small that the frame portion 202 is not deformed when the first tongue piece portion 203 and the second tongue piece portion 204 are curved. Is preferable. As described above, since the two contact portions 11 (the first tongue piece portion 203 and the second tongue piece portion 204) can be formed by the M-shaped slit 201, each contact portion 11 is formed on the frame portion 10. The heat transfer spring 1 can be downsized as compared with the case where it is surrounded.

上述した実施の形態によれば、伝熱ばね1において、接触熱抵抗や、接触面圧に応じて定まる曲率半径(r)を有する湾曲形状をなす接触部11を形成するようにしたので、熱伝導性と振動追従性とに優れるという効果を奏する。   According to the above-described embodiment, in the heat transfer spring 1, the contact portion 11 having a curved shape having a curvature radius (r) determined according to the contact thermal resistance and the contact surface pressure is formed. There is an effect that it is excellent in conductivity and vibration followability.

また、上述した実施の形態によれば、接触部11が、矩形をなして延びる舌片部を湾曲して形成するようにしたので、先細な形状、例えば錘状をなす舌片部を湾曲させて接触部を形成する場合と比して熱の伝達効率が高い。一般的に、舌片部を湾曲させて接触部を形成するような場合には、先細な形状に成形した舌片部を湾曲させるが、本実施の形態のように、矩形をなす舌片部をもとに接触部を形成することで、一層効率的な熱伝達を行うことができる。   Further, according to the above-described embodiment, the contact portion 11 is formed by bending the tongue piece portion extending in a rectangular shape. Therefore, heat transfer efficiency is higher than when the contact portion is formed. In general, when the contact portion is formed by bending the tongue piece portion, the tongue piece portion formed into a tapered shape is bent, but the tongue piece portion having a rectangular shape as in the present embodiment By forming the contact portion based on the above, more efficient heat transfer can be performed.

従来用いられる伝熱部材として伝熱グリスや伝熱シートが挙げられるが、導体熱抵抗の観点から伝熱グリスや伝熱シートの厚みを薄くすると、振動に対する追従性が低下する。これに対し、伝熱グリスにおいて、振動に対する追従性の観点から伝熱部材の厚みを厚くする場合は、厚み調整が困難であるために熱抵抗の管理が難しい。また、放熱シートにおいて、振動に対する追従性の観点から伝熱部材の厚みを厚くする場合は、導体熱抵抗低減のために高熱伝導性フィラーを多く含有させる必要があり、該高熱伝導性フィラーにより硬くなって振動に対する追従性を高めることができない。これに対し、本実施の形態にかかる伝熱ばねは、上述した構成を有することで、高い熱伝導性と高い振動追従性とを両立させることができる。   Conventionally used heat transfer members include heat transfer grease and heat transfer sheet, but if the thickness of the heat transfer grease or heat transfer sheet is reduced from the viewpoint of the conductor thermal resistance, the followability to vibration is reduced. On the other hand, in the heat transfer grease, when the thickness of the heat transfer member is increased from the viewpoint of followability to vibration, it is difficult to control the thermal resistance because it is difficult to adjust the thickness. Further, in the heat radiating sheet, when increasing the thickness of the heat transfer member from the viewpoint of followability to vibration, it is necessary to contain a large amount of high thermal conductive filler to reduce the conductor thermal resistance, and it is harder to use the high thermal conductive filler. Therefore, the followability to vibration cannot be improved. On the other hand, the heat transfer spring according to the present embodiment can achieve both high thermal conductivity and high vibration followability by having the above-described configuration.

なお、上述した実施の形態において、各接触部11は、同一の形状をなすものであってもよいし、大きさや湾曲態様が異なるものであってもよい。荷重の加え方などにより、適宜設計することが好ましい。なお、同一の形状とは、設計上同一の形状をなすものであり、製造上の誤差を含む。   In the above-described embodiment, each contact portion 11 may have the same shape, or may have a different size or curved form. It is preferable to design appropriately depending on how the load is applied. Note that the same shape means the same shape in design and includes manufacturing errors.

また、上述した実施の形態では、複数の接触部11を有するものとして説明したが、矩形の平板状をなし、矩形の開口を有する枠部と、枠部の開口の一部から延びる一つの接触部(接触部11)と、を有する伝熱ばねとしてもよい。この場合も、接触部の曲率半径(第1および第2の曲率半径)は、上述したように各々接触熱抵抗や接触面圧に応じて定められる。   In the above-described embodiment, the plurality of contact portions 11 are described. However, the frame portion has a rectangular flat plate shape and has a rectangular opening, and one contact extending from a part of the opening of the frame portion. It is good also as a heat-transfer spring which has a part (contact part 11). Also in this case, the curvature radius (first and second curvature radii) of the contact portion is determined according to the contact thermal resistance and the contact surface pressure as described above.

(実施の形態の変形例1)
図9は、本実施の形態の変形例1にかかる伝熱ばねの構成を示す平面図である。上述した実施の形態では、接触部11が矩形の舌片部を湾曲させてなるものとして説明したが、本変形例1にかかる伝熱ばね1aの接触部12のように、台形の舌片部を湾曲させてなるものであってもよい。接触部12は、上方からみた投影形状が台形状をなし、枠部10から先端に向けて延伸方向と直交する方向の長さ(幅)が大きくなっている。
(Modification 1 of embodiment)
FIG. 9 is a plan view showing the configuration of the heat transfer spring according to the first modification of the present embodiment. In the above-described embodiment, the contact portion 11 is described as having a rectangular tongue piece curved. However, like the contact portion 12 of the heat transfer spring 1a according to the first modification, the trapezoid tongue piece portion is formed. It may be formed by bending. The contact portion 12 has a trapezoidal projection shape as viewed from above, and has a length (width) in a direction perpendicular to the extending direction from the frame portion 10 toward the tip.

(実施の形態の変形例2)
図10は、本実施の形態の変形例2にかかる伝熱ばねの構成を示す斜視図である。上述した実施の形態では、接触部11が平板状の舌片部を湾曲させてなるものとして説明したが、本変形例2にかかる伝熱ばね1bの接触部13のように、板厚方向に貫通する貫通孔13aが形成されるものであってもよい。換言すれば、図1等に示す伝熱ばね1の各接触部11に貫通孔13aを形成してもよい。貫通孔13aを形成することにより、接触部13の剛性が低下するため、接触面圧を低下させることができる。例えば、接触部11の高さを変えずに接触面圧を変える場合や、部分的に接触部11の接触面圧を変える(一部の接触部11の剛性を変える)場合などに有効である。
(Modification 2 of embodiment)
FIG. 10 is a perspective view showing the configuration of the heat transfer spring according to the second modification of the present embodiment. In the above-described embodiment, the contact portion 11 has been described as being formed by bending the flat tongue piece portion. However, like the contact portion 13 of the heat transfer spring 1b according to the second modification, the contact portion 11 is formed in the plate thickness direction. The through-hole 13a which penetrates may be formed. In other words, the through holes 13a may be formed in the contact portions 11 of the heat transfer spring 1 shown in FIG. By forming the through-hole 13a, the rigidity of the contact portion 13 is reduced, so that the contact surface pressure can be reduced. For example, it is effective when the contact surface pressure is changed without changing the height of the contact portion 11 or when the contact surface pressure of the contact portion 11 is partially changed (the rigidity of some of the contact portions 11 is changed). .

以上のように、本発明にかかる伝熱ばねは、優れた熱伝導性および振動追従性を有する伝熱ばねを得ることに好適である。   As described above, the heat transfer spring according to the present invention is suitable for obtaining a heat transfer spring having excellent thermal conductivity and vibration followability.

1,1a,1b 伝熱ばね
10,202 枠部
11,12,13 接触部
11a 基端部
11b 先端部
13a 貫通孔
201 スリット
203 第1舌片部
204 第2舌片部
1, 1a, 1b Heat transfer spring 10, 202 Frame portion 11, 12, 13 Contact portion 11a Base end portion 11b Tip portion 13a Through hole 201 Slit 203 First tongue piece portion 204 Second tongue piece portion

Claims (5)

略帯状の部材を用いて形成され、一端が第1の曲率半径で湾曲してなる基端部と、他端が前記一端に対して逆の湾曲態様、かつ第2の曲率半径で湾曲してなる先端部とを有し、該基端部および該先端部で接触対象とそれぞれ接触する接触部と、
前記基端部を保持する平板状の保持部と、
を備え、
前記第1および第2の曲率半径は、各々の接触対象に対する接触熱抵抗に応じて定まる値を有することを特徴とする伝熱ばね。
A base end portion formed by using a substantially band-shaped member, one end of which is curved with a first radius of curvature, and the other end of which is curved with a reverse curvature with respect to the one end, and with a second radius of curvature. A contact portion that is in contact with a contact object at the base end portion and the tip end portion, respectively,
A plate-like holding part for holding the base end part;
With
The first and second radii of curvature have a value determined according to a contact thermal resistance with respect to each contact object.
前記第1および第2の曲率半径は、曲率半径と接触熱抵抗との関係を示す曲線の極値または該極値の近傍領域の値に応じてそれぞれ定まることを特徴とする請求項1に記載の伝熱ばね。   The first and second curvature radii are respectively determined according to an extreme value of a curve indicating a relationship between the curvature radius and the contact thermal resistance or a value in a region near the extreme value. Heat transfer spring. 前記接触部は、前記連結部の主面と直交する方向からみて矩形をなすことを特徴とする請求項1または2に記載の伝熱ばね。   The heat transfer spring according to claim 1, wherein the contact portion has a rectangular shape when viewed from a direction orthogonal to the main surface of the connecting portion. 前記第1および第2の曲率半径は、同一であることを特徴とする請求項1〜3のいずれか一つに記載の伝熱ばね。   The heat transfer spring according to any one of claims 1 to 3, wherein the first and second radii of curvature are the same. 複数の前記接触部を備え、
前記保持部は、マトリックス状に設けられた複数の開口部を有し、
前記開口部は、複数の前記接触部の基端部を保持することを特徴とする請求項1〜4のいずれか一つに記載の伝熱ばね。
A plurality of the contact portions,
The holding part has a plurality of openings provided in a matrix,
The heat transfer spring according to any one of claims 1 to 4, wherein the opening holds a base end portion of a plurality of the contact portions.
JP2014201452A 2014-09-30 2014-09-30 Heat transfer spring Active JP6419513B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014201452A JP6419513B2 (en) 2014-09-30 2014-09-30 Heat transfer spring
PCT/JP2015/077820 WO2016052654A1 (en) 2014-09-30 2015-09-30 Heat transfer spring and spring member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014201452A JP6419513B2 (en) 2014-09-30 2014-09-30 Heat transfer spring

Publications (2)

Publication Number Publication Date
JP2016070408A true JP2016070408A (en) 2016-05-09
JP6419513B2 JP6419513B2 (en) 2018-11-07

Family

ID=55866491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014201452A Active JP6419513B2 (en) 2014-09-30 2014-09-30 Heat transfer spring

Country Status (1)

Country Link
JP (1) JP6419513B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7443278B2 (en) 2021-02-26 2024-03-05 日本発條株式会社 spring member

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833860A (en) * 1981-08-10 1983-02-28 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Thermal bridge element
JPS62216254A (en) * 1986-03-17 1987-09-22 Nippon Telegr & Teleph Corp <Ntt> Jig for heat transfer and heat dissipation method using said jig
JPH09116058A (en) * 1995-10-23 1997-05-02 Fuji Electric Co Ltd Pressurizing device of flat semiconductor element
JPH10252794A (en) * 1997-03-07 1998-09-22 Isuzu Seisakusho:Kk Plate spring made of shape memory alloy
JPH10303340A (en) * 1997-04-25 1998-11-13 Toshiba Corp Semiconductor device and its manufacturing method
JP2005302729A (en) * 2004-04-15 2005-10-27 Siemens Ag Contact spring plate and electrochemical battery having the same
JP2009123812A (en) * 2007-11-13 2009-06-04 Denso Corp Electronic control device of heat radiating structure
US20120125699A1 (en) * 2010-09-29 2012-05-24 Walker Lee Guthrie Variable amplitude sine wave spring
WO2013122215A1 (en) * 2012-02-15 2013-08-22 中央発條株式会社 Elastic member

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833860A (en) * 1981-08-10 1983-02-28 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Thermal bridge element
JPS62216254A (en) * 1986-03-17 1987-09-22 Nippon Telegr & Teleph Corp <Ntt> Jig for heat transfer and heat dissipation method using said jig
JPH09116058A (en) * 1995-10-23 1997-05-02 Fuji Electric Co Ltd Pressurizing device of flat semiconductor element
JPH10252794A (en) * 1997-03-07 1998-09-22 Isuzu Seisakusho:Kk Plate spring made of shape memory alloy
JPH10303340A (en) * 1997-04-25 1998-11-13 Toshiba Corp Semiconductor device and its manufacturing method
JP2005302729A (en) * 2004-04-15 2005-10-27 Siemens Ag Contact spring plate and electrochemical battery having the same
JP2009123812A (en) * 2007-11-13 2009-06-04 Denso Corp Electronic control device of heat radiating structure
US20120125699A1 (en) * 2010-09-29 2012-05-24 Walker Lee Guthrie Variable amplitude sine wave spring
WO2013122215A1 (en) * 2012-02-15 2013-08-22 中央発條株式会社 Elastic member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7443278B2 (en) 2021-02-26 2024-03-05 日本発條株式会社 spring member

Also Published As

Publication number Publication date
JP6419513B2 (en) 2018-11-07

Similar Documents

Publication Publication Date Title
EP2738804B1 (en) Flexible thermal transfer strips
US8316921B2 (en) Plate type heat pipe and heat sink using the same
JP2006237060A (en) Heat sink and mounting structure thereof
CN107529315B (en) Temperature equalizing plate and heat dissipating device
JP6378299B2 (en) heatsink
JPWO2019131814A1 (en) heatsink
US20130118717A1 (en) Heat-dissipating device and method for fabricating the same
JP2019046707A (en) Battery module
US10886191B2 (en) Heat transfer plate
JP6419513B2 (en) Heat transfer spring
JP2009088417A (en) Heat sink having heat-dissipation fin, and method of manufacturing the same
JP6419526B2 (en) Spring member
JP5688477B1 (en) Heat transfer unit for heat dissipation
JP5658837B2 (en) Heat dissipation device for electronic parts
WO2016052654A1 (en) Heat transfer spring and spring member
JP2016025161A (en) Heat radiator
JP7172065B2 (en) semiconductor equipment
JP2015216158A (en) Heat sink and manufacturing method of the same
JP6197329B2 (en) Power module and method of manufacturing thermal interface plate
JP4872394B2 (en) Heat sink and semiconductor device provided with the heat sink
US20190137187A1 (en) Heat sink structure
JP6197365B2 (en) Power module and method of manufacturing thermal interface plate
JP2020061395A (en) Heat sink
JP2015207569A (en) heat dissipation structure
CN103906411A (en) Heat dissipation device and pressing member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181010

R150 Certificate of patent or registration of utility model

Ref document number: 6419513

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250