JP6419526B2 - Spring member - Google Patents

Spring member Download PDF

Info

Publication number
JP6419526B2
JP6419526B2 JP2014212022A JP2014212022A JP6419526B2 JP 6419526 B2 JP6419526 B2 JP 6419526B2 JP 2014212022 A JP2014212022 A JP 2014212022A JP 2014212022 A JP2014212022 A JP 2014212022A JP 6419526 B2 JP6419526 B2 JP 6419526B2
Authority
JP
Japan
Prior art keywords
spring member
contact
hole
contact portion
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014212022A
Other languages
Japanese (ja)
Other versions
JP2016080073A (en
Inventor
秀雅 伊藤
秀雅 伊藤
潤 冨永
潤 冨永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP2014212022A priority Critical patent/JP6419526B2/en
Priority to PCT/JP2015/077820 priority patent/WO2016052654A1/en
Publication of JP2016080073A publication Critical patent/JP2016080073A/en
Application granted granted Critical
Publication of JP6419526B2 publication Critical patent/JP6419526B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、二つの部材の間に介在するばね部材に関する。   The present invention relates to a spring member interposed between two members.

従来、自動車分野や精密機器産業分野において、構成部材間の接続には、振動に対する追従性が求められている。構成部材間の接続に用いられ、振動に対する追従性を有する部材としては、該二つの部材の間に介在するばね部材が知られている。ばね部材は、一方の部材で発生する振動に応じて弾性変形することによって、接続を維持したまま他方の部材などの部材に振動が伝わるのを抑制できる。   2. Description of the Related Art Conventionally, in the automotive field and the precision equipment industry field, the connection between constituent members has been required to follow vibration. As a member that is used for connection between constituent members and has a followability to vibration, a spring member that is interposed between the two members is known. The spring member is elastically deformed in response to vibration generated in one member, thereby suppressing vibration from being transmitted to the member such as the other member while maintaining the connection.

このようなばね部材として、略平板状をなす枠部と、該枠部の一部を立ち上げてなり、接触対象の部材と接触する接触部(突起体)と、を有するばね部材(金属体)が開示されている(例えば、特許文献1を参照)。特許文献1が開示するばね部材は、接触部によって振動を吸収して二つの部材の間の接触状態を維持することができる。   As such a spring member, a spring member (metal body) having a substantially flat frame portion and a contact portion (projection body) that comes up from a part of the frame portion and comes into contact with a member to be contacted ) Is disclosed (see, for example, Patent Document 1). The spring member disclosed in Patent Literature 1 can absorb vibration by the contact portion and maintain the contact state between the two members.

特開平10−303340号公報JP-A-10-303340

ところで、追従性を高めるには、接触部の数や大きさを増やして接触面積を大きくすることが好ましい。しかしながら、接触部と接触対象の部材との間の接触面積を大きくすると、接触部を支持している枠部の占有率が低下し、接触部と枠部との剛性に差がでる。接触部と枠部との剛性に差がでると、外部から加わる荷重に対して接触部が変形した際、枠部には該変形による応力が加わり、該応力によりばね部材にへたりが生じてしまう。このため、接触部と枠部との剛性差を抑制する技術が望まれていた。   By the way, in order to improve followability, it is preferable to increase the contact area by increasing the number and size of the contact portions. However, when the contact area between the contact portion and the member to be contacted is increased, the occupation ratio of the frame portion supporting the contact portion is reduced, and the rigidity between the contact portion and the frame portion is different. If there is a difference in rigidity between the contact part and the frame part, when the contact part is deformed due to the load applied from the outside, stress due to the deformation is applied to the frame part, and the stress causes the spring member to sag. End up. For this reason, the technique which suppresses the rigidity difference of a contact part and a frame part was desired.

本発明は、上記に鑑みてなされたものであって、接触部と枠部との剛性差を抑制することができるばね部材を提供することを目的とする。   This invention is made | formed in view of the above, Comprising: It aims at providing the spring member which can suppress the rigidity difference of a contact part and a frame part.

上述した課題を解決し、目的を達成するために、本発明にかかるばね部材は、二つの部材間を接続するばね部材であって、略帯状の部材を用いて形成され、一端が湾曲してなる基端部と、他端が前記一端に対して逆の湾曲態様で湾曲してなる先端部とを有し、該基端部および該先端部で接触対象とそれぞれ接触する接触部と、前記基端部を保持する平板状の保持部と、を備え、前記保持部の主面と直交する方向からみて、当該ばね部材全体に対する該保持部の占有率が1/4以上1/2以下であり、前記接触部には、厚さ方向に貫通する貫通孔が形成されていることを特徴とする。   In order to solve the above-described problems and achieve the object, a spring member according to the present invention is a spring member that connects two members, and is formed using a substantially band-shaped member, and one end is curved. A proximal end portion, and a distal end portion whose other end is curved in a reverse bending manner with respect to the one end, and the contact portion that contacts the contact object at the proximal end portion and the distal end portion, respectively, A flat holding portion for holding the base end portion, and the occupation ratio of the holding portion with respect to the entire spring member is ¼ or more and ½ or less when viewed from a direction orthogonal to the main surface of the holding portion. And the contact portion is formed with a through-hole penetrating in the thickness direction.

また、本発明にかかるばね部材は、上記の発明において、前記接触部を平板状に延ばしたときの前記貫通孔の面積をS3、前記接触部の面積をS4としたとき、面積比S3/S4は、1/2以下を満たすことを特徴とする。   In the spring member according to the present invention, in the above invention, when the area of the through hole when the contact portion is extended in a flat plate shape is S3 and the area of the contact portion is S4, the area ratio S3 / S4. Is characterized by satisfying 1/2 or less.

また、本発明にかかるばね部材は、上記の発明において、前記貫通孔は、開口がひし形をなすことを特徴とする。   The spring member according to the present invention is characterized in that, in the above invention, the through hole has a rhombus opening.

また、本発明にかかるばね部材は、上記の発明において、前記接触部は、前記保持部の主面と直交する方向からみて矩形をなすことを特徴とする。   Moreover, the spring member according to the present invention is characterized in that, in the above invention, the contact portion has a rectangular shape when viewed from a direction orthogonal to a main surface of the holding portion.

また、本発明にかかるばね部材は、上記の発明において、複数の前記接触部を備え、前記保持部は、マトリックス状に設けられた複数の開口部を有し、前記開口部は、一または複数の接触部の各基端部を保持することを特徴とする。   In the above invention, the spring member according to the present invention includes a plurality of the contact portions, the holding portion includes a plurality of openings provided in a matrix shape, and the one or more openings are provided. Each base end portion of the contact portion is held.

本発明によれば、接触部と枠部との剛性差を抑制することができるという効果を奏する。   According to the present invention, there is an effect that a difference in rigidity between the contact portion and the frame portion can be suppressed.

図1は、本発明の実施の形態にかかるばね部材の構成を模式的に示す側面図である。FIG. 1 is a side view schematically showing a configuration of a spring member according to an embodiment of the present invention. 図2は、本発明の実施の形態にかかるばね部材の要部の構成を示す平面図である。FIG. 2 is a plan view showing the configuration of the main part of the spring member according to the embodiment of the present invention. 図3は、本発明の実施の形態にかかるばね部材の要部の構成を示す側面図である。FIG. 3 is a side view showing the configuration of the main part of the spring member according to the embodiment of the present invention. 図4は、本発明の実施の形態にかかるばね部材の要部の構成を模式的に示す部分断面図であって、外部から荷重が加わった場合を説明する図である。FIG. 4 is a partial cross-sectional view schematically showing a configuration of a main part of the spring member according to the embodiment of the present invention, and is a diagram for explaining a case where a load is applied from the outside. 図5は、本発明の実施の形態にかかるばね部材と、比較例にかかるばね部材とにおけるばね定数比および単位面積当たりの熱抵抗比をそれぞれ示すグラフである。FIG. 5 is a graph showing a spring constant ratio and a thermal resistance ratio per unit area in the spring member according to the embodiment of the present invention and the spring member according to the comparative example. 図6は、本発明の実施の形態にかかるばね部材と、比較例にかかるばね部材とにおけるばね高さと、荷重および単位面積当たりの熱抵抗との関係をそれぞれ示すグラフである。FIG. 6 is a graph showing the relationship between the spring height, the load, and the thermal resistance per unit area in the spring member according to the embodiment of the present invention and the spring member according to the comparative example. 図7は、本発明の実施の形態にかかるばね部材の製造方法の一例を説明する図である。Drawing 7 is a figure explaining an example of the manufacturing method of the spring member concerning an embodiment of the invention.

以下の説明では、本発明を実施するための形態(以下、「実施の形態」という)として、ばね部材について説明する。また、この実施の形態により、この発明が限定されるものではない。さらに、図面の記載において、同一部分には同一の符号を付している。さらにまた、図面は、模式的なものであり、各部材の厚みと幅との関係、各部材の比率等は、現実と異なることに留意する必要がある。また、図面の相互間においても、互いの寸法や比率が異なる部分が含まれている。   In the following description, a spring member will be described as a mode for carrying out the present invention (hereinafter referred to as “embodiment”). Moreover, this invention is not limited by this embodiment. Furthermore, the same code | symbol is attached | subjected to the same part in description of drawing. Furthermore, the drawings are schematic, and it should be noted that the relationship between the thickness and width of each member, the ratio of each member, and the like are different from the actual ones. Moreover, the part from which a mutual dimension and ratio differ also in between drawings.

図1は、本発明の実施の形態にかかるばね部材の構成を模式的に示す側面図である。本実施の形態にかかるばね部材1は、対向する発熱部材と放熱部材との間に配置される。ばね部材1は、弾性力により、発熱部材と放熱部材との双方に対して圧力を加えるとともに、発熱部材が発した熱を放熱部材に伝達する。ばね部材1は、弾性特性を有する材料、例えば銅系の合金(例えばコルソン系銅合金)などからなる平板状の部材を用いて形成される。   FIG. 1 is a side view schematically showing a configuration of a spring member according to an embodiment of the present invention. The spring member 1 concerning this Embodiment is arrange | positioned between the heat generating member and heat radiating member which oppose. The spring member 1 applies pressure to both the heat generating member and the heat radiating member by elastic force, and transmits heat generated by the heat generating member to the heat radiating member. The spring member 1 is formed using a flat member made of a material having elastic characteristics, for example, a copper-based alloy (for example, a Corson-based copper alloy).

ばね部材1は、マトリックス状に設けられた開口部10aを有する平板状の枠部10と、枠部10の開口部10aの内周面から枠部10に対して立ち上がる方向に帯状をなして延在し、接触対象と接触する接触部11とを備える。枠部10は、複数の接触部11を保持する保持部としての機能をする。ここで、本実施の形態では、枠部10の主面と直交する方向からみた投影形状において、ばね部材1に対する枠部10の占有率が1/4以上1/2以下となる。なお、枠部10の占有率が1/2より大きい場合は、枠部はばね部材の半分以上を占めるため、枠部10と接触部11との剛性に差が生じることはないものと考えられる。   The spring member 1 extends in a strip shape in a direction rising from the inner peripheral surface of the opening 10a of the frame 10 to the frame 10 with a flat frame 10 having openings 10a provided in a matrix. The contact part 11 which exists and contacts a contact object is provided. The frame portion 10 functions as a holding portion that holds the plurality of contact portions 11. Here, in the present embodiment, the occupation ratio of the frame portion 10 with respect to the spring member 1 is ¼ or more and ½ or less in the projected shape seen from the direction orthogonal to the main surface of the frame portion 10. In addition, when the occupation rate of the frame part 10 is larger than 1/2, since the frame part occupies half or more of the spring member, it is considered that there is no difference in rigidity between the frame part 10 and the contact part 11. .

図2は、本実施の形態にかかるばね部材の要部の構成を示す平面図である。図3は、本実施の形態にかかるばね部材の要部の構成を示す側面図であって、ばね部材を放熱部材上に載置した状態を示す図である。接触部11が枠部10に対して延在する側を枠部10の上方とするとき、接触部11は枠部10の表面に対して下に凸な曲面をなす基端部11aと、枠部10の表面に対して上に凸な曲面をなし、接触対象と接触する先端部11bとを有する。接触部11は、上方からみた投影形状が矩形をなす。基端部11aおよび先端部11bは、それぞれ所定の曲率半径で湾曲した形状をなしている。なお、本実施の形態における基端部11aおよび先端部11bの曲率半径(r)とは、曲率半径が最も小さくなる部位(例えば凸の頭頂部や凹の底部)における曲率半径のことをさす。   FIG. 2 is a plan view showing the configuration of the main part of the spring member according to the present embodiment. FIG. 3 is a side view showing the configuration of the main part of the spring member according to the present embodiment, and is a view showing a state in which the spring member is placed on the heat radiating member. When the side where the contact part 11 extends with respect to the frame part 10 is located above the frame part 10, the contact part 11 has a base end part 11 a that has a curved surface convex downward with respect to the surface of the frame part 10, and a frame It has a curved surface that is convex upward with respect to the surface of the portion 10, and has a tip portion 11b that comes into contact with the contact target. The contact portion 11 has a rectangular projection shape viewed from above. The proximal end portion 11a and the distal end portion 11b are each curved with a predetermined radius of curvature. In addition, the curvature radius (r) of the base end part 11a and the front-end | tip part 11b in this Embodiment means the curvature radius in the site | part (for example, a convex top part and a concave bottom part) where a curvature radius becomes the smallest.

また、接触部11には、板厚方向に貫通する貫通孔11cが形成される。貫通孔11cは、枠部10の主面と直交する方向からみた(ばね部材1の上面視の)開口の形状が、略ひし形をなしている。該開口は、例えば、ひし形の短軸(または長軸)が、基端部11aおよび先端部11bのそれぞれの中央を通過する直線を含み、枠部10の主面と垂直な平面上にある。接触部11を平板状に延ばしたとき(例えば、後述する図7の第1舌片部203)の貫通孔11cの面積をS3、接触部11の面積をS4としたとき、面積比S3/S4は、1/2以下(ただし、0は含まない)を満たす。上述した枠部10の占有率が最少(1/4)の場合、面積比S3/S4を1/2とすることで枠部10と接触部11との剛性差を調整できる。貫通孔11cを形成することにより、貫通孔を形成しない同一の板厚の接触部と比して、接触部11の剛性を低下させることができる。貫通孔11cは、枠部10の剛性と、接触部11の形状による剛性とを考慮して大きさや形状が決定される。接触部11は、枠部10の主面と直交する方向からみた投影形状において、基端部11aおよび先端部11bのそれぞれの中央を通過する直線を軸とする対称性を有することが好ましい。   Further, the contact portion 11 is formed with a through hole 11c penetrating in the plate thickness direction. In the through hole 11c, the shape of the opening (as viewed from the top surface of the spring member 1) viewed from a direction orthogonal to the main surface of the frame portion 10 is substantially rhombus. For example, the short axis (or long axis) of the rhombus includes a straight line that passes through the center of each of the base end portion 11 a and the tip end portion 11 b and is on a plane perpendicular to the main surface of the frame portion 10. When the area of the through hole 11c when the contact portion 11 is extended into a flat plate shape (for example, a first tongue piece portion 203 in FIG. 7 described later) is S3 and the area of the contact portion 11 is S4, the area ratio S3 / S4. Satisfies 1/2 or less (however, 0 is not included). When the occupation ratio of the frame portion 10 described above is the minimum (1/4), the rigidity difference between the frame portion 10 and the contact portion 11 can be adjusted by setting the area ratio S3 / S4 to 1/2. By forming the through hole 11c, the rigidity of the contact portion 11 can be reduced as compared with a contact portion having the same plate thickness where no through hole is formed. The size and shape of the through hole 11 c are determined in consideration of the rigidity of the frame portion 10 and the rigidity due to the shape of the contact portion 11. The contact portion 11 preferably has symmetry with respect to a straight line passing through the center of each of the base end portion 11a and the tip end portion 11b in the projected shape seen from the direction orthogonal to the main surface of the frame portion 10.

ばね部材1は、図3に示すように、枠部10を放熱部材100上に配置し、反対側から発熱部材101(図4参照)を配置する。この際、接触部11の両端が、放熱部材100および発熱部材101とそれぞれ接触する。具体的には、基端部11aが放熱部材100と接触し、先端部11bが発熱部材101と接触する。   As shown in FIG. 3, the spring member 1 has the frame portion 10 disposed on the heat radiating member 100, and the heat generating member 101 (see FIG. 4) disposed from the opposite side. At this time, both ends of the contact portion 11 are in contact with the heat radiating member 100 and the heat generating member 101, respectively. Specifically, the base end portion 11 a contacts the heat radiating member 100, and the tip end portion 11 b contacts the heat generating member 101.

図4は、本発明の実施の形態にかかるばね部材の要部の構成を模式的に示す部分断面図であって、外部から荷重が加わった場合を説明する図である。なお、図4では、先端部11bに荷重が加わっていない状態の接触部11の形状を破線Qで示している。ばね部材1は、放熱部材100と発熱部材101との間に配置されると、基端部11aが放熱部材100と接触し、先端部11bが発熱部材101と接触する。放熱部材100と発熱部材101との間の距離を小さくしていくと、ばね部材1に荷重が加わり始める。ばね部材1に荷重が加わり始めると、接触部11は枠部10に対して徐々に寝ていく。一方、枠部10は、荷重によらず平面性を維持している。   FIG. 4 is a partial cross-sectional view schematically showing a configuration of a main part of the spring member according to the embodiment of the present invention, and is a diagram for explaining a case where a load is applied from the outside. In addition, in FIG. 4, the shape of the contact part 11 in the state where the load is not applied to the front-end | tip part 11b is shown with the broken line Q. When the spring member 1 is disposed between the heat radiating member 100 and the heat generating member 101, the base end portion 11 a is in contact with the heat radiating member 100, and the distal end portion 11 b is in contact with the heat generating member 101. As the distance between the heat dissipating member 100 and the heat generating member 101 is reduced, a load is applied to the spring member 1. When a load starts to be applied to the spring member 1, the contact portion 11 gradually lies down with respect to the frame portion 10. On the other hand, the frame portion 10 maintains flatness regardless of the load.

続いて、同一の板厚のばね部材において、接触部11に貫通孔を形成した場合と、貫通孔を形成していない場合とにおけるばね定数と、単位面積当たりの熱抵抗(接触熱抵抗)とについて説明する。   Subsequently, in the spring member having the same plate thickness, the spring constant when the through hole is formed in the contact portion 11 and the case where the through hole is not formed, and the thermal resistance per unit area (contact thermal resistance) Will be described.

単位面積当たりの熱抵抗は、導体の熱抵抗および接触熱抵抗の和により求められる。導体の熱抵抗については、本比較では使用する材料が同じであるため、同一となる。   The thermal resistance per unit area is determined by the sum of the thermal resistance of the conductor and the contact thermal resistance. The thermal resistance of the conductor is the same because the material used is the same in this comparison.

接触熱抵抗については、接触面積を一定とした場合の接触熱抵抗R(mK/W)は、下式(1)、(2)により得ることができる(日本機械学会論文集(A集)、76巻、763号(2010−3)、論文No.09−0569(p.344−350)参照)。
接触熱抵抗Rは、下式(1)に基づいて求めることができる。

Figure 0006419526
ここで、h:接触熱伝達率(W/mK)であり、下式(2)に基づいて求めることができる。
Figure 0006419526
ここで、P:接触面圧(MPa)、λ:材料の熱伝導率(W/mK)、Hv:材料のビッカース硬度、Ra:接触面の中心線平均粗さ(μm)、c,c,c:定数。
式(2)において、右辺の第1項は高温側部材(例えば発熱部材)に関する項であり、第2項は低温側部材(例えばばね部材)に関する項である。 As for the contact thermal resistance, the contact thermal resistance R c (m 2 K / W) when the contact area is constant can be obtained by the following equations (1) and (2) (The Japan Society of Mechanical Engineers Proceedings (A Vol. 76, No. 763 (2010-3), paper No. 09-0569 (p.344-350)).
The thermal contact resistance R c is can be determined based on the following equation (1).
Figure 0006419526
Here, h c : contact heat transfer coefficient (W / m 2 K), which can be obtained based on the following equation (2).
Figure 0006419526
Here, P: contact surface pressure (MPa), λ: thermal conductivity of material (W / mK), Hv: Vickers hardness of material, Ra: center line average roughness (μm) of contact surface, c 1 , c 2 , c 3 : Constant.
In Expression (2), the first term on the right side is a term related to the high temperature side member (for example, a heat generating member), and the second term is a term related to the low temperature side member (for example, a spring member).

式(1)および式(2)により求まる接触熱抵抗Rを求めることで、単位面積当たりの接触熱抵抗Rcuは、下式(3)に基づいて得ることができる。

Figure 0006419526
ここで、A:接触面積、Asp:接触面と直交する方向からみたばね部材の投影面積。 By obtaining the contact thermal resistance R c obtained from the equations (1) and (2), the contact thermal resistance R cu per unit area can be obtained based on the following equation (3).
Figure 0006419526
Here, A c : contact area, A sp : projected area of the spring member viewed from the direction orthogonal to the contact surface.

図5は、本発明の実施の形態にかかるばね部材と、比較例1にかかるばね部材とにおけるばね定数比および単位面積当たりの熱抵抗比をそれぞれ示すグラフである。図5に示すグラフでは、接触部11に貫通孔11cを形成した場合のばね部材を実施例とし、貫通孔を形成していない場合を比較例1とし、比較例1の値を1としたときの実施例の比を示している。接触部に同一の荷重を加えた場合における一つの接触部の特性を比較している。図5に示すように、貫通孔11cを形成した場合の方は、貫通孔11cを形成していない場合と比して、ばね定数が小さい。ばね定数kは、k=P/δで与えられる(Pは荷重(N)、δは、変位(mm))。同一の荷重を加えた場合は、貫通孔11cを形成し剛性が低下した接触部11の方が、比較例1と比して、ばね定数が小さくなる。   FIG. 5 is a graph showing a spring constant ratio and a thermal resistance ratio per unit area in the spring member according to the embodiment of the present invention and the spring member according to Comparative Example 1. In the graph shown in FIG. 5, the spring member when the through hole 11 c is formed in the contact portion 11 is an example, the case where the through hole is not formed is Comparative Example 1, and the value of Comparative Example 1 is 1. The ratios of the examples are shown. The characteristics of one contact portion when the same load is applied to the contact portion are compared. As shown in FIG. 5, the spring constant when the through hole 11c is formed is smaller than that when the through hole 11c is not formed. The spring constant k is given by k = P / δ (P is load (N), δ is displacement (mm)). When the same load is applied, the spring constant is smaller in the contact portion 11 in which the through-hole 11c is formed and the rigidity is lower than that in the first comparative example.

一方で、貫通孔11cを形成した場合の方は、貫通孔11cを形成していない場合と比して、接触熱抵抗が大きい。枠部10の剛性と貫通孔11cを形成し接触部11の剛性との差を低減した方が、単位面積当たりの接触熱抵抗Rcuは大きくなる。このことから、枠部10の剛性と貫通孔11cを形成し接触部11の剛性との差を低減した方が、枠部10に加わる応力を低減することで、ばね部材1のへたりが低減され、単位面積当たりの接触熱抵抗が大きくなると考えることができる。 On the other hand, when the through hole 11c is formed, the contact thermal resistance is larger than when the through hole 11c is not formed. The contact thermal resistance R cu per unit area becomes larger when the difference between the rigidity of the frame portion 10 and the through hole 11c is formed to reduce the rigidity of the contact portion 11. From this, when the difference between the rigidity of the frame part 10 and the rigidity of the contact part 11 by forming the through hole 11c is reduced, the sag of the spring member 1 is reduced by reducing the stress applied to the frame part 10. Therefore, it can be considered that the contact thermal resistance per unit area increases.

このように、同一の板厚の材料を用いてばね部材を形成した場合であっても、貫通孔11cを形成するか否かでばね定数および単位面積当たりの熱抵抗が異なる。例えば、板厚が0.10mmの材料を用いて貫通孔11cを有しないばね部材のばね定数および単位面積当たりの熱抵抗と同等のものを、貫通孔11cを形成することにより、板厚が0.13mmの材料を用いて作製することができる。この場合、枠部10の板厚は0.13mmとなるため、枠部10の剛性を上げつつ、貫通孔11cを形成することで板厚が0.10mmの接触部の特性と同等の特性を有する接触部とすることができる。   Thus, even when the spring member is formed using a material having the same plate thickness, the spring constant and the thermal resistance per unit area differ depending on whether or not the through hole 11c is formed. For example, by using a material having a plate thickness of 0.10 mm and forming a through hole 11c that is equivalent to the spring constant and thermal resistance per unit area of a spring member that does not have the through hole 11c, the plate thickness is reduced to 0. It can be made using a 13 mm material. In this case, since the thickness of the frame portion 10 is 0.13 mm, the through hole 11 c is formed while increasing the rigidity of the frame portion 10, so that the characteristics equivalent to the characteristics of the contact portion having a thickness of 0.10 mm can be obtained. It can be set as the contact part which has.

図6は、本発明の実施の形態にかかるばね部材(実施例)、および比較例2にかかるばね部材におけるばね高さと、荷重および単位面積当たりの熱抵抗との関係をそれぞれ示すグラフである。図6に示す実施例は、板厚が0.13mmの材料を用いて作製されたばね部材1であり、比較例2は、板厚が0.10mmの材料を用いて作製され、貫通孔を有しないばね部材である。なお、実施例と比較例2とにかかるばね部材(接触部)のばね定数は同一である。ここでいうばね高さとは、図3に示すばね部材1において、枠部10の底部から接触部11の頭頂部までの高さDをさし、荷重が加われば加わるほど、ばね高さは小さくなる。   FIG. 6 is a graph showing the relationship between the spring height (load) and thermal resistance per unit area in the spring member according to the embodiment of the present invention (Example) and the spring member according to Comparative Example 2. The example shown in FIG. 6 is a spring member 1 made of a material having a plate thickness of 0.13 mm, and Comparative Example 2 is made of a material having a plate thickness of 0.10 mm and has a through hole. It is a spring member that does not. In addition, the spring constant of the spring member (contact part) concerning an Example and the comparative example 2 is the same. The spring height here refers to the height D from the bottom of the frame portion 10 to the top of the contact portion 11 in the spring member 1 shown in FIG. 3, and the more the load is applied, the smaller the spring height is. Become.

図6に示すように、実施例にかかるばね部材1は、同一のばね高さでみると、比較例2のばね部材と比較して、ばね高さに対する荷重(接触部一つ当たりの荷重(N))が大きい。これは、実施例にかかるばね部材1は、比較例2のばね部材と比較して、塑性ひずみが小さいことを示している。換言すれば、実施例にかかるばね部材1は、同一のばね高さに対し、比較例2のばね部材よりも、初期へたりが低減されているといえる。このことは、貫通孔11cの形成により枠部10と接触部11との剛性差が小さくなったためであると考えられる。このように、実施例にかかるばね部材1は、ばね定数が同じであっても、板厚が薄く、貫通孔11cが形成されていないばね部材と比して、弾性特性および熱特性を向上させることができる。   As shown in FIG. 6, when the spring member 1 according to the example is viewed at the same spring height, compared to the spring member of Comparative Example 2, the load relative to the spring height (load per contact portion ( N)) is large. This has shown that the spring member 1 concerning an Example has a small plastic distortion compared with the spring member of the comparative example 2. FIG. In other words, it can be said that the spring member 1 according to the example has reduced initial settling compared to the spring member of the comparative example 2 for the same spring height. This is considered to be because the difference in rigidity between the frame portion 10 and the contact portion 11 is reduced by the formation of the through hole 11c. Thus, the spring member 1 according to the embodiment improves the elastic characteristics and the thermal characteristics as compared with a spring member having a thin plate thickness and no through-hole 11c even if the spring constant is the same. be able to.

また、単位面積当たりの熱抵抗についても、実施例にかかるばね部材1は、貫通孔11cの形成により初期へたりが低減したため、同一のばね高さでみると、比較例2のばね部材と比較して、熱抵抗が小さくなっている。   In addition, regarding the thermal resistance per unit area, the spring member 1 according to the example has a reduced initial settling due to the formation of the through hole 11c, and therefore, compared with the spring member of Comparative Example 2 when viewed at the same spring height. And thermal resistance is small.

次に、本実施の形態にかかるばね部材の製造方法の一例を、図面を参照して説明する。図7は、本実施の形態にかかるばね部材の製造方法の一例を説明する図である。例えば、コルソン系銅合金からなる帯状の母材200に対し、複数のスリット201を形成する。スリット201は、平面視で略M字状をなす中空空間を形成する。スリット201により、枠部202が形成されるとともに、該枠部202から矩形をなして延びる第1舌片部203および第2舌片部204が形成される。   Next, an example of the manufacturing method of the spring member concerning this Embodiment is demonstrated with reference to drawings. FIG. 7 is a diagram for explaining an example of a method for manufacturing a spring member according to the present embodiment. For example, a plurality of slits 201 are formed in a band-shaped base material 200 made of a Corson copper alloy. The slit 201 forms a hollow space having a substantially M shape in plan view. The slit 201 forms a frame portion 202, and a first tongue piece portion 203 and a second tongue piece portion 204 that extend from the frame portion 202 in a rectangular shape.

第1舌片部203および第2舌片部204の形成後、ひし形の開口を有する貫通孔203a,204aを形成する。貫通孔203a,204aの形成後、第1舌片部203および第2舌片部204に対して、枠部に連なる側の端部と、枠部202に連なる側と異なる側の端部と、をそれぞれ所定の曲率半径となるように湾曲させることにより、上述した接触部11を形成する。   After the formation of the first tongue piece 203 and the second tongue piece 204, through holes 203a and 204a having rhombic openings are formed. After the formation of the through holes 203a and 204a, with respect to the first tongue piece portion 203 and the second tongue piece portion 204, an end portion on the side continuous with the frame portion, and an end portion on a different side from the side continuous with the frame portion 202, Are curved to have a predetermined radius of curvature, thereby forming the contact portion 11 described above.

このように、スリット201を形成し、スリット201の形成によって生成された第1舌片部203および第2舌片部204を湾曲させることにより、上述した枠部10と接触部11とを有するばね部材1を作製することができる。   Thus, the spring which has the frame part 10 and the contact part 11 mentioned above by forming the slit 201 and curving the 1st tongue piece part 203 and the 2nd tongue piece part 204 which were produced | generated by formation of the slit 201. FIG. The member 1 can be produced.

上述した実施の形態によれば、ばね部材1の接触部11において、板厚方向に貫通する貫通孔11cを形成するようにしたので、枠部10と接触部11との剛性差を抑制することができる。これにより、一様な板厚の材料を用いてばね部材1を形成する場合において、板厚を変更して枠部10の剛性のみを上げ、板厚を変更する前の接触部11の特性を維持させることが可能となる。   According to the above-described embodiment, since the through hole 11c penetrating in the plate thickness direction is formed in the contact portion 11 of the spring member 1, the rigidity difference between the frame portion 10 and the contact portion 11 is suppressed. Can do. As a result, when the spring member 1 is formed using a material having a uniform plate thickness, only the rigidity of the frame portion 10 is increased by changing the plate thickness, and the characteristics of the contact portion 11 before the plate thickness is changed are changed. It can be maintained.

また、上述した実施の形態によれば、接触部11が、矩形をなして延びる舌片部であって、ひし形をなす開口を有する貫通孔を形成した舌片部を用いて形成されるため、先細な形状、例えば錘状をなす舌片部を湾曲させて接触部を形成する場合や、円などの他の形状をなす開口を有する貫通孔が形成される場合と比して熱の伝達効率が高い。一般的に、舌片部を湾曲させて接触部を形成するような場合には、先細な形状に成形した舌片部を湾曲させるが、本実施の形態のように、矩形をなす舌片部をもとに接触部を形成することで、一層効率的な熱伝達を行うことができる。   Further, according to the above-described embodiment, the contact portion 11 is a tongue piece extending in a rectangular shape, and is formed using a tongue piece having a through hole having a rhombus-shaped opening. Heat transfer efficiency compared to the case where a contact portion is formed by curving a tongue-shaped portion having a tapered shape, for example, a weight, or when a through hole having an opening having another shape such as a circle is formed. Is expensive. In general, when the contact portion is formed by bending the tongue piece portion, the tongue piece portion formed into a tapered shape is bent, but the tongue piece portion having a rectangular shape as in the present embodiment is used. By forming the contact portion based on the above, more efficient heat transfer can be performed.

従来用いられる伝熱用のばね部材として伝熱グリスや伝熱シートが挙げられるが、導体熱抵抗の観点から伝熱グリスや伝熱シートの厚みを薄くすると、振動に対する追従性が低下する。これに対し、伝熱グリスにおいて、振動に対する追従性の観点からばね部材の厚みを厚くする場合は、厚み調整が困難であるために熱抵抗の管理が難しい。また、放熱シートにおいて、振動に対する追従性の観点からばね部材の厚みを厚くする場合は、導体熱抵抗低減のために高熱伝導性フィラーを多く含有させる必要があり、該高熱伝導性フィラーにより硬くなって振動に対する追従性を高めることができない。これに対し、本実施の形態にかかるばね部材は、上述した構成を有することで、高い熱伝導性と高い振動追従性とを両立させることができる。   Conventionally used heat transfer spring members include heat transfer grease and heat transfer sheet. However, if the thickness of the heat transfer grease or heat transfer sheet is reduced from the viewpoint of conductor thermal resistance, the followability to vibration is reduced. On the other hand, in heat transfer grease, when the thickness of the spring member is increased from the viewpoint of followability with respect to vibration, it is difficult to control the thermal resistance because it is difficult to adjust the thickness. Further, in the heat dissipation sheet, when the thickness of the spring member is increased from the viewpoint of followability to vibration, it is necessary to contain a large amount of high thermal conductive filler to reduce the conductor thermal resistance, and the high thermal conductive filler becomes harder. Therefore, the followability to vibration cannot be improved. On the other hand, the spring member concerning this Embodiment can make high thermal conductivity and high vibration followability compatible by having the structure mentioned above.

なお、上述した実施の形態において、各接触部11は、同一の形状をなすものであってもよいし、大きさや湾曲態様が異なるものであってもよい。荷重の加え方などにより、適宜設計することが好ましい。なお、同一の形状とは、設計上同一の形状をなすものであり、製造上の誤差を含む。   In the above-described embodiment, each contact portion 11 may have the same shape, or may have a different size or curved form. It is preferable to design appropriately depending on how the load is applied. Note that the same shape means the same shape in design and includes manufacturing errors.

また、上述した実施の形態では、複数の接触部11を有するものとして説明したが、矩形の平板状をなし、矩形の開口を有する枠部と、枠部の開口の一部から延びる一つの接触部(接触部11)と、を有するばね部材としてもよい。この場合も、枠部の剛性に応じて貫通孔の大きさや形状が定められる。   In the above-described embodiment, the plurality of contact portions 11 are described. However, the frame portion has a rectangular flat plate shape and has a rectangular opening, and one contact extending from a part of the opening of the frame portion. It is good also as a spring member which has a part (contact part 11). Also in this case, the size and shape of the through hole are determined according to the rigidity of the frame portion.

上述した実施の形態では、接触部11がひし形をなす開口を有する貫通孔11cが形成されるものとして説明したが、円や楕円、三角形や五角形以上の多角形をなす開口を有する貫通孔であってもよい。上述した伝熱用の他、二つの部材間に設けられ、該二つの部材間を支持するばね部材など、用途に応じて貫通孔の形状を適宜変更することができる。特に、伝熱用ではひし形の開口を有する貫通孔が熱特性の点で好ましく、接触部の弾性特性を考慮すると、円をなす開口を有する貫通孔の方が弾性特性の点で好ましい。   In the embodiment described above, the contact portion 11 is described as being formed with the through hole 11c having a rhombus-shaped opening. May be. In addition to the heat transfer described above, the shape of the through hole can be appropriately changed depending on the application, such as a spring member provided between the two members and supporting the two members. In particular, for heat transfer, a through-hole having a diamond-shaped opening is preferable from the viewpoint of thermal characteristics, and considering the elastic characteristics of the contact portion, a through-hole having a circular opening is preferable from the viewpoint of elastic characteristics.

以上のように、本発明にかかるばね部材は、接触部と枠部との剛性差を抑制するばね部材を得ることに好適である。   As described above, the spring member according to the present invention is suitable for obtaining a spring member that suppresses a difference in rigidity between the contact portion and the frame portion.

1 ばね部材
10,202 枠部(保持部)
11 接触部
11a 基端部
11b 先端部
11c,203a,204a 貫通孔
201 スリット
203 第1舌片部
204 第2舌片部
1 Spring member 10, 202 Frame part (holding part)
DESCRIPTION OF SYMBOLS 11 Contact part 11a Base end part 11b Tip part 11c, 203a, 204a Through-hole 201 Slit 203 1st tongue piece part 204 2nd tongue piece part

Claims (4)

二つの部材間を接続するばね部材であって、
略帯状の部材を用いて形成され、一端が湾曲してなる基端部と、他端が前記一端に対して逆の湾曲態様で湾曲してなる先端部とを有し、該基端部および該先端部で接触対象とそれぞれ接触する接触部と、
前記基端部を保持する平板状の保持部と、
を備え、
前記保持部の主面と直交する方向からみて、当該ばね部材全体に対する該保持部の占有率が1/4以上1/2以下であり、
前記接触部には、厚さ方向に貫通し、開口がひし形をなす貫通孔が形成されていることを特徴とするばね部材。
A spring member connecting two members,
A base end portion formed using a substantially band-shaped member, and having a base end portion curved at one end and a tip end portion curved at an opposite end with respect to the one end, the base end portion and A contact portion that makes contact with the contact object at the tip,
A plate-like holding part for holding the base end part;
With
When viewed from the direction orthogonal to the main surface of the holding portion, the occupation ratio of the holding portion with respect to the entire spring member is ¼ or more and ½ or less,
The contact member is formed with a through hole penetrating in a thickness direction and having an opening having a rhombus shape.
前記接触部を平板状に延ばしたときの前記貫通孔の面積をS3、前記接触部の面積をS4としたとき、面積比S3/S4は、1/2以下を満たすことを特徴とする請求項1に記載のばね部材。   The area ratio S3 / S4 satisfies 1/2 or less, where S3 is an area of the through hole when the contact portion is extended in a flat plate shape, and S4 is an area of the contact portion. The spring member according to 1. 前記接触部は、前記保持部の主面と直交する方向からみて矩形をなすことを特徴とする請求項1または2に記載のばね部材。 The contact portion, the spring member according to claim 1 or 2, characterized in that the rectangular when viewed from a direction perpendicular to the main surface of the holding portion. 複数の前記接触部を備え、
前記保持部は、マトリックス状に設けられた複数の開口部を有し、
前記開口部は、一または複数の接触部の各基端部を保持することを特徴とする請求項1〜のいずれか一つに記載のばね部材。
A plurality of the contact portions,
The holding part has a plurality of openings provided in a matrix,
The spring member according to any one of claims 1 to 3 , wherein the opening holds each base end of one or more contact portions.
JP2014212022A 2014-09-30 2014-10-16 Spring member Active JP6419526B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014212022A JP6419526B2 (en) 2014-10-16 2014-10-16 Spring member
PCT/JP2015/077820 WO2016052654A1 (en) 2014-09-30 2015-09-30 Heat transfer spring and spring member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014212022A JP6419526B2 (en) 2014-10-16 2014-10-16 Spring member

Publications (2)

Publication Number Publication Date
JP2016080073A JP2016080073A (en) 2016-05-16
JP6419526B2 true JP6419526B2 (en) 2018-11-07

Family

ID=55958036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014212022A Active JP6419526B2 (en) 2014-09-30 2014-10-16 Spring member

Country Status (1)

Country Link
JP (1) JP6419526B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240066459A1 (en) * 2022-08-25 2024-02-29 Delphi Technologies Ip Limited Volume compensating device for adsorbent fill compensation in an evaporative emissions canister

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665239U (en) * 1979-10-24 1981-06-01
US4415025A (en) * 1981-08-10 1983-11-15 International Business Machines Corporation Thermal conduction element for semiconductor devices
JPH079955B2 (en) * 1986-03-17 1995-02-01 日本電信電話株式会社 Heat transfer jig and heat dissipation method using the same
JPH0267133U (en) * 1988-11-04 1990-05-21
JPH09116058A (en) * 1995-10-23 1997-05-02 Fuji Electric Co Ltd Pressurizing device of flat semiconductor element
JPH10252794A (en) * 1997-03-07 1998-09-22 Isuzu Seisakusho:Kk Plate spring made of shape memory alloy
JPH10303340A (en) * 1997-04-25 1998-11-13 Toshiba Corp Semiconductor device and its manufacturing method
PL1589602T3 (en) * 2004-04-15 2017-08-31 Siemens Aktiengesellschaft Contact spring sheet and electrical battery containing same
JP4910996B2 (en) * 2007-11-13 2012-04-04 株式会社デンソー Electronic control device having heat dissipation structure
US8540224B2 (en) * 2010-09-29 2013-09-24 Walker Lee Guthrie Variable amplitude sine wave spring
JP6027033B2 (en) * 2012-02-15 2016-11-16 中央発條株式会社 Elastic member

Also Published As

Publication number Publication date
JP2016080073A (en) 2016-05-16

Similar Documents

Publication Publication Date Title
JP6463036B2 (en) Spacing member
US10004113B2 (en) Heating wire arrangement for ceramic heater
JPWO2018097027A1 (en) Semiconductor device and method of manufacturing the same
JPWO2019131814A1 (en) heatsink
WO2017047756A1 (en) Heat sink
JP2016503951A (en) Socket contact
US10886191B2 (en) Heat transfer plate
JP6419526B2 (en) Spring member
US10487845B2 (en) Fan structure and manufacturing method thereof
JP5938577B2 (en) HEAT CONDUCTIVE SHEET, PROCESS FOR PRODUCING THE SAME AND HEAT CONDUCTOR USING SAME
JP6419513B2 (en) Heat transfer spring
WO2016052654A1 (en) Heat transfer spring and spring member
JP4884140B2 (en) Finned tube heat exchanger and heat pump device
JP2011040558A (en) Heat sink
JP3170440U (en) Forging
JP6340610B2 (en) Heat sink manufacturing method
JP2009290004A (en) Heat sink
JP6119263B2 (en) Heat exchanger
JP6815205B2 (en) Flat tubes, fin tube heat exchangers, and how to make them
JP6599023B2 (en) Heat exchanger, heat exchanger manufacturing method and fin assembly
JP6278613B2 (en) heatsink
JP6784171B2 (en) Relay terminal
KR102584106B1 (en) Heat radiation chain
JP6197365B2 (en) Power module and method of manufacturing thermal interface plate
JP3192414U (en) Heat sink structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181010

R150 Certificate of patent or registration of utility model

Ref document number: 6419526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250