JPS62216221A - Compound semiconductor crystal substrate and manufacture thereof - Google Patents

Compound semiconductor crystal substrate and manufacture thereof

Info

Publication number
JPS62216221A
JPS62216221A JP61060058A JP6005886A JPS62216221A JP S62216221 A JPS62216221 A JP S62216221A JP 61060058 A JP61060058 A JP 61060058A JP 6005886 A JP6005886 A JP 6005886A JP S62216221 A JPS62216221 A JP S62216221A
Authority
JP
Japan
Prior art keywords
compound semiconductor
semiconductor crystal
crystal layer
substrate
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61060058A
Other languages
Japanese (ja)
Other versions
JPH0670976B2 (en
Inventor
Hidefumi Mori
森 英史
Nobuyori Tsuzuki
都築 信頼
Matsuyuki Ogasawara
小笠原 松幸
Mitsuo Yamamoto
山本 ▲みつ▼夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP6005886A priority Critical patent/JPH0670976B2/en
Publication of JPS62216221A publication Critical patent/JPS62216221A/en
Publication of JPH0670976B2 publication Critical patent/JPH0670976B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To obtain a substrate having high performance, large area, ready wiring and high economy by forming a plurality of recesses formed of two types of surfaces on a silicon supporting crystal substrate and covering it with compound semiconductor crystal through specific steps. CONSTITUTION:A silicon supporting crystal substrate 1 has on its one surface a plurality of recessed formed of 111 and 100 surfaces, a compound semiconductor crystal layer 3 for forming a semiconductor element disposed in the recesses, and a thin film 2 made of an insulation material formed on the projections of the substrate 1 having tops divided by the adjacent recesses of 100 surface. At least part of the film 2 is covered with the crystal 3, and continued to the layer 3 for forming adjacent semiconductor elements. Thus, the surface becomes flat, a wiring pattern necessary when integrating an element on the large area substrate is disposed on the layer 3 for connecting adjacent element regions to be readily formed, and no crack occurs on the crystal layer.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はシリコン支持結晶層を上に化合物半導体結晶層
を形成した化合物半導体結晶層をおよびその製造方法に
関するものでおる0(従来技術および発明が解決しよう
とする問題点)従来から化合物半導体はレーザ、LED
、太陽電池等の光デバイスおよび接合形トランジスタ、
電界効果トランジスタ等の電子デバイスさらに最近では
光デバイスと電子デバイスを一体化したいわゆる光−電
子デバイスに用いられており、上記デバイスは化合物半
導体結晶を支持基板として、その支持基板上に化合物半
導体層をエピタキシャル成長してデバイスが作製されて
いた。しかし化合物半導体結晶の支持基板は高価である
ばかりでなく、欠陥が多くかつ大面積基板結晶ヶ得るこ
とが困難な現状にある。このような問題に対し、化合物
半導体の利点を活かしつつ大面積でかつ経済性の優れた
化合物半導体デバイスを得る几めに、安価でかつ大面積
で大量生産技術の確立しているシリコン結晶を支持基板
として用い、シリコン支持結晶層を上に化合物半導体結
晶層を形成した化合物半導体結晶層を上にデバイスを作
製することにニジ、大面積、安価で高性能、多機能なデ
バイスを得る試みがなされている。しかしシリコン支持
結晶層を上に化合物半導体結晶層をエピタキシャル成長
で形成する場合は、シリコン支持結晶層をと化合物半導
体結晶層の熱膨張係数の差により化合物半導体結晶層中
に格子欠陥や歪が発生して、上記光デバイス、電子デバ
イス、光−電子デバイスを作製するに適した高品質な化
合物半導体層を得ることができなくなるばかりでなく、
大面積に化合物半導体結晶層を形成した場合や化合物半
導体結晶層を厚く形成した場合は熱応力にニジ亀裂が発
生踵デバイス作製用基板として使えなくなる等の問題点
がある。これらの問題点を解決する方法として、シリコ
ン支持結晶層を上に化合物半導体結晶を島状に分散させ
て形成する化合物半導体結晶層をが考えられている。こ
の場合、シリコン支持結晶層を上に絶縁材料からなるパ
ターンを第5図(α)、(b)に示すように形成し、そ
の後化合物半導体結晶層をシリコン支持基板結晶が露出
している部分にのみ選択成長させ化合物半導体結晶層を
島状に分散させて形成する。なお第5図(a)、(b)
はシリコン結晶層を上に絶縁材料からなるノくターンを
形成した場合の平面図と断面図をそれぞれ示す。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a compound semiconductor crystal layer in which a compound semiconductor crystal layer is formed on a silicon supporting crystal layer, and a method for manufacturing the same. (problems to be solved) Compound semiconductors have traditionally been used in lasers and LEDs.
, optical devices such as solar cells and junction transistors,
It has been used in electronic devices such as field effect transistors, and more recently in so-called opto-electronic devices that integrate optical devices and electronic devices.The above devices use a compound semiconductor crystal as a supporting substrate, and a compound semiconductor layer is formed on the supporting substrate. Devices were fabricated by epitaxial growth. However, supporting substrates for compound semiconductor crystals are not only expensive, but also have many defects, making it difficult to obtain crystal substrates with large areas. To solve these problems, we support silicon crystal, which is inexpensive, has a large area, and has established mass production technology, in order to take advantage of the advantages of compound semiconductors and obtain large-area, highly economical compound semiconductor devices. Attempts have been made to create devices with a large area, low cost, high performance, and multifunctionality by fabricating devices on a compound semiconductor crystal layer using silicon as a substrate and forming a compound semiconductor crystal layer on top of a silicon supporting crystal layer. ing. However, when forming a compound semiconductor crystal layer on a silicon supported crystal layer by epitaxial growth, lattice defects and distortions occur in the compound semiconductor crystal layer due to the difference in thermal expansion coefficient between the silicon supported crystal layer and the compound semiconductor crystal layer. This not only makes it impossible to obtain a high-quality compound semiconductor layer suitable for producing the above-mentioned optical devices, electronic devices, and opto-electronic devices, but also
When a compound semiconductor crystal layer is formed over a large area or when a compound semiconductor crystal layer is formed thickly, there are problems such as rainbow cracks due to thermal stress, making the substrate unusable as a substrate for producing a heel device. As a method to solve these problems, it has been considered to form a compound semiconductor crystal layer by dispersing compound semiconductor crystals in the form of islands on a silicon supporting crystal layer. In this case, a pattern made of an insulating material is formed on the silicon support crystal layer as shown in FIGS. The compound semiconductor crystal layer is selectively grown and dispersed in island shapes. In addition, Fig. 5 (a), (b)
1A and 1B show a plan view and a cross-sectional view, respectively, of a case in which a notch made of an insulating material is formed on a silicon crystal layer.

第5図(c)はさらに化合物半導体結晶層全形成し友後
の断面図を示す。図において1はシリコン支持結晶層を
、2はシリコン支持結晶層を上に形成した絶縁材料バタ
ン、3は化合物半導体結晶層を示す。この場合化合物半
導体結晶層を島状に分散させて形成する丸め、シリコン
支持結晶層をと化合物半導体結晶層との熱膨張係数の差
による熱応力で引き起される亀裂の発生という上記の問
題点を解決することができるが、大面積基板に素子全集
積化する場合必要な配線パタンの形成が化合物半導体結
晶層を島状に分離したために生ずる段差のため不可能と
なる別の問題点が発生する。
FIG. 5(c) further shows a cross-sectional view after the compound semiconductor crystal layer is completely formed. In the figure, 1 is a silicon support crystal layer, 2 is an insulating material baton on which the silicon support crystal layer is formed, and 3 is a compound semiconductor crystal layer. In this case, the compound semiconductor crystal layer is dispersed and formed into islands, and the problem described above is the occurrence of cracks caused by thermal stress due to the difference in thermal expansion coefficient between the silicon support crystal layer and the compound semiconductor crystal layer. However, when integrating all the elements on a large-area substrate, another problem arises in that the formation of the necessary wiring pattern is impossible due to the step difference caused by separating the compound semiconductor crystal layer into islands. do.

また、従来シリコン支持結晶層を上に化合物半導体結晶
を成長させる方法としてはMBE法MOCVD法が開発
されているが、シリコン上と絶縁材料(例えば5i02
)上の成長速度の選択比がとれず、絶縁材料上に多結晶
の化合物半導体が成長するため絶縁材料上の少なくとも
一部を覆って化合物半導体結晶を成長させることはでき
なかった。
Furthermore, MBE and MOCVD methods have been developed as conventional methods for growing compound semiconductor crystals on a silicon supported crystal layer, but insulating materials (such as 5i02
), and the polycrystalline compound semiconductor grows on the insulating material, making it impossible to grow a compound semiconductor crystal covering at least a portion of the insulating material.

また、従来のいずれの方法によっても(100)。Also, by any conventional method (100).

(111)上の化合物半導体結晶の成長速度比が大きく
とれない丸め、成長後の断面形状が第6図に示す工うな
凹凸ができ配線が困難になるという問題があった。
There were problems in that the growth rate ratio of the (111) compound semiconductor crystal could not be large enough, and the cross-sectional shape after growth became uneven as shown in FIG. 6, making wiring difficult.

ま几、化合物半導体結晶に広く適用されているクロライ
ドVPE法、ハイドライドVPE法では選択比は著しい
が、反応ガス中に含まれるHClのため反応管に用いら
れる石英ガラスが腐食され、Hloが発生する。このH
2Oはシリコン基板上に輸送されるとシリコン表面を酸
化し化合物半導体結晶の成長を阻害するという問題があ
った。
However, the chloride VPE method and hydride VPE method, which are widely applied to compound semiconductor crystals, have a remarkable selectivity, but the HCl contained in the reaction gas corrodes the quartz glass used in the reaction tube, generating Hlo. . This H
There is a problem in that when 2O is transported onto a silicon substrate, it oxidizes the silicon surface and inhibits the growth of compound semiconductor crystals.

(問題点tl−解決するための手段〕 本発明に上記の問題点を解決するために提案されたもの
で、高性能、大面積で配線が容易でかつ経済的な化合物
半導体結晶層をとその製造方法を提供することを目的と
する。
(Problem tl - Means for Solving) The present invention has been proposed to solve the above problems, and is a high-performance, large-area, easy-to-wire, and economical compound semiconductor crystal layer. The purpose is to provide a manufacturing method.

上記の目的を達成するため、本発明はシリコン(100
)支持結晶層を上に化合物半導体結晶層を備えた化合物
半導体結晶層をにおいて、シリコン支持結晶層を面に(
111)と(Zoo)で構成された複数の凹部を有し、
前記凹部に半導体素子を形成するための化合物半導体結
晶層が配置され、かつ隣合う凹部を分つ、頂部が(10
0)であるシリコン支持結晶層を凸部上に絶縁材料であ
る薄膜が設けられ、前記薄膜上の少なくとも一部が化合
物半導体結晶で覆われ、かつ隣合う前記半導体素子を形
成するための化合物半導体結晶層と連続していることを
特徴とする化合物半導体結晶層をを発明の要旨とするも
のである。
In order to achieve the above object, the present invention provides silicon (100%
) Place the compound semiconductor crystal layer with the compound semiconductor crystal layer with the supporting crystal layer on top, and place the silicon supporting crystal layer on the surface (
111) and (Zoo),
A compound semiconductor crystal layer for forming a semiconductor element is disposed in the recess, and the top part dividing adjacent recesses is (10
0) in which a thin film of an insulating material is provided on the convex portion of the silicon supporting crystal layer, at least a portion of the thin film is covered with a compound semiconductor crystal, and a compound semiconductor for forming the adjacent semiconductor elements; The gist of the invention is a compound semiconductor crystal layer characterized by being continuous with a crystal layer.

さらに本発明はSt (100)基板上に(111)と
(100)とからなる凹部を複数作製する工程と、上記
基板上に化合物半導体結晶をエピタキシャル成長させて
少なくとも一部が連続するように各凹部を化合物半導体
結晶層で埋める工程とからなることを特徴とする化合物
半導体結晶層をの製造方法を発明の要旨とするものであ
る。
Furthermore, the present invention includes a step of forming a plurality of concave portions consisting of (111) and (100) on an St (100) substrate, and epitaxially growing a compound semiconductor crystal on the substrate so that each concave portion is at least partially continuous. The gist of the invention is a method for manufacturing a compound semiconductor crystal layer, which comprises a step of filling the compound semiconductor crystal layer with a compound semiconductor crystal layer.

本発明はシリコン支持結晶層を面に複数の凹部を形成し
、この凹部に形成された半導体素子を形成する化合物半
導体結晶層が互いに少くとも一部連続になるようにした
ことを最も主要な特徴とするものであって、従来技術の
ようにシリコン支持結晶層を上に絶縁材料からなるノく
タンを形成し、化合物半導体結晶層を島状に完全に分離
するように配置した場合と異るものである0 次に本発明の実施例を添付図面について説明する。なお
実施例は一つの例示であって、本発明の精神を逸脱しな
い範囲で、種々の変更あるいは改良を行いうろことは言
うまでもない0化合物半導体結晶としてGaP 、絶縁
材料として5iOzt用いた場合について、本発明の詳
細な説明する。
The most important feature of the present invention is that a plurality of recesses are formed on the plane of the silicon support crystal layer, and the compound semiconductor crystal layers forming the semiconductor element formed in the recesses are at least partially continuous with each other. This is different from the conventional technique in which a hole made of an insulating material is formed on a silicon support crystal layer and the compound semiconductor crystal layer is arranged so as to be completely separated into islands. Embodiments of the present invention will now be described with reference to the accompanying drawings. The examples are merely illustrative, and it goes without saying that various changes and improvements may be made without departing from the spirit of the present invention. Detailed description of the invention.

第1図は本発明による一実施例における主な工程を示し
たもので、図において1はシリコン支持結晶層を、2は
絶縁材料である5iOzからなるバタン、3は化合物半
導体結晶層、4はレジストバタンである。(ioo)の
シリコン支持結晶層を1上に熱酸化法またはスノくツタ
法によシ酸化物2を0.5μmの厚さに形成し、次にレ
ジスト4tl−塗布し、ホトエツチングにエフ所望の形
状にバタンを形成する(第1図a)。次に前記レジスト
バタンをマスクにし、HF水溶液等を用い几ケミカルエ
ツチング、またはct F6ガス等を用いたドライエツ
チングを使用して5iOzt−エツチングして所望の形
状に加工し、次に5iOt2tマスクとしてシリコン支
持結晶層ををKOH水溶液で4μmエツチングし、凹部
を形成する(第1図す参照)0上記シリコンのエツチン
グ液はBit)のエツチング速度が遅< (Zoo)の
エツチング速度が速い選択性のあるエツチング液であれ
ばよい。また酸化膜の厚さはシリコンのエツチング終了
時に残存していればよく、上記の厚さに限定されるもの
ではない。さらにシリコンのエツチング深さは一例を示
し友ものでこれに限定されるものではない。
FIG. 1 shows the main steps in one embodiment of the present invention. In the figure, 1 is a silicon supporting crystal layer, 2 is a batten made of 5iOz which is an insulating material, 3 is a compound semiconductor crystal layer, and 4 is a silicon support crystal layer. It's a resist slam. Silicon oxide 2 is formed to a thickness of 0.5 μm on a silicon supported crystal layer 1 of (ioo) by thermal oxidation method or snow vine method. Form a button in the shape (Figure 1a). Next, using the resist batten as a mask, 5iOzt-etching is performed using HF aqueous solution or dry etching using CT F6 gas, etc. to give the desired shape, and then silicon is used as a 5iOt2t mask. The supporting crystal layer is etched by 4 μm with a KOH aqueous solution to form a concave portion (see Figure 1). The above silicon etching solution has a selectivity in which the etching speed of Bit) is slow and the etching speed of (Zoo) is fast. Any etching liquid may be used. Further, the thickness of the oxide film is not limited to the above thickness as long as it remains after silicon etching is completed. Furthermore, the etching depth of silicon is merely an example and is not limited thereto.

次に上記シリコン基板上に化合物半導体結晶層3を(c
)図に示すように成長させるが、その方法は例えば本発
明者が考案した方法が適してい(8〕 る0 第2図(a)は化合物半導体結晶全成長する几めの装置
を示す。図において16は反応管で、ガス流入口11.
12と流出口15とが設けられており、17は結晶ホル
ダで、この上にシリコン支持結晶層を14が載せられて
いる。この基板14は実線の位置と破線で示した位置と
を選択的にとるものである013はGaソースを示す。
Next, a compound semiconductor crystal layer 3 (c
) The method devised by the present inventor is suitable, for example. 16 is a reaction tube, and a gas inlet 11.
12 and an outlet 15 are provided, and 17 is a crystal holder, on which a silicon support crystal layer 14 is placed. This substrate 14 selectively takes the position shown by the solid line and the position shown by the broken line. 013 indicates a Ga source.

化合物半導体結晶を成長させるには、シリコン支持結晶
層をを第2図(aJにおいて破線で示す位置に置き、流
入口11.12ニジガス流として水素だけを供給し、前
記基板t−1ooo℃に15分間保って、基板上の汚れ
、自然酸化膜等を除去する0次に反応管16内の温度分
布を第2図(b)に示すように設定する。すなわちGa
ソース13’t800℃、基板のある位置t−350°
に保つ。次に流入口11よ、9PH,と迅の混合ガス、
流入口12よジHCtと迅の混合ガスを導入し、流れが
定常になつ几後、基板14を第2固執)の実線で示す位
置に移動させ2分間保つ第一の工程を行う0次に、再び
第2図(a)で破線で示す位置に基板を戻し、基板温度
を600℃に昇温し、再び第2図(a)の実線の位置に
移動させ10分間保った後、破線の位置まで戻す第二の
工程を行う。上記の第二の工程を10回繰返して行うこ
とにより、前記シリコン支持結晶層を上には、第1図(
c)に示すようにGaPの結晶が成長する。上記成長法
の第一の工程は、第3図に示すように、シリコン(io
o)上と(111)上とで成長速度が異、り、  (1
11)上では極く薄い膜しか上記条件では成長しない。
To grow a compound semiconductor crystal, a silicon support crystal layer is placed at the position shown by the broken line in FIG. The temperature distribution in the zero-order reaction tube 16 is set as shown in FIG. 2(b).
Source 13't800°C, substrate position t-350°
Keep it. Next, the inlet 11, a mixed gas of 9PH and
A mixed gas of HCt and gas is introduced through the inlet 12, and after the flow becomes steady, the substrate 14 is moved to the position shown by the solid line in the second position (second fixation) and held for 2 minutes to carry out the first step. , return the substrate to the position indicated by the broken line in Fig. 2(a), raise the substrate temperature to 600°C, move it again to the position indicated by the solid line in Fig. 2(a), hold it for 10 minutes, and then Perform the second process of returning to position. By repeating the above second step 10 times, the silicon supporting crystal layer is placed on top of the silicon supporting crystal layer as shown in FIG.
A GaP crystal grows as shown in c). The first step in the above growth method is as shown in FIG.
o) The growth rate is different between the top and (111) top, ri (1
11) Only an extremely thin film grows under the above conditions.

そのため第二の工程を実施するため昇温すると膜が揮発
し、(111)のみシリコン面が露出する。第二の工程
における600℃の温度ではシリコンの酸化速度がGa
Pの成長速度より勝るため(111)では露出したシリ
コンが成長のための基板移動を行うと同時に酸化膜が形
成されGaPの成長が阻害される。一方(100)では
第一の工程で成長させた膜が、シリコンの酸化を防ぐた
めGaPが成長する。
Therefore, when the temperature is raised to carry out the second step, the film evaporates and only the (111) silicon surface is exposed. At the temperature of 600°C in the second step, the oxidation rate of silicon is Ga
Since the growth rate is faster than that of P, in (111), an oxide film is formed at the same time as the exposed silicon moves the substrate for growth, inhibiting the growth of GaP. On the other hand, in (100), GaP is grown in the film grown in the first step to prevent oxidation of silicon.

上記に説明した工うに、上記方法では(111)からの
不用な成長がないため、(100)の平坦性が乱される
ことなく成長する0シリコン支持結晶層をの凹部がGa
P結晶により埋められた後は、5iOz絶縁パタン2上
にラテラル方向にGaP結晶が成長するため、第1図(
c)の構造が実現する。
As explained above, in the above method, since there is no unnecessary growth from (111), the concave portion of the 0 silicon supporting crystal layer, which grows without disturbing the flatness of (100), is made of Ga.
After being filled with P crystals, GaP crystals grow in the lateral direction on the 5iOz insulating pattern 2, as shown in Fig. 1 (
The structure c) is realized.

第4図は第2の実施例會示す。FIG. 4 shows a second embodiment.

この実施例は第4図(a)に示すように、第1図の絶縁
材料からなるバタン2がない場合である。
In this embodiment, as shown in FIG. 4(a), there is no batten 2 made of the insulating material shown in FIG. 1.

製造工程は第1の実施例においてSin、バタン巾を0
.5μm程度とする以外は同様である。すなわち、KO
H水溶液によるシリコンの選択エツチングでは第4図(
b)において(100)のエツチング量Aと(111)
のエツチング量Bの比はA:B=25:1であるから、
Ak5μmとすると、サイドエッチilBは左右を含め
て0.4〜0.5μmとなシ、伽)の実線で示す形状が
得られる。上記基板を用いて第1の実施例を行うことに
より第4図(ロ))に示す化合物半導体基板が得られる
In the manufacturing process of the first embodiment, Sin and the slam width are set to 0.
.. The same is true except that the thickness is about 5 μm. That is, K.O.
Selective etching of silicon with H aqueous solution is shown in Figure 4 (
In b), the etching amount A of (100) and (111)
Since the ratio of the etching amount B is A:B=25:1,
When Ak is 5 .mu.m, the side etch ilB is 0.4 to 0.5 .mu.m including the left and right sides, and the shape shown by the solid line is obtained. By carrying out the first example using the above substrate, a compound semiconductor substrate shown in FIG. 4(b) is obtained.

一般に、シリコン支持結晶層を上に一様な厚さで化合物
半導体結晶を成長させた場合は、両者の熱膨張係数差に
起因する応力にエフクララりが発生するが、本発明によ
る基板では化合物半導体結晶の厚さが薄い領域で応力が
緩和されるためクラックが発生しなかった。
Generally, when a compound semiconductor crystal is grown with a uniform thickness on a silicon supported crystal layer, efclaration occurs due to the stress caused by the difference in the coefficient of thermal expansion between the two, but in the substrate according to the present invention, the compound semiconductor No cracks occurred because the stress was relaxed in the region where the crystal thickness was thin.

上記実施例ではGaPについて述べ九が、GaAs。In the above embodiments, GaP is described, but GaAs is used.

InPなど他の化合物半導体結晶でも同様に実現できる
It can be similarly realized using other compound semiconductor crystals such as InP.

(発明の効果) 以上説明したように、本発明によればシリコン支持結晶
層をに(111)と(100)面で構成され几凹部を形
成し、それを化合物半導体結晶で覆う化合物半導体結晶
層をであるため、その表面が平坦となp大面積基板に素
子を集積化する場合に必要な配線バタンを隣接する素子
領域を結ぶ化合物半導体結晶層上に配置することにより
容易に形成できる。また上記構造であるため化合物半導
体結晶層にクラックが発生せず、シリコン基板上に化合
物半導体結晶を用いた素子が実現できる。
(Effects of the Invention) As explained above, according to the present invention, a silicon supporting crystal layer is formed of (111) and (100) planes to form a recessed part, and the compound semiconductor crystal layer is covered with a compound semiconductor crystal. Therefore, when devices are integrated on a large p-area substrate with a flat surface, the wiring tabs required can be easily formed by placing them on the compound semiconductor crystal layer connecting adjacent device regions. Further, because of the above structure, cracks do not occur in the compound semiconductor crystal layer, and an element using a compound semiconductor crystal on a silicon substrate can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の化合物半導体結晶層をの製進法の工程
の説明図、第2図(a)は成長用装置の概念図、伽〕は
その温度分布、第3図は(100) 。 (111)面上でのGaPの成長膜厚の時間依存性、第
4図(a)は本発明の第2の実施例、伽)はKOH水溶
液によるシリコンのエツチング量を説明する図、第5図
は従来の化合物半導体結晶層をを示す概略図、第6図は
従来法で成長させた化合物半導体結晶層をを示す。 1・・・・・・・・・シリコン支持結晶層を2・・・・
・・・・・絶縁材料からなるバタン3・・・・・・・・
・化合物半導体結晶層4・・・・・・・・・レジストバ
タン 11.12・・・ガス流入口 13・・・・・・・・・龜ソース 14・・・・・・・・・シリコン支持結へ基板15・・
・・・・・・・ガス流出口 16・・・−・・・・反応管 17・・・・・・・・・基板ホルダ 4°−レジスト/でタン 第3図 第4図
Figure 1 is an explanatory diagram of the process of manufacturing a compound semiconductor crystal layer of the present invention, Figure 2 (a) is a conceptual diagram of the growth apparatus, Figure 3 is the temperature distribution, and Figure 3 is (100). . Time dependence of the thickness of GaP grown on the (111) surface, Figure 4 (a) is the second embodiment of the present invention, Figure 5 (a) is a diagram explaining the amount of silicon etched by a KOH aqueous solution, Figure 5 The figure is a schematic diagram showing a conventional compound semiconductor crystal layer, and FIG. 6 shows a compound semiconductor crystal layer grown by the conventional method. 1... Silicon support crystal layer 2...
・・・・・・Battle 3 made of insulating material・・・・・・・・・
- Compound semiconductor crystal layer 4... Resist button 11.12... Gas inlet 13... Cap source 14... Silicon support Conclusion board 15...
......Gas outlet 16...Reaction tube 17...Substrate holder 4°-resist/tan Fig. 3 Fig. 4

Claims (3)

【特許請求の範囲】[Claims] (1)シリコン{100}支持結晶基板上に化合物半導
体結晶層を備えた化合物半導体結晶基板において、シリ
コン支持結晶基板面に{111}と{100}で構成さ
れた複数の凹部を有し、前記凹部に半導体素子を形成す
るための化合物半導体結晶層が配置され、かつ隣合う凹
部を分つ、頂部が{100}であるシリコン支持結晶基
板凸部上に絶縁材料である薄膜が設けられ、前記薄膜上
の少なくとも一部が化合物半導体結晶で覆われ、かつ隣
合う前記半導体素子を形成するための化合物半導体結晶
層と連続していることを特徴とする化合物半導体結晶基
板。
(1) A compound semiconductor crystal substrate including a compound semiconductor crystal layer on a silicon {100} supporting crystal substrate, having a plurality of recesses composed of {111} and {100} on the surface of the silicon supporting crystal substrate; A compound semiconductor crystal layer for forming a semiconductor element is disposed in the recess, and a thin film of an insulating material is provided on the convex part of the silicon supporting crystal substrate whose top part is {100} which separates the adjacent recesses, 1. A compound semiconductor crystal substrate characterized in that at least a portion of the thin film is covered with a compound semiconductor crystal and is continuous with an adjacent compound semiconductor crystal layer for forming the semiconductor element.
(2)シリコン{100}支持結晶基板上に化合物半導
体結晶層を備えた化合物半導体結晶基板において、{1
11}と{100}で構成された凹凸を有するシリコン
支持結晶基板上に、前記凹凸の高さを越える厚さの化合
物半導体結晶層を備え、かつ隣合う凹部上の前記化合物
半導体結晶層の少なくとも一部が連続していることを特
徴とする特許請求の範囲第1項記載の化合物半導体結晶
基板。
(2) In a compound semiconductor crystal substrate comprising a compound semiconductor crystal layer on a silicon {100} supporting crystal substrate,
11} and {100}, a compound semiconductor crystal layer having a thickness exceeding the height of the asperities is provided on a silicon support crystal substrate having concavities and convexities constituted by {100}, and at least one of the compound semiconductor crystal layers on adjacent concave portions is provided. The compound semiconductor crystal substrate according to claim 1, wherein a portion of the compound semiconductor crystal substrate is continuous.
(3)Si{100}基板上に{111}と{100}
とからなる凹部を複数作製する工程と、上記基板上に化
合物半導体結晶をエピタキシャル成長させて少なくとも
一部が連続するように各凹部を化合物半導体結晶層で埋
める工程とからなることを特徴とする化合物半導体結晶
基板の製造方法。
(3) {111} and {100} on Si {100} substrate
and a step of epitaxially growing a compound semiconductor crystal on the substrate and filling each recess with a compound semiconductor crystal layer so that at least a portion of the recess is continuous. Method for manufacturing a crystal substrate.
JP6005886A 1986-03-17 1986-03-17 Compound semiconductor crystal substrate and manufacturing method thereof Expired - Lifetime JPH0670976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6005886A JPH0670976B2 (en) 1986-03-17 1986-03-17 Compound semiconductor crystal substrate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6005886A JPH0670976B2 (en) 1986-03-17 1986-03-17 Compound semiconductor crystal substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS62216221A true JPS62216221A (en) 1987-09-22
JPH0670976B2 JPH0670976B2 (en) 1994-09-07

Family

ID=13131102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6005886A Expired - Lifetime JPH0670976B2 (en) 1986-03-17 1986-03-17 Compound semiconductor crystal substrate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0670976B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990465A (en) * 1995-03-27 1999-11-23 Omron Corporation Electromagnetic induction-heated fluid energy conversion processing appliance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990465A (en) * 1995-03-27 1999-11-23 Omron Corporation Electromagnetic induction-heated fluid energy conversion processing appliance

Also Published As

Publication number Publication date
JPH0670976B2 (en) 1994-09-07

Similar Documents

Publication Publication Date Title
US4786615A (en) Method for improved surface planarity in selective epitaxial silicon
US10879065B2 (en) III-V compound semiconductors in isolation regions and method forming same
KR100680870B1 (en) Nitride semiconductor substrate and method for manufacturing the same, and nitride semiconductor device using nitride semiconductor substrate
US3634150A (en) Method for forming epitaxial crystals or wafers in selected regions of substrates
KR20010071417A (en) Fabrication of gallium nitride semiconductor layers by lateral growth from trench sidewalls
JPS58159322A (en) Method of forming single crystal layer on mask
JPH0210825A (en) Manufacture of alternate structure of single crystal semiconductor material layers and insulating material layers
JPH06140346A (en) Manufacture of heteroepitaxial thin layer and of electronic device
JPS62216221A (en) Compound semiconductor crystal substrate and manufacture thereof
CN116745889A (en) Semiconductor device, manufacturing method thereof and terminal equipment
JP2012204602A (en) Production method of cubic crystal silicon carbide film
JPS60193324A (en) Manufacture of semiconductor substrate
US3354007A (en) Method of forming a semiconductor by diffusion by using a crystal masking technique
JP2527016B2 (en) Method for manufacturing semiconductor film
JPS63502472A (en) Liquid phase epitaxial method for producing three-dimensional semiconductor structures
JPS61198713A (en) Manufacture of semiconductor device
US3445927A (en) Method of manufacturing integrated semiconductor circuit device
JPH0669024B2 (en) Method for manufacturing semiconductor device
JPS63239186A (en) Crystal article and its formation
JP3011741B2 (en) Semiconductor substrate manufacturing method
JP2527015B2 (en) Method for manufacturing semiconductor film
JPS61174736A (en) Manufacture of dielectric separating substrate
JPH02152221A (en) Manufacture of soi substrate
JPS60254629A (en) Manufacture of semiconductor device
JPS58176921A (en) Semiconductor substrate and manufacture of the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term